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Abstract
Pathogenic microorganisms are in a perpetual struggle for survival in changing host environments, where host pres-
sures necessitate changes in pathogen virulence, antibiotic resistance, or transmissibility. The genetic basis of pheno-
typic adaptation by pathogens is difficult to study in vivo. In this work, we develop a phylogenetic method to detect 
genetic dependencies that promote pathogen adaptation using 31,428 in vivo sampled Mycobacterium tuberculosis 
genomes, a globally prevalent bacterial pathogen with increasing levels of antibiotic resistance. We find that depend-
encies between mutations are enriched in antigenic and antibiotic resistance functions and discover 23 mutations 
that potentiate the development of antibiotic resistance. Between 11% and 92% of resistant strains harbor a depend-
ent mutation acquired after a resistance-conferring variant. We demonstrate the pervasiveness of genetic depend-
ency in adaptation of naturally evolving populations and the utility of the proposed computational approach.
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Introduction
Genomic evolution of pathogenic bacteria is rapid and per-
vasive and poses a serious threat to global health. The evo-
lutionary pressure imposed by human infection creates 
pathogens that are more transmissible, more virulent, or 
more difficult to treat due to antibiotic resistance 
(Jackson et al. 2011; Farhat et al. 2013; Diehl et al. 2016; 
Karim and Karim 2021). While often attributed to single 
mutational events, antibiotic resistance is more complex, 
and high-level resistance can manifest through multiple 
mutations in a sequential and dependent manner 
(Hughes and Andersson 2017; Wong 2017; Kryazhimskiy 
et al. 2014). Dependency, here defined as when an initial 
mutation changes the likelihood of a specific subsequent 
mutation, may arise due to the fitness cost of initial resist-
ance acquisition or the action of antibiotics on multiple cel-
lular processes (Andersson and Hughes 2010; Melnyk et al. 
2015). A complete understanding of the multiple, depend-
ent mutations associated with any pathogen phenotype, in-
cluding resistance, would allow us to better understand 
pathogen biology and potentially forecast evolution.

Traditionally, the study of mutational dependence in mi-
crobial populations has relied on in vitro evolution experi-
ments where populations are longitudinally sampled to 
determine mutational trajectories (Kryazhimskiy et al. 2014; 

Safi et al. 2013; Allen et al. 2021; Plucain et al. 2014). This heav-
ily restricts the context and breadth of evolutionary land-
scapes we can study. Further, resistance acquisition in vitro 
may not necessarily reflect resistance acquisition in vivo with-
in a host environment. New approaches are needed to under-
stand evolution of natural populations that will necessarily be 
sampled contemporaneously and be the most relevant to 
real-world scenarios and human health.

Mycobacterium tuberculosis complex (MTBC), the 
causative agent of tuberculosis, which displays increasing 
antibiotic resistance globally, is an important case study 
for identifying mutational dependency (Lange et al. 
2018; World Health Organization 2020). Although prior 
reports have characterized individual cases of dependent 
evolutionary trajectories in MTBC antibiotic resistance 
(Safi et al. 2013; Comas et al. 2011; Kavvas et al. 2018), a 
genome-wide method to detect dependent mutations 
generalizable to any phenotype is needed. In other bac-
terial species, recent work has used Potts models and re-
gression with interaction terms to detect dependent 
evolution in natural populations (Skwark et al. 2017; 
Puranen et al. 2018; Schubert et al. 2019). However, the 
strong linkage effects and low diversity of many patho-
gens, including M. tuberculosis, require an alternative ap-
proach (Supplementary Material online). A well-suited 
solution to clonally evolving populations is to focus on 
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mutations that evolve in a parallel manner across the 
phylogeny. This approach has been successful in detect-
ing individual genetic effects on phenotype because it 
readily controls for population structure, biased sam-
pling, and linkage across the clonal genome (Farhat 
et al. 2013; Desjardins et al. 2016). Phylogeny-based ap-
proaches have successfully found dependencies in influ-
enza proteins (Kryazhimskiy et al. 2011) but have not 
to date been applied to pairs of mutations in complete 
bacterial genomes.

Here, we study pairs of dependent, parallelly occurring 
(homoplastic) mutations arising during the evolution of 
natural populations. We determine which mutations are 
more likely to occur in certain genetic backgrounds, con-
trolling for increased uncertainty when mutations are 
rare. We applied our method to a data set of 31,428 
MTBC genomes spanning six major global lineages, find-
ing that antibiotic resistance and antigen evolution are 
enriched among dependent mutation pairs. We observe 
23 mutations that appear to potentiate the evolution 
of resistance to multiple different antibiotics. We quan-
tify the number of strains in our data set with evidence 
of dependent evolution occurring as a consequence of 
initial resistance evolution to 11 antibiotics—ranging 
from 92% for streptomycin to 11% for fluoroquinolones. 
We chart common manifestations of these consequential 
mutations after antibiotic resistance evolution, finding 
compensatory variation mediated through both physical 
interactions and metabolic pathways, and multistep evolu-
tion of high-level resistance phenotypes (fig. 1). Overall, 
our results demonstrate the promise of detecting depend-
ent mutational events in naturally evolving pathogen 
populations and explore mechanistic explanations for 
dependencies.

Results
Evolutionary Events in M. tuberculosis
We estimated the evolutionary history of 31,428 diverse 
MTBC strains using maximum likelihood phylogeny and 
ancestral sequence reconstruction, with 2,815, 8,090, 
3,398, 16,931, 98, and 96 strains belonging to Lineages 1– 
6, respectively, as recently described (Vargas et al. 2022; 
Vargas, Freschi, Spitaleri, et al. 2021) (supplementary 
Data S1, Supplementary Material online). Restricting our 
analysis to single-nucleotide polymorphisms (SNPs), we 
observe 4,743 sites in the genome to have evolved away 
from the pan-susceptible ancestral state (Comas et al. 
2010) at least five times independently (supplementary 
Data S2, Supplementary Material online). Of these 4,743 
sites, 19.5% are intergenic, and the remaining mutations 
are found in a total of 1,476 different genes. The mutations 
are well distributed phylogenetically, arising in a median of 
three major lineages. Most mutations are relatively recent, 
with a median age index (ratio of number of descendant 
branches to number of mutation events) of 2.4.

