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Large-scale discovery of protein interactions at
residue resolution using co-evolution calculated
from genomic sequences
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Increasing numbers of protein interactions have been identified in high-throughput experi-

ments, but only a small proportion have solved structures. Recently, sequence coevolution-

based approaches have led to a breakthrough in predicting monomer protein structures and

protein interaction interfaces. Here, we address the challenges of large-scale interaction

prediction at residue resolution with a fast alignment concatenation method and a prob-

abilistic score for the interaction of residues. Importantly, this method (EVcomplex2) is able

to assess the likelihood of a protein interaction, as we show here applied to large-scale

experimental datasets where the pairwise interactions are unknown. We predict 504 inter-

actions de novo in the E. coli membrane proteome, including 243 that are newly discovered.

While EVcomplex2 does not require available structures, coevolving residue pairs can be

used to produce structural models of protein interactions, as done here for membrane

complexes including the Flagellar Hook-Filament Junction and the Tol/Pal complex.
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A longstanding goal of molecular biology is to determine
the three-dimensional structure of protein interactions at
atomic resolution. However, despite the ‘resolution revo-

lution’ in cryo-electron microscopy1, atomic resolution of com-
plexes is still labor intensive, lagging far behind the number of
known protein interactions in any one organism2–4. For instance,
even in the well-studied proteome of Escherichia coli, less than
half of probable protein interactions have been identified4 and
less than 9% have been structurally characterized, even account-
ing for similarity to 3D structures of complexes in related species.
Hence there is continued interest in computational approaches
that can accelerate the discovery of protein interactions in 3D at
atomic resolution.

There have been many experimental5–7 and computational
methods8–10 to identify which proteins interact within an
organism to scale, but the only computational methods able to
determine both interactions and their precise, residue-resolution
interfaces are based on coevolution. Coevolutionary methods
such as EVcouplings11,12 and others13 have been successful in
determining 3D structures by leveraging the vast corpus of nat-
ural sequences using probabilistic graphical models to infer
candidate pairs of interacting residues. These coupled positions
can be sufficient to fold single proteins11–13 and RNAs14, without
the use of homologous structures, and even resolve protein
interaction interfaces de novo15,16. However, in the previous work
that resolved interacting residues between proteins, coevolution
was typically benchmarked on fewer than 100 examples and
limited by using co-operonic proteins or phylogeny to identify
sequence pairs. Therefore, de novo prediction was limited to
select, small datasets or individual runs on a webserver15–18.
While this work was in preparation, new work was published that
used proteome-scale coevolution to provide a dataset of 804
candidate interactions in E. coli19. Though these predictions are
valuable, the methodology is not available for queries of new
protein pairs or new large-scale predictions (see Results for
detailed comparison).

Here we address the challenges of concatenation and statistical
scoring to provide a new method that integrates information from
residue-level scores to determine whether two proteins interact
and the residues involved in their interaction (Fig. 1) without
reliance on co-operonic positions, phylogeny, or docking. We
estimate that the scope is 53% of all possible protein pairs for a
bacterial genome such as E. coli, compared to previous methods
that rely on genomic position (~10%). As proof of principle, we
present results on a new benchmark set, which allows us to assess
the specificity and sensitivity of the method. As a case study, we
predict 504 interactions involving cell envelope and membrane
proteins, which are some of the most challenging to determine
experimentally. We provide docked models of these complexes,
some of which are of particular biological interest and are dis-
cussed in more depth (the Tol/Pal systems and the Flagellar Hook-
Filament Junction). We also provide predicted protein interactions
at residue resolution for an AP/MS dataset where the precise
details of interactions are unknown, as well as residue-level pre-
dictions for a Yeast Two-Hybrid dataset. To demonstrate the
potential for eukaryotic complexes, we also show successful pre-
dictions for eukaryotic-exclusive complexes including the human
spliceosome.

Results
Most protein interactions in E. coli do not have structural
resolution. Most protein interactions within an organism remain
structurally unresolved, even for well-studied model organisms
such as E. coli. Of the estimated 10,000 protein interactions in E.
coli, approximately 3,946 have been observed4, involving about

50% of all E. coli proteins. Of these protein-protein interactions,
9% have an experimentally determined structure or can be
inferred trivially from solved homologous interactions19, hence
leaving a large fraction of interactions unknown or without
structural resolution (Fig. 1).

The majority of the protein monomers in the E. coli proteome
(3,189 out of a total of 4,391) have high-quality monomer
alignments and are therefore amenable to EVcomplex2 (Meth-
ods). We verify that these alignments are of high quality by
testing the precision of the top ECs for those monomers with an
experimental structure (either in E. coli or another organism),
finding that 78% have reasonable precision of the top ECs (60%
for the top L ECs, where L is the protein sequence length)
(Supplementary Data 1, Supplementary Fig. 1). We therefore
restrict our computational predictions of co-evolution to the set
of 3,189 monomers with high-quality alignments (i.e., 75% of
proteins, covering 53% of possible interaction space).

Probabilistic score allows flexibility for computing residue
resolution interactions. This work addresses two main challenges
for determining residue resolution of interactions. The first chal-
lenge is to avoid the use of genome location or operonic structure
and hence be positioned to investigate any protein pair for inter-
acting residues. To solve this, we constructed alignments of pairs of
proteins from different organisms by identifying a single protein
per species with reciprocal highest identity to the query sequence
(Methods). This increases the number of protein interactions that
can be tested in E. coli by approximately fivefold across the pro-
teome when compared to reliance on genome distance and opens
the door to genome-scale interactions in eukaryotic organisms
(Supplementary Note 1). This scope and improved coverage will
continue to increase as sequencing becomes even more com-
monplace, as this is a major remaining limitation.

The second challenge is calibrating a method that can both
predict residue contacts for known interactions and also use
predicted residue contacts to detect protein interactions with high
confidence. True interactions are extremely sparse, representing a
small fraction of a very large number of possible combination of
proteins; for instance, it has been estimated that only about
10,000 of the nine million protein pairs in E. coli will interact4

(Fig. 1). Therefore, even small false positive rates will result in
large numbers of predicted interactions that are false. To
minimize the number of false positive interactions, we calibrate
on both positive and negative benchmarks: a ‘gold standard’ non-
redundant set of 561 interactions with known structure, and a set
of 3,987 non-redundant “non-interacting” protein pairs with no
signal for interaction in prior high throughput experiments2,4

(Supplementary Data 2, Methods).
On these benchmarks, our previous state-of-art method, the

EVcomplex score threshold15, has a 13% false positive rate,
resulting in large numbers of incorrect pairs predicted to interact.
These and other methods15,16,18 may still be useful if the
interaction is already presumed known, but the false positive rate
is prohibitively high for unbiased proteome-scale screens. We
therefore built a semi-supervised learning method combining the
unsupervised EVcomplex score with structure-agnostic features
of coevolving residues in a logistic regression: the EVcomplex
score, sum of intra-protein EC coupling constraints, the rank of
inter-EC relative to intra-EC pairs, and sequence conservation
(Supplementary Data 3, Methods). This model achieves a recall of
20.7% at a false positive rate of 0.1% on the held-out test set and
outperforms the previous EVcomplex score across all false
positive rate thresholds. For cases where the three-dimensional
structure of both monomers, is known, the recall can be further
increased to 22.6% at a false-positive rate of 0.1% (Supplementary
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Fig. 3A). We provide full tables of the performance of these scores
across all false positive rates, so that users can select thresholds
appropriate for their application (Supplementary Data 4). Our
model performs comparably to Yeast Two-Hybrid experiments,
achieving a recall of 27.9% versus the 29% obtained experimen-
tally at a false positive rate of 1%4, with the added feature of
providing residue-level interaction for all protein pairs found.

The logistic regression model also outperforms the previous
scoring method at detecting residue contacts when the interaction
of the protein pairs is presumed known. Considering only the
protein pairs in the positive benchmark set, at a score threshold
that gives a precision of 80% of true inter-protein ECs, we recover
59.9% of the true ECs in our held-out test set using our previous
scoring method, 65.6% of true ECs with the logistic regression
model, and 69.3% with the logistic regression model when
incorporating features of known monomer structures (Fig. 2,
Supplementary Fig. 3). Both our previous EVcomplex score and
our new models outperform other previously used scoring
methods (raw EC score19, Z-score20, and raw EVcomplex score15)
at both predicting interacting proteins and identifying interface
residue contacts (Supplementary Fig. 3).

Recently, another computational method using co-evolution to
search for proteome scale interactions at residue resolution was

published19. Based on their reported false-positive rates on their
benchmark set, our method is less sensitive for determining the
interaction of proteins (our method: 25% recall at FPR 0.34%
(Supplementary Data 5), their method: 36% recall at FPR 0.34%).
However, this was not a head-to-head comparison and their
increased recall may be due to the fact that they did not filter their
positive benchmark set for redundancy. In a head-to-head
comparison, our method performed better for predicting inter-
protein contacts given a known interaction (58.1% vs 75.3%
precision across all residues for their reported interacting
complexes with known structure, Methods, Supplementary
Data 5). Our increased precision comes at some expense in
terms of recall, in some cases because accurate inter-protein ECs
fall below the chosen scoring threshold, and in other cases
possibly because numerous paralogs rendered our concatenation
method inaccurate (4% and 18% of the dataset, respectively)
(Supplementary Note 1, Supplementary Fig. 4). These compar-
isons should be considered provisional as their pipeline19 is not
yet available, so we were not able to test their method on our
benchmark dataset, nor were we able to adjust their scoring
threshold. An additional advantage of our model is that we
provide distinct scoring methods for when interactions are
known and unknown. We anticipate this will be important for

Fig. 1 Scaling EVcouplings methods to full bacterial genomes. A The search problem for binary protein-protein interactions in Escherichia coli involves
finding all of the estimated 104 true interactions out of 107 possible pairs. Only approximately 9% of these true direct interactions have a crystal structure
solved in E. coli or a homologous structure in another organism. B Evolutionary couplings learned directly from protein sequences can resolve interfaces.
Sequence alignments of both monomeric proteins are created and concatenated by the reciprocal highest identity procedure before inference of
evolutionary couplings. Raw evolutionary coupling scores can be combined with features of their distribution, biochemical properties, and sequence
entropy to improve inference. C A benchmark dataset of all non-redundant protein interactions with known interface structure.
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users who have candidate interactions, e.g., from mass spectro-
metry experiments.