We then categorize the homoplastic mutations in terms 
of their putative function: labeling mutations as antibiotic 
resistance associated based on a catalog of known and 
potential variants (W. H. (hq) Global Tuberculosis 
Programme 2021) and antigenic based on their presence 
in proteins with known epitopes (Coscolla et al. 2015; Vita 
et al. 2019) (Materials and Methods). Antibiotic-associated 
mutations are overrepresented in our data set of homoplas-
tic mutations, with 5% and 17% of mutations annotated 
as known or possibly resistance conferring, respectively 
(chi-squared P < 10−307 for both) (supplementary Data S3, 
Supplementary Material online). Homoplastic mutations 
in epitopes and epitope-containing proteins comprise 
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FIG. 1. Patterns leading to detected evolutionary dependency. A simple framework classifying observed types of evolutionary dependencies in 
antibiotic resistance development. (A) Dependencies can potentiate resistance development. Potentiating mutations may amplify resistance, 
that is, directly influence the inhibitory concentration of the drug, or they may instead have a general effect on growth, virulence, and metab-
olism that increase the probability of acquisition of directly causal drug resistance mutations. (B) After initial resistance evolution, consequential 
mutations (i.e., arising as a consequence of resistance) are observed and manifest through multiple mechanisms. (C ) Consequential mutations 
may restore fitness lost with the acquisition of resistance variants. The latter can be mediated through direct physical interactions or pathway- 
mediated changes in related genes. (D) Lastly, consequential mutations can causally amplify resistance, either through individual effects or epi-
static effects such that the combination of the two variant effects is different than the sum of the individual effects.
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3% and 16% of the data set, respectively, again representing 
a significant enrichment (chi-squared P < 10−67 and 
<10−34). We find no significant enrichment for homoplastic 
mutations in essential genes (chi-squared P > 0.01). The 
overrepresentation of antibiotic resistance and antigen- 
associated homoplastic mutations suggests positive selec-
tion for these beneficial traits.

Detecting Dependencies Between Mutations
Previously, Potts model based methods have been used 
to detect potential dependencies between mutations in 
microbial genomes. However, we find that the strong link-
age effects in M. tuberculosis bias the method toward 
lineage-defining variants, even after state-of-the-art cor-
rection, and therefore we develop an alternative approach 
(supplementary fig. S1–S3, Supplementary Material
online).

We develop a method to detect dependency between 
pairs of homoplastic mutations. We first partition the 
data set into two nonmutually exclusive groups: 1) muta-
tion pairs that occur simultaneously on the same branch 
at least once (N = 132,012) and 2) mutation pairs that 
occur sequentially on subsequent branches at least once 
(N = 998,764).

To test for dependencies between sequentially occurring 
mutations a and b, we determine if the estimated probability 
of mutation a is higher for a genetic background containing 
mutation b compared with the root ancestral background 
(fig. 2; Materials and Methods). We exclude pairs of depend-
ent mutations where the median distance between a and b 
on the phylogeny is >1,000 mutations, as these represent 
outliers (Materials and Methods; supplementary fig. S4, 
Supplementary Material online). We detect significant evolu-
tionary dependency for 3.3% (N = 32,567) of all sequentially 
occurring homoplastic mutation pairs (Benjamini–Hochberg 
false discovery rate [FDR] < 0.01) (supplementary Data S4, 
Supplementary Material online).

To test for dependencies between simultaneously occur-
ring mutations a and b, we determine if the estimated prob-
ability of mutations a and b occurring simultaneously is 
higher than the estimated frequency of their co-occurrence 
if the two mutations were independent events (fig. 2; 
Materials and Methods). We detect significant evolutionary 
dependency for 48% (N = 62,804) of all simultaneously oc-
curring homoplastic mutation pairs (Benjamini–Hochberg 
FDR < 0.01) (supplementary Data S3, Supplementary 
Material online). We note the high fraction of significant 
pairs because simultaneous occurrence of any two muta-
tions on a branch is unlikely.

Highest-Scoring Sequentially Occurring 
Dependencies Are Enriched in Antibiotic Resistance 
Function
We next annotate whether the pairs of sequentially occur-
ring mutations are enriched in antibiotic resistance- 
associated or antigenic proteins. We greedily assign each 
pair of mutations into the following categories in the 

respective order: Both mutations are antibiotic associated, 
the first or second mutation acquired is antibiotic asso-
ciated, both mutations are antigenic, one mutation is anti-
genic, or other (none of the categories apply) (Materials 
and Methods).

The pairs of sequentially occurring dependent muta-
tions are enriched in antibiotic resistance (actual: 13.6% 
vs. expected: 10.3%) and antigenic categories (actual: 
41.2%. vs. expected: 32.1%) compared with our expect-
ation from the frequencies of individual SNPs (chi-squared 
value < 10−307; supplementary Data S3, Supplementary 
Material online). This indicates that not only are individual 
antibiotic resistance and antigen-associated mutations in-
dividually under positive selection but that there are rela-
tionships between pairs of mutations that render some of 
them more likely to co-occur in one another’s presence. 
Among the top 100 hits in terms of P-value, 59% include 
a known resistance variant, in the majority of which the 
resistance-conferring mutation occurs second (fig. 3A).

Enrichment of Simultaneous Mutation Pairs in Close 
Genomic Proximity
We identify that simultaneously occurring dependent 
pairs are more likely to be in close genomic proximity 
than sequentially occurring dependent pairs: Of the top 
100 pairs of simultaneous dependencies, 87% are within 
100 bp on the genome (fig. 3B and D).