New predicted membrane protein interactions with strong co-
evolution. Since the cell membrane contains many protein
interactions essential for life, but is notoriously difficult to study
experimentally21, we targeted the cell envelope proteome for
detailed analysis. We based our analysis on 1583 proteins pre-
viously described as localized to the E. coli cell envelope2. We
assayed each compartment of the E. coli cell envelope proteome
with itself and with adjacent compartments (Methods) (Fig. 3A),
for a total of 939,159 protein pairs. After monomer sequence
alignment, concatenation, and EC calculation, 198,534 protein
pairs comprised of 1053 proteins (566 non-redundant protein

families) pass quality thresholds for analysis. The majority (771)
of these proteins are inner membrane proteins. 49% of these
proteins have at least a partial structure known of themselves or a
homologous protein.

We predict 504 interactions in the E. coli cell envelope as well
as the details of their interacting residues, including 243
interacting pairs not previously observed experimentally (Fig. 3B,
Supplementary Data 7, Supplementary Fig. 3). Despite having
chosen a stringent false positive rate threshold of 0.1%, we expect
that up to 39.1% of these interactions may be false positives due
to the large size of the tested space. Of 305 known membrane
protein interactions with known structures that can be analyzed
by our method, we recover an interaction signal for 76 of them
(Supplementary Fig. 5), similar to the recall expected based on
our calibrations (24.9% here vs 20.7% in calibration). The protein

Fig. 2 Model predicts interacting residues and interacting proteins with high precision. A Recall on the held-out fraction of the positive benchmark set
(x-axis) and false positive rate on the held-out dataset of non-interacting complexes (y-axis) at a score threshold that gives the corresponding recall. Our
logistic regression model (purple) reduces the false positive rate compared to the previous EV Complex score (blue). B Prediction of protein interaction is
based on the prediction of interacting residues. Number of predicted interacting residue pairs for complexes inferred to interact (purple) or not inferred to
interact (gray) based on our stringent protein complex prediction threshold. C Example performance on known interaction between ABC transporter
permease and ATP binding subunit (UniProt IDs: Y1470_HAEIN and Y1471_HAEIN, PDB ID: 2NQ2 chains C and A [https://www.rcsb.org/structure/
2NQ2]. D Example performance on known interaction between DNA primase PriS and PriL (UniProt IDs: PRIS_SULSO and PRIL_SULSO, PDB ID: 1ZT2 chain
A and B [https://www.rcsb.org/structure/1ZT2]).
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interactions in the E. coli membrane with the highest interaction
score are involved in essential cellular processes; for instance, the
RodA and penicillin-binding protein cell wall polymerases, which
we previously characterized in a detailed study22, as well as
components of the electron transport chain, components of the
ATP synthase, and components of the bacterial flagellum.

Although AP/MS has recently been used to identify 12,807 co-
purifying membrane proteins, it is not always known which
proteins interact with which other proteins within their respective
complexes2. We therefore computed the probability score of the
pairs within each complex to determine interacting pairs, finding
significant residue-level coevolution for 872 pairs (three or more
ECs above the 80% precision residue interaction threshold), 262
of which would have been blindly identified using our stringent
protein interaction scoring threshold (Supplementary Data 7).
These predictions can be used to disambiguate directly interacting
proteins in complexes identified via AP/MS, such as the Tol-Pal
complex reported below.

Yeast Two-Hybrid experiments have provided a rich dataset of
candidate interactions in E. coli4. EVcomplex2 can both increase
confidence in the inferred interactions and also provide residue
resolution for the predicted complexes. For 21% (N= 559) of

complexes found to interact by Yeast Two-Hybrid, we find at
least one EC above the 80% precision residue interaction
threshold (and 198 complexes have three or more ECs)
(Supplementary Data 7). This does not necessarily mean that
complexes with no residue coevolution signal do not interact,
as lack of signal may be due to chosen threshold in our
benchmarking or to lack of evolutionary conservation of
complexes.

Docking of newly resolved membrane-associated interactions.
The inter-protein residue pairs identified by our method can be
used as restraints for molecular docking, to resolve the 3D
structure of protein complexes15,16 (Fig. 3C–E). In addition,
docking lends additional confidence to ECs below the residue
interaction scoring threshold: ECs below the threshold end up
satisfied in the final model for 58% of the docked benchmark
complexes (Supplement, Supplementary Fig. 6, Supplementary
Data 8, Supplementary Data 10).

Of all inferred membrane protein interactions, we docked 59
pairs that had structures of both monomers available, including 36
with no previous structure of their interaction (Supplementary

Fig. 3 Discovery of hundreds of new interactions in the E. coli membrane proteome. AWe searched a high-value subset of the 10∧7 possible interactions
in the E. coli proteome by searching membrane compartments with themselves and with adjacent membrane compartments. BWe found 504 high-scoring
protein interactions in the cell envelope, including 75 with structural characterization and 186 with previous experimental evidence (and no structural
characterization). C–E 3D configurations of previously structurally characterized interactions are accurately predicted by molecular docking with inferred
restraints. RMSDs calculated by comparison to known structures with PDB IDs 3RKO [https://www.rcsb.org/structure/3RKO], 2WU2 [https://www.
rcsb.org/structure/2WU2], and 2HQS [https://www.rcsb.org/structure/2HQS], respectively. F–H Example of three docked models of newly resolved
protein complexes: BamE/MltB, YajC/FtsI, and Lnt/MurJ. Evolutionarily coupled residues used as restraints in docking are shown in magenta and
connected with solid lines.
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Data 9, Supplementary Data 11). This includes the proteins BamE
and MltB (Fig. 3F), which had previously been determined to be in
the same complex in an AP/MS experiment but the details of their
interaction were unknown2. We determine an interaction and
resolve the interface for the peptidoglycan biosynthesis protein
FtsI and the subunit of the Sec translocation complex YajC
(Fig. 3G), as well as for Lnt and MurJ (Fig. 3H), involved in
lipoprotein maturation and peptidoglycan biosynthesis,
respectively.