We investigate the possible origins of the enrichment of 
these pairs, to determine whether they are the result of se-
lection on epistatic pairs of mutations, or potentially due 
to non-SNP mutational processes generating more than 
one mutation at a time. There are 2,361 pairs of dependent 
simultaneous mutations found within 100 bp on the gen-
ome, 15.6% of which are intergenic, somewhat higher than 
the 9% of the genome that is intergenic (Cole et al. 1998).

We reason that for pairs of mutations with epistasis, we 
would occasionally observe an individual mutation alone 
or sequentially rather than simultaneously. Therefore, for 
the less frequent of the two mutations, we calculate the 
fraction of the time that it occurs simultaneously with 
the other mutation versus independently or sequentially. 
We find that for 395 pairs of mutations, the less frequent 
mutation occurs <1% of the time independently or se-
quentially, and for 655 pairs it occurs <20% of the time 
(supplementary fig. S5, Supplementary Material online). 
This indicates that there is a subset of significant, simultan-
eous dependent mutations for which one of the two 
mutations almost always occurs on the exact same phylo-
genetic branch as the other mutation. This phenomenon is 
not explained by mutations in the same codon: <5% of all 
simultaneous proximal mutations are found in the same 
codon, and only 17.5% of the 655 proximal, simultaneously 
occurring, rarely independent or sequential mutations are 
found in the same codon.

The top five genic hits within 100 bp, in terms of P value, 
are in Rv1945, esxJ, Rv1148c, PPE54, and vapC25. The esx 
and PE/PPE gene families have been previously shown to 

Analysis of Genome-Wide Mutational Dependence in Naturally Evolving · https://doi.org/10.1093/molbev/msad131 MBE

3

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/6/m
sad131/7205867 by U

M
ass Am

herst Libraries user on 21 M
ay 2024

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad131#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad131#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad131#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad131#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad131#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad131#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad131#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad131#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad131#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad131#supplementary-data
https://doi.org/10.1093/molbev/msad131


undergo intrachromosomal recombination (i.e., gene con-
version) (Uplekar et al. 2011; Karboul et al. 2008; Phelan, 
Coll, Bergval, et al. 2016), and both Rv1945 and Rv1148c 
contain a REP13E12 repeat element, which is present in se-
ven copies throughout the M. tuberculosis genome and 
thus presents a possible gene conversion site (Gordon 
et al. 1999). Finally, vapC is a family of toxins with 47 

paralogs throughout the genome, presenting another po-
tential site for gene conversion (Ahidjo et al. 2011).

Due to these three lines of evidence—lack of enrich-
ment for genic pairs, a subset of pairs for which the muta-
tions almost never occur independently or sequentially, 
and high-scoring pairs in genes known to undergo intra-
chromosomal recombination—we suggest that the 

A

B

C

FIG. 2. Computational workflow for finding dependencies between mutations. (A) We found 1,184,177 pairs of SNPs across 4,743 sites that co- 
occur either sequentially or simultaneously at least once. We began with a data set of 31,428 isolate genomes and performed phylogeny and 
ancestral sequence reconstruction. We called each SNP as ancestral or derived relative to the pan-susceptible M. tuberculosis ancestral sequence 
(H37Rv) and then enumerated all SNPs that arise at least five times independently, dividing them into pairs that appear at least once sequentially 
or simultaneously. (B) For sequentially occurring pairs, we determine whether the probability of mutation a is affected by the presence of mu-
tation b by inferring the distribution of the probability of mutation a in the context of b using a beta distribution, and then comparing it with the 
expected probability of mutation a not in the context of b. (C ) For simultaneously occurring mutations, we determine whether the probability of 
observing mutations a and b simultaneously is higher than expected based on the product of the individual probabilities of mutation a and b— 
that is, assuming the two events are independent.

Green et al. · https://doi.org/10.1093/molbev/msad131 MBE

4

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/6/m
sad131/7205867 by U

M
ass Am

herst Libraries user on 21 M
ay 2024

https://doi.org/10.1093/molbev/msad131


enrichment in the number of significant pairs in close gen-
omic proximity is likely driven by non-SNP mutational pro-
cesses such as intrachromosomal recombination.

Highest-Scoring Simultaneously Occurring 
Dependencies Are Enriched in Antigenic and 
Antibiotic Resistance Function
We find that simultaneously occurring dependent pairs of 
homoplastic mutations are enriched in functional categor-
ies compared with our expectation from the frequencies of 
individual SNPs (chi-squared P < 10−307; supplementary 
Data S3, Supplementary Material online). We examine sim-
ultaneously occurring proximal mutations (≤100 bp) sep-
arately from simultaneously occurring distant mutations 
(>100 bp). Over 50% of the top 100 significant proximal 
pairs both occur in an antigenic protein (fig. 3C). Among 
the top 100 significant distant pairs, both antigenic and 
antibiotic resistance-conferring pairs of mutations are 
overrepresented (chi-squared P < 10−96).

Identity of Nonantibiotic Resistance and 
Nonantigenic Mutation Pairs
We sought to annotate the potential function of the ∼44% 
(N = 41,335) of dependent pairs that do not fall into either 
resistance-associated or antigenic functional pairs. These 
41,335 dependent pairs are constituted of mutations in 

3,071 homoplastic sites, 787 of which are intergenic. The 
top sequential dependency is between Rv2828c, a conserved 
hypothetical protein, and an intergenic position upstream 
of transposase Rv2512c. The top simultaneous, nonproximal 
dependency is between respiratory chain protein NuoJ and 
probable conserved membrane protein Rv2219A.

We performed a gene ontology (GO) enrichment ana-
lysis (Materials and Methods) to determine if certain mo-
lecular functions were overrepresented in the set of genes 
found by our analysis. We find overrepresentation among 
46 categories (supplementary Data S7, Supplementary 
Material online). The top hits include “response to host 
immune response (GO: 0052572),” which includes a num-
ber of PE/PPE proteins, “peptidyl-histidine phosphoryl-
ation (GO: 0018106),” constituted of histidine kinase 
response regulator pairs, and “fatty acid metabolic process 
(GO: 0006631),” which includes a number of fatty acid— 
coA ligase (FadD) proteins. As more annotation data for 
the M. tuberculosis genome become available, we hope 
to be better able to interpret the sequential and simultan-
eous dependent mutations between other gene categories.

Potentiating Mutations that Predispose the Evolution 
of Antibiotic Resistance
We examine whether particular SNPs predispose the evo-
lution of antibiotic resistance, here called potentiator 

A B

C D

FIG. 3. Sequential and simultaneous mutation pairs are enriched in functional categories. We determine the identity of the top 100 pairs of sig-
nificant hits for (A) sequential mutation pairs and (C ) simultaneous mutation pairs. We categorize mutation pairs as those where a known re-
sistance mutation occurs first, known resistance mutation occurs second, both mutations are known resistance mutations, one mutation is in a 
known antigen protein, both mutations are in a known antigen protein, or other category (not any of the above). For simultaneous mutations, 
we compute the categories for the top 100 hits found within 100 bp on the genome and for the top 100 hits found outside 100 bp. The genomic 
distance in megabases of all pairs of significant dependent mutations for (B) sequential mutations and (D) simultaneous mutations are shown.
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mutations, as these are of high interest for surveillance and 
genomic prediction. Among all 32,567 pairs of mutations 
with significant sequentially acquired dependency, the 
resistance-conferring mutation is second in 3,185. Of these, 
1,431 are explained by just 23 initial mutations. We here 
define these 23 mutations as potentiators because they 
lead to over 30 different resistance-associated mutations 
each (table 1), indicating that they do not predispose 
the strains to the evolution of resistance to a particular 
antibiotic but rather predispose to resistance phenotypes 
in general.

We discover several previously implicated SNPs among 
our antibiotic potentiators. This includes position 
G2626011A (EsxO I54I), previously found to increase the 
risk of resistance evolution (Ortiz et al. 2021), and three 
other SNPs in the esxO gene body or upstream region. 
We also identify mutations in proteins known to increase 
intracellular survival of M. tuberculosis, G1340208A (PPE18 
R287Q) and C2122395T (LldD2 V253M), and a mutation 
previously associated with increased transmission in the 
Beijing lineage, T4060588C (EsxW T2A), to potentiate re-
sistance (Bhat et al. 2012; Billig et al. 2017; Holt et al. 2018).

Consequential Mutations That Compensate for or 
Amplify Antibiotic Resistance
We next focus on dependent mutations occurring as a 
consequence of the initial evolution of resistance, here 
called consequential mutations, since these may indicate 
potential new mechanisms of resistance evolution or 

compensation for loss of fitness from initial resistance mu-
tations. We detect 3,724 significant dependent mutations 
after initial resistance mutations, 1,879 of which are not 
previously indicated to be involved in resistance, with 
hits for all 11 antibiotics (supplementary Data S6, 
Supplementary Material online). We quantified the preva-
lence of evolutionarily dependent mutations in resistant 
isolates in our data set (Materials and Methods). We found 
that a substantial percentage of strains with initial 
resistance-causing mutations have sequentially acquired 
dependencies, ranging from 92% for streptomycin to 
11% for fluoroquinolones, indicating a pervasive role in 
antibiotic resistance evolution (fig. 4).

As a positive control, the most frequent consequential 
mutation we detect is the known dependency between ri-
fampicin resistance mutations in RNA polymerase β sub-
unit (RpoB) and substitutions in the RNA polymerase β′ 
subunit (RpoC), which compensate for the loss of fitness 
incurred by RpoB mutations through a direct physical 
interaction (Comas et al. 2011). We also detect depend-
ency between the catalase–peroxidase KatG and position 
G2726142A, in the ahpC gene promoter. Increased levels 
of the AhpC protein are recognized to compensate for 
the loss of KatG peroxidase activity (Gygli et al. 2017; 
Ramaswamy et al. 2003), demonstrating a possible case 
of compensatory substitutions mediated by metabolic 
pathways. The detection of these known relationships re-
inforces the utility of phylogenetic methods in recon-
structing evolutionary dependency.

Table 1. Resistance-Potentiating Mutations Are Associated with Host–Pathogen Interactions.

ßGenomic 
Position

Gene ID Gene 
Name

Possible Gene/Region Function

75233 Intergenic — Upstream of possible transcriptional regulator Rv0067c, upstream of possible oxidoreductase Rv0068
340132 Rv0280 ppe3 Unknown
454333 Rv0376c Rv0376c Unknown
886661 Intergenic None Downstream of Rv0792c, upstream of Rv0793
908186 Rv0814c sseC2 Possibly involved in sulfur metabolism (Kapopoulou et al. 2011)
1161026 Rv1038c esxJ Contains known T-cell epitope (Grotzke et al. 2010)
1287112 Intergenic — Upstream of narG, downstream of mutT2
1340208 Rv1196 ppe18 Intracellular survival (Bhat et al. 2012)
1523817 Rv1355c moeY Molybdopterin biosynthesis protein (Kapopoulou et al. 2011)
1722228 Rv1527c pks5 Mediates surface remodeling (Boritsch et al. 2016)
2122395 Rv1872c lldD2 Promotes survival inside macrophages (Billig et al. 2017)
2338994 Rv2082 Rv2082 Unknown
2626011 Rv2346c esxO Inferred to increase risk of resistance evolution (Ortiz et al. 2021), promotes survival inside macrophages 

(Mohanty et al. 2016)
2626108 Rv2346c esxO Promotes survival inside macrophages (Mohanty et al. 2016)
2626189 Intergenic — Upstream of esxO
2626191 Intergenic — Upstream of esxO
2867575 Rv2544 lppB Unknown
3446699 Rv3081 Rv3081 Unknown
3482717 Intergenic None Downstream of Rv3115, Upstream of molybdopterin Cofactor biosynthesis protein MoeB2
3894732 Rv3478 ppe60 Host immune response (Su et al. 2018)
4046007 Rv3603c Rv3603c Conserved hypothetical alanine- and leucine-rich protein
4060588 Rv362 °c esxW Influencing increased transmission in Beijing lineage (Holt et al. 2018)
4338371 Rv3862c whiB6 Transcriptional regulator with known role in kanamycin resistance (Zhang et al. 2013; Farhat, Freschi 

et al. 2019), may modulate virulence (Chen et al. 2016)