Our method resolves the interaction interface between flagellar
proteins FlgL and FlgK, which form the junction between the
flagellar filament and flagellar hook23. Extrapolating from our
docked model of the monomers and a previous model of the FlgK
ring from Campylobacter jejuni24, we infer the configuration of an
11-mer ring of FlgL inside an 11-mer ring of FlgK24 (Fig. 4,
Supplementary Fig. 7).

We constructed an atomic model of the Tol/Pal system (Fig. 5),
a molecular machine spanning the inner and outer membranes of
Gram-negative bacteria. These proteins may play a role in
membrane constriction during bacterial cell division25. For the
known interacting interface between TolB and Pal26, we
accurately recapitulate the known structure (PDB ID: 2HQS
[https://www.rcsb.org/structure/2HQS]). We predict interaction
and residue contacts for the known interaction between TolA and
TolB4,27 as well as residue contacts and a likely interaction of
TolR and TolB in the membrane28. For CpoB, which interacts
with the Tol system and the cell division septum site29, we
provide a molecular model of its interaction with TolB.

Current scope of EVcomplex for interactions exclusive to
Eukaryotes. The prediction of protein interactions using coevo-
lution is not restricted to bacterial genomes. However, predicting
protein interactions using coevolutionary methods in eukaryotes
is difficult due to the smaller number of sequenced genomes and
higher numbers of paralogous genes compared to bacteria. We
used our positive benchmark set, which contains structures from
all domains of life, to assess the prospects of EVcomplex2 for
predicting protein interactions at residue resolution in eukaryotes
(Methods). Of the 1,675 protein pairs in our dataset, 977 are
found predominantly in eukaryotes (more than 90% of con-
catenated sequences are eukaryotic in origin) (Fig. 6). As expec-
ted, a higher fraction of the eukaryotic protein complexes were
excluded from downstream analyses due to low sequence diver-
sity compared to bacterial protein complexes (78% versus 53%
excluded, respectively). Approximately 11% of the 977 eukaryotic
protein interactions have at least one interacting residue pair
correctly predicted by EVcomplex2, and 4% have three or more
correctly predicted (Fig. 6).

An important eukaryotic complex is the spliceosome, an
RNA–protein complex which splices intronic sequences from
immature mRNA in eukaryotes30. EVcomplex2 correctly predicts
the interface between Prp38 and MFAP1, whose interactions
contribute to the activation of the spliceosome31 (Fig. 6).
Excluding alignments with low sequence diversity, the next two
highest-ranked interactions in the spliceosome are between LSm2
and MFAP1 as well as between Prp38 and LSm5, which could
plausibly come into contact during rearrangement of the

Fig. 4 Model of the flagellar hook-filament junction. A Schematic of the orientation of the bacterial flagellum. The proteins FlgL (green) and FlgK (blue)
form two rings which create the junction between the hook and filament of the flagellum24. B Docked model of FlgL and FlgK using evolutionary couplings.
PDB structures of homologous proteins from Salmonella typhimurium were used in docking (PDB IDs 2D4Y [https://www.rcsb.org/structure/2D4Y], and
2D4X [https://www.rcsb.org/structure/2D4X], respectively). Predicted interface residues are highlighted in purple. C A previously inferred model of the
FlgK ring from Campylobacter jejuni24 was used to infer the structure of the entire hook-filament junction. Evolutionary coupled residues (purple) show the
interface for FlgL ring insertion into the FlgK ring. By aligning our docked model to the C. jejuni ring, we show that an 11-mer ring of FlgL fits inside the FlgK
structure.
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spliceosome during activation. These results demonstrate the
possibility of using sequence coevolution-based methods for
eukaryotes.

We assessed the current prospects for predicting whether
proteins interact and their residue resolution on the 74,449
proteins in the human proteome, by aligning their constituent
PFAM domains32 (Methods). We find that 42% of proteins in the
human proteome can be aligned with medium sequence diversity

in at least one domain, and 20% of proteins can be aligned with
the high diversity cutoff used for E. coli in all of their domains.
These represent approximate upper and lower bounds on the
number of proteins that would be amenable to coupling-based
analysis with any concatenation method. Of the 3 × 109 possible
interactions in the human proteome, this means that between 4%
and 17% of protein interactions are currently accessible to
EVcomplex2.

Fig. 5 Atomic resolution model of the Tol-Pal complex. A Schematic of the proteins involved in the Tol-Pal complex2 (TolABR, CpoB, and Pal).
Interactions with previously solved interfaces are shown in orange and interactions inferred by our method are shown in purple. B Complete model of the
Tol-Pal complex inferred by aligning results of docked pairwise models. Note that CpoB is inferred to be a trimer in vivo but was docked as a monomer for
modeling purposes C–F Residue resolution of TolB-Pal, TolB-TolA, TolR-TolB, and CpoB-TolB interfaces. The top 5 inferred interface contacts are shown in
purple. Dashed lines indicate inferred contacts where one or more residues are missing from the solved structure. Structures used are 1TOL_A (TolA)
[https://www.rcsb.org/structure/1TOL], 2HQS_A (TolB) [https://www.rcsb.org/structure/2HQS], 5BY4_A (TolR) [https://www.rcsb.org/structure/
5BY4], 2HQS_H (Pal) [https://www.rcsb.org/structure/2HQS], and 2XDJ_A (CpoB) [https://www.rcsb.org/structure/2XDJ].
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Discussion
In this work, we demonstrate a method for inferring protein
interactions at residue-level detail from genomic sequences alone.
We provide a probabilistic scoring method, calibrated on large,
non-redundant datasets, which can be used to determine the
probability of interaction of two proteins. If the protein interaction
is known or inferred by the protein interaction score, the residue
interaction score can be used directly to determine residues in
contact at the interface. These methods can be freely accessed via
our website (https://marks.hms.harvard.edu/ecolicomplex/) or by
downloading the source code (https://github.com/debbiemarkslab/
EVcouplings)33.

The highest reciprocal identity concatenation method introduced
here applies to more complexes than concatenation methods relying
on genomic distance to correctly pair interacting paralogs15, and
perform comparably to a recent method that relies on reciprocal
best hits for entire bacterial genomes19. Our method only requires
the sequence annotation already present in the UniProt database
and therefore has the advantage of not requiring curation and all-

vs-all sequence searches of full genomes19, phylogeny construc-
tion18, or extensive iterations34,35, rendering it very fast with no
dependencies. We show that cases where our concatenation method
is outperformed tend to have larger numbers of paralogs, suggesting
that other more computationally intensive techniques could be
selected based on prior knowledge about the protein pair.

Our method assumes that interactions between orthologous
proteins are conserved across species, an assertion which is cer-
tainly not true for all complexes and will lead to false negatives in
the case of newly evolved or poorly conserved interactions. In
addition, since our method has been calibrated on experimentally
resolved structures, it may inherit their biases. In particular, crystal
structures are known to be biased against membrane proteins,
alternative conformal states, and transient interactions, which
could lead to false-negative predictions. This bias is likely to be
more pronounced in eukaryotes, which tend to have more multi-
domain and intrinsically disordered proteins than prokaryotes36.

With current sequence databases, 53% of the protein pairs in
the E. coli proteome are eligible for EVcomplex2. By using our

Fig. 6 Predicted protein interactions in eukaryotic proteomes. A Distribution of eukaryotic sequences in concatenated sequence alignments. Shown in
orange are alignments that passed our sequence diversity threshold, and in gray are those that did not. B Number of correctly predicted inter-protein ECs
for eukaryotic-exclusive complexes above the sequence diversity threshold. Eukaryotic-exclusive complexes are defined as complexes whose concatenated
sequence alignment is at least 90% eukaryotic sequences. Inter protein ECs are defined as correct if their minimum atom distance is <8 Å. C The human
spliceosome proteins Prp38 and MFAP1 have a known interface correctly predicted by our method, and have a protein interaction detected. The inter-
protein ECs above the 80% precision threshold used throughout the paper are shown in purple. Known protein structure (PDB ID: 5F5U, [https://www.
rcsb.org/structure/5F5U]) is used to visualize the subunits. D Schematic of predicted interaction between Lsm5 and Prp38 with top 5 inter-protein ECs.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21636-z

8 NATURE COMMUNICATIONS |         (2021) 12:1396 | https://doi.org/10.1038/s41467-021-21636-z | www.nature.com/naturecommunications

https://marks.hms.harvard.edu/ecolicomplex/
https://github.com/debbiemarkslab/EVcouplings
https://github.com/debbiemarkslab/EVcouplings
https://www.rcsb.org/structure/5F5U
https://www.rcsb.org/structure/5F5U
www.nature.com/naturecommunications


highest reciprocal identity criterion, we restrict ourselves to one
ortholog per genome, which limits the amount of sequence
diversity that can be found for families with multiple paralogs per
genome. This limitation is most consequential in eukaryotes,
where there are fewer sequenced genomes to draw from. Previous
studies showed that eukaryotic protein complexes could be suc-
cessfully predicted if they had prokaryotic homologs20,37, and our
study extends this finding to show that some eukaryotic-exclusive
complexes now have sufficient sequence diversity for prediction.
Growth in sequence databases and the development of fast con-
catenation techniques to handle paralogous sequences will
increase the number of protein pairs that can be analyzed. Two
recent papers have shown that sequence diversity generated in the
lab can be used to determine protein structures38,39, opening an
interesting future avenue for using experiments to determine the
structure of protein complexes.

Method development using coevolution to resolve protein-
protein interactions has thus far been tested on a handful of well-
studied protein-protein interactions15–17,34,35,40, reaffirming our
ability to predict well-conserved, well-characterized protein
interactions. While there are many possible avenues for con-
tinuing to improve coevolution-based prediction of protein
interactions, we suggest that future development should begin
with large, non-redundant biological datasets such as ours. By
identifying and diagnosing cases where existing methods fail on
real datasets, new developments will lead to greater opportunities
to discover unknown protein interactions.