NOTE.—Genomic position, identifier, and name for each of 23 mutations found to occur before at least 30 different resistance-conferring mutations. We include a known or 
possible function for each gene and intergenic region, if one exists, focusing on possible roles in resistance evolution and host adaptation.
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Our method also detects new relationships. For the 
aminoglycoside antibiotic kanamycin, we observe conse-
quential mutations likely resulting in amplification of anti-
biotic resistance between the 16S rRNA gene rrs, the target 
of kanamycin; sites in the promoter region of the 
N-acetyltransferase gene eis, known to degrade kanamycin 
(Zaunbrecher et al. 2009; Chen et al. 2011); sites upstream 
of the transcriptional regulator whiB7, known to influence 
eis transcription (Reeves et al. 2013); and sites in the tran-
scriptional regulator whiB6 (fig. 4). Our findings and previ-
ous association studies suggest a role for WhiB6 in 
kanamycin resistance (Zhang et al. 2013; Farhat, Freschi, 
et al. 2019). The observed evolutionary dependency sug-
gests that multiple mutations are required to amplify re-
sistance to a high level—mutations in rrs disrupt 
kanamycin binding, while mutations in whiB6, whiB7, 
and eis likely increase levels of the Eis protein, leading to 
increased kanamycin degradation.

A GO analysis identified significant enrichment of mu-
tations in proteins from 123 GO categories following the 
evolution of antibiotic resistance (Materials and 
Methods) (supplementary Data S7, Supplementary 
Material online) (Gene Ontology Consortium 2021; Mi 

et al. 2019; Ashburner et al. 2000). One of the top categor-
ies is “regulation of DNA-templated transcription elong-
ation,” of major interest since the first-line antibiotic 
rifampicin targets the RNA polymerase. We find that the 
RNA polymerase termination factor nusG is repeatedly 
mutated after initial evolution of rifampicin resistance. 
NusG is notable because it binds directly to the RNA poly-
merase subunit RpoB (Said et al. 2021), the target of the 
drug rifampicin (Farhat, Sixsmith, et al. 2019). The mutated 
position in NusG, R124H/L, is found at the NusG–RpoB 
interface (Materials and Methods), suggesting that it is in-
volved in stabilizing the action of the mutated polymerase, 
similar to the compensatory relationship between RpoC 
and RpoB (Comas et al. 2011) (fig. 4).

A frequent mutation to follow antibiotic resistance 
in our data set is HadA C61S, which occurs 40 inde-
pendent times sequentially or simultaneously with iso-
niazid resistance evolution and is found in all four major 
lineages. This mutation is known to confer resistance to 
the now-obsolete antibiotics thioacetazone and isoxyl 
(Gannoun-Zaki et al. 2013; Dover et al. 2007) and to candi-
date new antibiotics (Dover et al. 2007; Dong et al. 2015). 
Although the observed HadA mutations are potentially 

A B

C

FIG. 4. Dependent mutations within resistance-associated genes. We measured the identity and prevalence of significant dependent mutations 
occurring after initial resistance evolution. (A) Mutations that occur after mutations in known antibiotic resistance genes, visualized on the 
genome using pyCircos (github.com/ponnhide/pyCircos), with colors corresponding to the antibiotics in B. Antibiotics with shared genetic basis 
of resistance are shown in the same color. Only mutations that happen sequentially at least five times are shown. (B) Fraction of resistant strains 
that display one or more pairs of sequential dependent mutations. (C ) Example of pairs of dependent mutations within the kanamycin resist-
ance pathway, shown on a per-gene basis. Kanamycin’s inhibition of the ribosome is blunted by ribosomal RNA mutations, while cellular kana-
mycin levels are reduced by increased levels of Eis, putatively caused by both mutations in the eis promoter region and mutations in the 
regulatory proteins WhiB7 and WhiB6. Dependencies between these mutations demonstrate multistep resistance evolution.
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attributable to historical coadministration of thioaceta-
zone and isoniazid (Okwera et al. 1994), and hence sequen-
tial selective pressure, they may also be consequential 
mutations of isoniazid resistance—HadA is upstream of 
the isoniazid drug target InhA in the mycolic acid biosyn-
thesis pathway (Vilchèze 2020) and may play a role in amp-
lifying isoniazid resistance levels or compensating for InhA 
mutations.

Sequential Environmental Pressures Lead to 
Evolutionary Dependency in Antibiotic Resistance
In natural populations, several environmental pressures may 
act contemporaneously on a population. For pathogenic 
bacteria, this can take the form of simultaneous or sequen-
tial administration of antibiotics to achieve cure. We find 
strong dependencies between mutations that confer resist-
ance to different antibiotics (fig. 5A). Notably, this recapitu-
lates the ordering of antibiotic administration in therapy: 
Second-line drug resistance-conferring mutations were con-
sistently acquired on a background of resistance to first-line 
agents (40,054 times a significant sequential mutation event 
proceeds from first line to second line, vs. 4,310 times they 
proceed from second line to first line) (supplementary fig. 
S6, Supplementary Material online). The observed depend-
encies also confirm postulated relative fitness costs of resist-
ance mutations for the four first-line drugs (Manson et al. 
2017; Ektefaie et al. 2021). These findings demonstrate 
that evolutionary dependency can be used to study not 
only molecular dependencies that amplify or stabilize a par-
ticular phenotype but also environmental forces when the 
genetic underpinnings of adaptation are known.