Methods
Creation of positive benchmark set. We built a dataset of non-redundant het-
erodimeric protein-protein interactions with resolved crystal structures. A list of all
heteromeric structures in the PDBePISA was downloaded41 (download date: 2/19/
2018) and passed through the RCSB Protein Data Bank with the following query:
“Sequence Length is between 30 and 1200 and Resolution is between 1.0 and 5.0
and Representative Structures at 30% Sequence Identity.” IDs were mapped to
UniProt42 identifiers using the SIFTS database43 (download date 2/20/2018). Only
complexes with at least two chains that map to different UniProt identifiers were
kept. Single-chain and fusion proteins were removed because they may have non-
specific interface contacts not found in nature.

For each protein, we extracted the PFAM domains32 annotated in that protein,
which we call the PFAM set for that protein. We then consider a protein-protein
interaction as unique if and only if the interacting proteins constitute a pair of
PFAM sets not yet seen in our database, yielding 4154 non-redundant pairs of
interactions. We then consider only contacting pairs of proteins, defined as a
protein pair with at least 20 pairs of residues with a minimum atom distance less
than five angstroms. Because each unique interaction can be represented by many
crystal structures, representative crystals were chosen based on the number of other
interfaces present in that crystal – i.e., complexes with more subunits were
prioritized. We removed any cases where the two proteins map to the same chain,
where the two proteins share any PFAM domain, or where either of the proteins
was less than 30 amino acids in length, resulting in a final list of 1,675 protein
complexes with known interfaces (Supplementary Data 2).

Creation of negative benchmark set. A total of 2,500 negative examples were
selected randomly from all pairs of complexes with no signal for interaction in a
large-scale Yeast Two-Hybrid experiment in E. coli4, as well as all pairs of proteins
whose proteins were found in different APMS benchmark complexes1. We verified
that no pair of proteins had the same PFAM set as any other pair of proteins in the
negative set and that no pair had the same PFAM set as any pair of proteins in the
positive benchmark set. We further removed protein pairs with any links in the
STRING database44, protein pairs previously inferred to interact (including
protein-ribosome pairs)19, and proteins from membrane protein export appara-
tuses (as annotated in Babu et al., 2017): “BamABCDE Outer Membrane Protein
Assembly Complex”, “TatABCE protein export complex”, “SecD-SecF-YajC-YidC
Secretion Complex/Sec Translocation Complex”, “Sec Translocation Complex/
SecYEG translocase”, “Sec Translocation Complex”, “GspC-O secreton complex.”
The final dataset included 3987 protein pairs (Supplementary Data 2).

Monomer sequence alignment. For alignments of the positive benchmark set, all
UniProt42 identifiers corresponding to the sequence of interest were extracted from
PDB45. For alignments of the E. coli genome, all identifiers from the reviewed
Escherichia coli strain K12 reference proteome (UP000000625) were downloaded
from UniProt. For both the positive benchmark set and E. coli genome set, the

entire length of every protein was used for sequence alignment. Alignments were
constructed using jackhmmer version 3.1b246 with five iterations against the
UniProt database (downloaded February 2018), as implemented in the EVcou-
plings software package. Alignments were considered to have sufficient coverage if
at least 80% of the columns were less than 50% gaps. A range of bit-scores were
tested (0.1, 0.2, 0.3, 0.5, and 0.8 times protein length L). For each alignment, the
Neff was calculated by downweighing each sequence by the number of other
sequences with more than 80% identity. The alignment with the largest Neff that
had 80% coverage of columns was selected for each protein. Proteins from the E.
coli genome were deemed eligible for EVcomplex analysis if their monomer
sequence alignment had at least 80% column coverage and Neff/L >= 2.5, after
characterizing the precision of monomer protein couplings across a range of
sequence alignment diversities (Supplementary Fig. 1).

Concatenation. Monomer protein sequences were concatenated for EVcomplex2
analysis. We first annotate the species of origin for each sequence by extracting the
species annotation from the UniProt42 database. A single representative for each
species was chosen based on the highest identity to the query sequence. After
excluding closely related paralogs in the query genome with more than 90%
sequence identity, we confirm that the candidate hit has the highest identity to the
query sequence than to other paralogs from the query species found during our
sequence alignment protocol. If for a single species, a reciprocal highest identity hit
for both monomers can be identified, those hits are concatenated and added to the
alignment.

Concatenated alignment quality control. To avoid analyzing protein pairs where
the two proteins are homologous, we implemented four different quality control
metrics. First, we remove all pairs of proteins where the first protein contains a
PFAM domain that is found in the second protein. Then, we remove all pairs
where our structure comparison protocol found overlapping hits to the same chain
of the same PDB structure. Next, we remove all pairs that display high-scoring
coevolution along a diagonal between the two proteins (i.e, between position i in
protein A and the corresponding position i in protein B). We consider these
contacts to be artifactual due to their very high scores relative to known interac-
tions. Finally, we do not consider proteins from E. coli where there is a non-
traditional amino acid annotated in the UniProt sequence, because these can
indicate pseudogenes. To ensure high-diversity, low gap alignments for inference,
we removed from consideration concatenated sequence alignments with Neff/L less
than 0.2 or coverage of columns less than 80%.

EC calculation. For calculation of evolutionary couplings (ECs), hits composed of
more than 50% gaps were filtered from the alignment, and sequences with
homologs more than 80% identical were downweighed to compute Neff, the
effective number of sequences12. ECs were calculated using pseudo-likelihood
maximization14,47,48. The λJ term was scaled by the number of amino acids minus
one times the number of sites in the model minus one49. Pre- and post-processing
was performed using the EVcouplings Python package33.

Raw EC scores, sometimes called the Corrected Norm (CN) score, were
calculated by performing the average product correction (APC) on the Frobenius
Norm scores output by plmc. Diagonal ECs, where positions i and j are within 5
amino acids, were not included for further analysis. For analysis of raw ECs, the Z-
score of each inter-residue EC was calculated using the distribution of all inter-
residue ECs. The EVcomplex score was calculated by dividing each inter-protein
EC by the absolute value of the minimum inter-protein EC score (for the raw
EVcomplex score), and then normalizing for the Neff/L of the concatenated
alignment (for the EVcomplex score)15. The EVcomplex2 score is calculated by
inputting the couplings scores and additional features into the model described
under “Detecting inter-protein residue contacts”, for predicting residue interactions
when the protein interaction is presumed known, or by inputting the coupling
scores and additional features into the model described under “Detecting protein
interactions” for predicting protein interactions.

Comparison of ECs to experimental structures. To identify experimental
structures for comparison of evolutionary couplings, the monomer sequence
alignments were searched against the PDB database using hmmsearch version
3.1b246. For E. coli monomer alignments, the top 20 were selected. For the vali-
dation dataset, all hits above a bitscore threshold of 0.2 L were selected. Once
structures were selected for comparison, the minimum of the nearest atom inter-
residue distances across all structures were used for comparison to ECs11.

Solvent accessible surface area calculation. Relative and absolute solvent
accessibilities were calculated using DSSP (CMBI version by M.L. Hekkelman/
2010-10-21)50 with a probe size of 1.4 Å and standard van der Waals radii51. If
multiple structural hits were found for each protein, we take the mean relative
solvent accessibility across all structures, to avoid biases caused by incomplete
structures.
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Conservation calculation. The conservation C for each column i in the con-
catenated sequence alignments were calculated as one minus the normalized
entropy for the column i,

C ¼ 1�H=log220 ð1Þ

H ¼ �
X20

k¼1

fklog2fk ð2Þ

where fk is the frequency of the k-th amino acid in column i.

Detecting inter-protein residue contacts. We trained a logistic regression classifier
to predict the probability that two residues i and j are in contact (distance < 8 Å),
given their EC score and additional residue-level features. This model for residue
interaction was trained on the positive benchmark dataset, which includes 560 protein
complexes for which the concatenated sequence alignment has sufficient coverage and
diversity. Because most of the inter-protein ECs are noise and do not correspond to
real contacts15,16, we take the top ten inter-protein ECs as input to the model. Residue
pairs where one or both residues were missing in all structures were removed from the
dataset because their distance is unknown. This resulted in 5,344 residue pairs with a
defined minimum atom distance, 26% of which were within 8 Å.

140 (25%) of the 561 complexes had all of their ECs held out and used for
testing. Models were trained using the Logistic Regression classifier in Scikit-learn
v. 0.23.552, using the LIBLINEAR solver and L1 regularization. Regularization
weight of 0.05 was chosen to maximize a tradeoff between recall and precision
using ten-fold cross-validation on the training dataset.

The following features were evaluated for their ability to predict residue
contacts in a logistic regression model with L1 regularization: the EVcomplex
score15; the Z-score of the corrected norm (CN) score of all inter-protein ECs; the
conservation of the more conserved for the two residues; the relative rank of the
inter-protein ECs; the maximum of the intra-protein EC enrichment11 for the two
residues; the percent of residues in both positions that were hydrophobic (amino
acids AVILMC), hydrophilic (amino acids STNQ), bulky (amino acids WFY), or
charged (amino acids RHKDE) (4 separate features); and the combined
hydrophilicity score at both positions. The features chosen for the final model
based on non-zero weights in the L1 regression were the EVcomplex score12, the
conservation of the more conserved for the two residues, the relative rank of the
first inter-protein EC, and the maximum of the intra-protein EC enrichment for
the two residues11 (Supplementary Data 3). The resulting model is referred to as
the “structure-free” score.

We also trained a model that takes advantage of data from known monomer
structures by incorporating two additional features: the minimum of the accessible
surface area of both residues, and the precision of the ECs ranked above the current
inter-protein EC. These two features were found to be significant in combination
with the features found above. This model is referred to as the “structure-
aware” score.

Detecting protein interactions. To build a model for determining whether two
proteins interact, we use the score of the residue interaction model for the top ten
inter-protein residue pairs as inputs to a logistic regression, as well as the relative
rank of the highest-scoring inter protein EC (Supplementary Data 3). Our training
dataset was composed of positive and negative examples. Positive examples were
420 protein pairs (75%) from the positive benchmark set, filtered so that all
examples had at least one of the top ten inter-protein ECs within 8 Å, for a total of
322 complexes. Negative examples were 322 protein complexes randomly chosen
from the negative benchmark set of Y2H negative complexes. Our test dataset was
composed of the same 140 positive benchmark protein complexes withheld dur-
ing the training of the residue interaction model, as well as all examples in the
negative benchmark set not included during training.