Measuring the Effect of Dependent Mutations on 
Resistance Phenotypes
We tested whether the observed dependent mutations can 
be measured, either linearly or epistatically, to have a detect-
able influence on antibiotic minimum inhibitory concentra-
tions (MICs) by implementing linear mixed models in 
GEMMA (Materials and Methods) (Zhou and Stephens 
2012). The percent of dependent events with a detectable 
influence on MIC, either linearly or epistatically, ranged 
from 3% for pyrazinamide to 29% for moxifloxacin, with a 
median of 9% (supplementary table S1, Supplementary 
Material online). Notable examples include a promoter 
variant in position 4243217 in the embCAB locus with a 
positive linear influence on ethambutol MIC, and a syn-
onymous variant in position 332951 (VapC25 P62P) with 
a measure positive epistatic influence on rifampicin resist-
ance (supplementary table S2 and supplementary Data S8, 
Supplementary Material online). VapC25 is a toxin sug-
gested to promote antibiotic tolerance by slowing growth 
rate in host (Winther et al. 2016). We observe that 74% of 
the 23 potentiator mutations have a positive, epistatic influ-
ence on MIC for at least one drug. We suggest that at pre-
sent, the power of linear mixed modeling approaches to 
detect influences on MIC is limited—currently only a me-
dian of 27% of known resistance-conferring mutations 
were determined to have a detectable statistical influence 
on resistance, indicating that greater power is needed to de-
tect all effects (supplementary table S1, Supplementary 
Material online), and therefore expect more dependent mu-
tations to have a detectable effect as more data become 
available.

FIG. 5. Dependencies between antibiotics. The detected significant dependent mutations between resistance-conferring mutations follow a par-
ticular order that mirrors the usage of different antibiotics. For each antibiotic, we took the top dependent pair between known resistance- 
conferring genes and other genes and between known resistance genes for different antibiotics. We display pairs and links where mutation 
a occurs sequentially or simultaneously with mutation b at least ten times. Link intensity corresponds to the number of occurrences. The prefix 
“p_” before a gene name indicates that the mutations are found in the upstream region of that gene. The drug para-aminosalicylic acid (PAS) is 
not included in the WHO catalog, but folC is a candidate resistance gene for this drug (Wei et al. 2019).
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We then examined heritability of MIC and the propor-
tion of variance explained (PVE) by the dependent muta-
tions using a series of antibiotic-specific linear mixed 
models (with up to n = 1,469) observations. MIC is a trait 
with high heritability—previously estimated at 64–88% 
per drug based on all sites in the genome (Farhat, 
Freschi, et al. 2019). Compared with heritability estimated 
from all homoplastic sites, heritability explained by muta-
tions in known or suspected resistance conferring-genes 
has a median deficit of 32% per antibiotic (table 2). 
Incorporating sites found to have mutation dependencies 
with antibiotic resistance genes resulted in a median in-
crease of 24% in heritability, accounting for much of the 
deficit in heritability using only 37% as many sites, despite 
these dependencies having been derived without pheno-
typic data. This demonstrates that our proposed muta-
tional dependency analysis is evolutionarily meaningful 
and characterizes the genetic architecture of antibiotic re-
sistance phenotypes, even if the current analyses lack the 
power to detect individual sites and pairs as significantly 
influencing phenotype in a regression analysis.

Discussion
We propose a new method to uncover evolutionary de-
pendencies between mutations in naturally evolving po-
pulations and apply it to 31,428 isolates of MTBC. We 
find both sequentially and simultaneously occurring pairs 
of dependent mutations, which are enriched in antibiotic 
resistance and antigenic function. We detect 23 potentiat-
ing mutations that predispose the evolution of resistance 
mutations to several antibiotics and also have a measur-
able statistical interaction on antibiotic MICs in regression 
models. We also explore consequential mutations that are 
acquired in a dependent manner subsequent to resistance 
acquisition, providing possible examples of novel pathway- 
mediated selection. We lastly demonstrate the power of 
this approach in capturing environmental dependencies 
when the genetic mechanisms are well understood.

We observe that simultaneously occurring mutations 
are enriched in pairs of mutations within 100 bp on the 
genome. These mutations rarely occur independently or 
sequentially, are not enriched in coding sequences, and 
the top scoring pairs are in genes previously shown to 
undergo recombination (Uplekar et al. 2011; Karboul 
et al. 2008). We suggest that the enrichment of simultan-
eous pairs in close genomic proximity is due to non-SNP 
mutational processes such as intrachromosomal recom-
bination (gene conversion), which could simultaneously 
introduce multiple variants in close proximity. Gene con-
version has been previously postulated to drive esx gene 
evolution, which are genes enriched in antigenic function 
(Uplekar et al. 2011). Furthermore, our observed length 
scale of potential recombination events (<600 bp) 
matches the observations of RecA-mediated recombin-
ation tract length in other species (Santoyo et al. 2005). 
Innovatively, our results suggest that other genes and espe-
cially antigenic genes may evolve through gene conversion, 
but this requires further validation, potentially with long- 
read sequencing data. After excluding the proximal de-
pendencies, simultaneous distant dependencies are also 
enriched in antigenic function and in antibiotic resistance. 
The observation of simultaneous acquisition of antibiotic 
resistance pairs of variants may relate to the phylogenies’ 
inability to temporally resolve the two events due to sparse 
sampling or due to rapid acquisition of the phenotypes in 
time.

We examine dependent mutations that arise before 
antibiotic resistance, here called potentiating mutations, 
or after antibiotic resistance, here called consequential 
mutations. Consequential mutations appear to fall into 
at least two categories, those that compensate for loss of 
fitness due to resistance acquisition and those that amplify 
the phenotype of antibiotic resistance itself. For example, 
nusG mutations appear to compensate for destabilizing 
rpoB mutants based on our structure analysis, and hadA 
knockdowns were found to significantly sensitize strains 
to high levels of isoniazid in a recent CRISPRi study 

Table 2. Incorporating Dependent Mutations Explains Heritability of Antibiotic Resistance.