Models were trained using the Logistic Regression classifier in Scikitlearn v.
0.23.552, using the LIBLINEAR solver and L1 regularization (weight= 0.1) to select
features and regularization weight, chosen to maximize a tradeoff between recall
and precision using ten-fold cross-validation. The final model was trained with L2
regularization using the LIBLINEAR solver in Scikitlearn v. 0.23.5.

The protein pairs from the negative benchmark set that were excluded from the
training and test set were used to assess the false-positive rates expected when the
model is applied to large datasets.

Comparison to Cong et al., Science, 2019. Recall and false positive rate for
prediction of interacting proteins was extracted from Cong et al., Science, 2019
Supplementary Table S319. All protein pairs with a crystal structure listed were
extracted from their Supplementary Table S8 (“Protein–protein interactions in E.
coli identified in the co-evolution screen”). 331 of 339 protein pairs were suc-
cessfully run using our pipeline, with the remaining 8 excluded due to technical
issues or pathologies of the protein pair (Supplementary Data 4). Both our and
their inter-protein ECs were compared to the same PDB structures as listed in their
study, using a minimum atom distance cutoff of 8 Å to define interaction.

Our pipeline was considered to have predicted an inter-protein EC if the
structure-free logistic regression score exceeded the 80% precision cutoff. To
investigate the causes of discrepancies between prediction methods, we calculated

the median number of paralogs per species for each of the constituent monomer
alignments.

Cell envelope proteome. Localizations of E. coli proteins were extracted from a
previous study2. Cell envelope proteins were separated into four categories: inner
membrane-bound (integral or lipoprotein), periplasmic, outer membrane-bound
(integral or lipoprotein), and extracellular. Proteins annotated as “membrane
related” but without a specific location were excluded. Each of the four compart-
ments was tested against itself and against proteins in the physically adjacent
compartment(s): inner membrane versus periplasm, periplasm versus outer
membrane, and outer membrane versus extracellular.

Docking. Side chains of all monomers were perturbed and optimized using
SCWRL453 to reduce the effect of crystallization in a complex that may bias the
docking procedure. Restraints-based docking was done using HADDOCK (High
Ambiguity Driven biomolecular DOCKing) v2.254 and CNS55. This allows
restricting the possible interaction search space using a more sophisticated treat-
ment of conformational flexibility. The top five inter-ECs scores in both structure-
aware and structure-free regression models were selected. Unambiguous distance
restraints were applied on C-beta (except for glycine, where C-alpha was used) with
an effective distance of 5 Å with an upper and lower bound of 2 Å. Default
HADDOCK protocol was done starting with a rigid-body energy minimization
(500 models), followed by semi-flexible refinement in torsion angle space (100
models), and ending with further refinement in explicit water (100 models). Upon
binding, small conformational changes can be accounted for by HADDOCK
through explicit flexibility during the molecular dynamics refinement. The
resulting models were scored using the default HADDOCK scoring function, and
the top ten best-scoring models, as well as the top models from RMSD clusters, are
reported. To evaluate docking of our benchmark set where the structure of the
interaction is known, we calculated Ligand-RMSD (L-RMSD) as well as Ligand
centroid rotation angle and displacement in comparison to the reference structures.

Annotating domain of life for concatenated alignments. For all concatenated
sequence alignments that comprise the positive benchmark set, the UniProt42

accession numbers were mapped against the NCBI taxonomy database56 We
extracted the domain of life for each sequence in the database and calculated the
percent of sequences in each alignment that were eukaryotic in origin.

Generating PFAM domain alignments. For estimating the number of possible
human interaction pairs suitable for our analysis, we used a set of EVcouplings
runs computed for all ~16 K PFAM domains in 2017 (PFAM release 30.0). A
representative sequence from each domain family was chosen, and alignments were
built for each sequence using jackhmmer46 for five iterations at multiple length-
normalized bit scores between 0.1 and 0.5 using the 2017 Uniref100 release42.
Pseudo likelihood maximization was then used to compute evolutionary couplings
scores for each possible pair of positions in the query.

Estimation of human protein pairs amenable to EVcomplex. We downloaded
the set of 74,449 unique translation products annotated by UniProt human
reference proteome UP000005640 (dated 12/2/2019). Each entry was then cross-
referenced against the PFAM 32.0 release to identify component domains. Using
the set of runs described above, we then identified how many domains in each
protein had an alignment with high coverage (with over 80% of positions con-
taining fewer than 30% gaps in the alignment) and a sufficiently diverse set of
sequences (effective number of sequences per residue >= 1 or 5). These calcula-
tions were then used to report the number of human proteins amenable to
EVcomplex reported in the text.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The benchmark and prediction datasets generated are available in the Supplementary
Material, and full results are available online at https://marks.hms.harvard.edu/
ecolicomplex/. The sequences and sequence annotation data analyzed during this study
are available from UniProt (download date: Apr 1, 2017). The sequence location data
analyzed during this study are available from ENA (download date: Feb 2017). The
sequence taxonomy data analyzed during this study are available from the NCBI
taxonomy database (download date: May 2020). The 3D-Structural information data
analyzed during this study are available from the Protein Data Bank and SIFTS
(download date Feb 1, 2018).

Code availability
EVcomplex2 is available as part of the EVcouplings Python Package, which is available
on github under an MIT license: https://github.com/debbiemarkslab/EVcouplings and
citable as https://doi.org/10.1093/bioinformatics/bty862.
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