Drug Homoplastic Sites Resistance Genes Resistance Genes and Dependent Pairs

PVE SE N sites PVE SE N sites PVE Difference PVE SE N sites PVE Difference

Amikacin 0.70 0.03 2,013 0.50 0.05 102 0.20 0.53 0.04 739 0.03
Capreomycin 0.54 0.05 1,665 0.28 0.05 93 0.26 0.39 0.05 578 0.11
Ethambutol 0.59 0.04 2,389 0.27 0.04 76 0.32 0.46 0.04 854 0.19
Ethionamide 0.55 0.05 1,920 0.12 0.03 61 0.43 0.48 0.06 389 0.36
Isoniazid 0.71 0.03 2,393 0.22 0.04 69 0.49 0.68 0.03 602 0.46
Kanamycin 0.70 0.03 1,921 0.51 0.06 68 0.19 0.61 0.04 705 0.1
Moxifloxacin 0.69 0.03 1,761 0.32 0.07 28 0.37 0.6 0.05 419 0.28
Pyrazinamide 0.62 0.04 1,727 0.65 0.05 157 −0.02 0.61 0.06 1,338 −0.04
Rifampicin 0.66 0.03 2,437 0.31 0.04 152 0.35 0.58 0.04 964 0.27
Streptomycin 0.59 0.03 2,397 0.33 0.04 211 0.26 0.41 0.04 1,180 0.08
Median 0.64 0.03 1,967 0.32 0.05 84.50 0.32 0.56 0.04 722 0.24

NOTE.—We compute the heritability (PVE) and standard error (SE) of antibiotic MIC using 1) all homoplastic sites in our data set, 2) homoplastic mutations in known and 
suspected resistance conferring sites, and 3) homoplastic mutations in known and suspected resistance conferring sites, as well as mutations found to be dependent with 
known resistance conferring mutations (single sites and interaction terms). Note that “N sites” refers to the number of sites included in the analysis that were actually found 
to have a polymorphism in the isolates with MIC available.
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(though the magnitude of depletion was below study 
threshold) (Li et al. 2022). In contrast, the mechanism 
by which our 23 observed potentiating mutations predis-
pose the evolution of antibiotic resistance is still in ques-
tion. One possibility is that proteins on the cell surface, 
including antigenic proteins, play a direct role in antibiotic 
resistance, for example by altering cell permeability. This 
possibility is supported by the observation that 74% of ob-
served potentiating mutations have a detectable epistatic 
influence on MIC. Another possibility is that strains with 
potentiating mutations may be more likely to transmit be-
tween hosts or progress from latent to active tuberculosis 
disease, leading to higher exposure to antibiotic treatment. 
Strains with potentiating mutations may also reach higher 
effective population sizes within host, leading to higher 
probability of resistance evolution. Finally, strains with po-
tentiating mutations may have higher overall fitness, pre-
emptively compensating for loss of fitness due to 
resistance evolution.

We investigated whether the detected dependencies 
were associated with higher antibiotic resistance levels as 
measured by strain MICs. Dependent mutations when 
added to known resistance-conferring variants capture the 
majority of heritability, and several mutations including 
74% of the 23 potentiating mutations have measurable asso-
ciations on resistance. As more MIC data become available, 
we expect that the power of these analyses to capture the 
individual effects of dependent mutations will improve.

Our method relies on repeated observations of evolu-
tionary events to infer significant nonindependence of mu-
tations. Therefore, its power is dependent on the number 
of times a mutation has arisen and thus is biased against 
the effects of very recent selection, for example responses 
to newer antibiotics, such as linezolid, clofazimine, and 
even fluoroquinolones. The smaller numbers of dependent 
mutations observed for these drugs should not be taken as 
an assertion that there are fewer dependent mutations as a 
result of the evolution of resistance to these drugs but ra-
ther that we do not yet have enough observations of evo-
lutionary trajectories to reliably infer significance. This 
issue is also present in the case of pyrazinamide, where a 
large number of variants in the pncA gene are known to 
cause resistance, and thus the statistical signal is diluted 
over a large number of variants. A future extension to ad-
dress this limitation is the expansion to study dependence 
between mutational burden measured per gene or regions.

The links inferred by our method are based only on the 
presence of pairs of mutations and thus capture associa-
tions both due to true dependency and due to other forces 
that generate similar patterns. One such force is simultan-
eous and/or sequential environmental pressures, such as 
the sequential use of antibiotic treatments. Another pos-
sible cause of dependency is transitivity, where mutation 
c is dependent on b, which is dependent on a, leading to 
apparently dependency of c on a. A final possibility is dif-
ferences in the rate of occurrence of two mutations—if a 
and b have the same fitness effect, but b is more likely to 
occur, it will tend to reach fixation first. Therefore, the 

pairs discovered in this manuscript require further investi-
gation, ideally through experimental or computational as-
sociation with phenotype, to determine the cause of their 
manifested dependency.

We believe the method introduced here will be readily 
generalizable to other microbial species. While M. tubercu-
losis generally does not participate in horizontal gene 
transfer and thus our method focused on SNPs, our frame-
work could extend to analyzing not just the probability of 
individual mutations but the probability of gene acquisi-
tion or other mutation events. Our method has broad con-
ceptual applicability to understanding clonal evolution 
ranging from viruses to cancer cells. We show that in 
M. tuberculosis, dependent mutational events are enriched 
in mutations associated with antibiotic resistance and 
antigenic function. We discover 23 mutational events 
that appear to potentiate antibiotic resistance, and de-
pendent events arising as a consequence of resistance 
are due to both compensatory variation and amplification 
of resistance phenotypes. Together, these results represent 
a wealth of new knowledge about the evolution of an im-
portant microbial pathogen.

Materials and Methods
Data Set of Variable Positions in M. tuberculosis 
Strains
We use a previously curated data set of 782,565 positions 
with SNPs in any of 31,428 M. tuberculosis isolates, from 
Vargas, Freschi, Spitaleri, et al. (2021) (Antimicrob Agents 
Chemother) (supplementary Data S1, Supplementary 
Material online). These isolates represent six major M. tu-
berculosis lineages, in which whole-genome sequence data 
were processed using a previously validated pipeline 
(Ezewudo et al. 2018; Freschi et al. 2021). Briefly, reads 
are aligned to the H37Rv reference genome (Cole et al. 
1998) using BWA-MEM v0.7.17 after trimming and filter-
ing with PRINSEQ v0.20.4 and contaminant removal with 
Kraken v0.10.6 (Schmieder and Edwards 2011; Wood and 
Salzberg 2014; Li, 2013). Variant calling is performed with 
Pilon v1.2.2, and duplicate reads were removed using 
Picard v2.9.2 (Walker et al. 2014; Picard toolkit 2019). All 
isolates had at least 95% of bases with a minimum of ten 
times coverage after mapping to the reference genome.

To remove low-quality SNPs, we required every SNP to 
meet all of the following criteria, as originally outlined in 
Vargas, Freschi, Spitaleri, et al. (2021): 1) The call was desig-
nated as Pass by Pilon; 2) the mean base quality was >20; 
3) the mean mapping quality was >30; 4) none of the 
aligned reads supported an indel; 5) there was a minimum 
coverage of 20 reads at the position; and 6) at least 75% of 
the reads aligning to that position supported a single allele 
—that is, the position did not have a mixed allele call. The 
list of 782,565 positions comprises all positions with a SNP 
relative to the H37Rv reference, after removing positions 
found in mobile genetic element regions (e.g., transpo-
sases, integrases, phages, or insertion sequences) (Comas 
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et al. 2010; Vargas, Freschi, Marin, et al. 2021), found in 
overlapping genes, or with missing calls in >10% of isolates.

Reconstructing Mutational History
We used a prior data set that reconstructed the evolution-
ary history of the 782,565 positions from 31,428 genomes 
by constructing phylogenetic trees and performing ances-
tral sequence reconstruction (Vargas et al. 2022). Briefly, 
phylogenetic trees were constructed based on the variable 
positions for each lineage using IQ-TREE, using 
Mycobacterium canettii as an outgroup (Nguyen et al. 
2015). Trees were constructed independently for each lin-
eage due to memory constraints. For Lineages 1–4, the sub-
stitution model used was GTR + F + I + R. For Lineages 5 
and 6, which had many fewer representatives, automatic 
model selection with ModelFinder Plus was implemented 
(Kalyaanamoorthy et al. 2017). Ancestral sequence recon-
struction was performed using SNPPar v.1.0 with options: 
–-sorting intermediate –-no_all_calls —-no_homoplasic 
(Edwards et al. 2020).

Selecting Mutations for Dependency Analysis
We annotate each SNP as either to or from the ancestral 
state based on an inferred ancestor of extant the MTBC 
(Comas et al. 2010). For position 2030521, in the esxM 
gene, the ancestral sequence is inferred to be “A,” but be-
cause none of the extract strains have an “A” in this pos-
ition, we replace the ancestral nucleotide with the most 
common genotype at this position, “T.” In order to reduce 
computational time and focus on sites under the strongest 
positive selection, we selected only those sites that are mu-
tated away from the ancestral state at least five times. To 
ensure that inferred mutational events are not sequencing 
errors, we remove sites based on empirical base-pair recall 
(EBR < 0.90) using the table 210112_EBR_V7_36CI.npz 
from https://github.com/farhat-lab/mtb-illumina-wgs- 
evaluation/, download date December 11, 2022. We also 
remove sites designated as Illumina blindspots by Modlin 
et al. (2021) (supplementary table S7, Supplementary 
Material online). This resulted in a total of 4,743 sites.

Designating Sequentially and Simultaneously 
Occurring Mutation Pairs
To study mutational dependencies, we consider nonan-
cestral pairs of mutations that occurred either sequen-
tially or simultaneously. Simultaneous mutations are 
pairs inferred to have occurred on the same branch of 
the tree (note that these mutations may not have actual-
ly occurred simultaneously in a single mutation event, 
but their ordering cannot be resolved). Sequential muta-
tions are pairs are inferred to have occurred on different, 
sequential branches.

To accomplish this, we construct a matrix of mutation 
events with dimensions N (number of branches in all trees, 
62,846) by P (number of sites considered, 4,743). This ma-
trix contains a 1 if a particular mutation p is inferred to oc-
cur on a particular branch n, and a 0 otherwise. We also 

construct a background matrix with dimensions N by P, 
which contains a 1 if a particular mutation p is inferred 
to occur or already have occurred (i.e., be present in the 
strain genetic background) on branch n, and a 0 otherwise. 
Python 3.9.13, ETE3 v3.1.2, and NumPy v1.23.1 were used 
to process tree data into matrices (Huerta-Cepas et al. 
2016; Harris et al. 2020).

We enumerated all pairs of simultaneous mutations by 
comparing columns of the mutation event matrix, to find 
pairs of sites with mutations that occur on the same 
branch, for a total of 132,012. We enumerated all pairs 
of sequential mutations by comparing the mutation event 
matrix with the background matrix, to find all pairs of sites 
where one mutation event occurs on the genetic back-
ground of another event, for a total of 1,184,177 pairs. 
Note that a pair may be both simultaneous and sequential-
ly occurring. For sequential pairs, a dependency between 
position a and position b is not equivalent to one between 
b and a, and therefore we keep track of these pairs separ-
ately. For simultaneous pairs, a dependency between pos-
ition a and position b is equivalent to one between b and 
a, and therefore we only keep track of one pair.

A Model to Detect Evolutionary Dependency 
Between Sequentially Occurring Mutation Pairs
We next seek to test whether the sequentially occurring 
mutational events are occurring more frequently than ex-
pected—that is, displaying some form of dependency. We 
model the probability of a given nonancestral mutation, a, 
in the presence or absence of a second mutation, b, as fol-
lows: In the phylogenetic tree with N branches, we define 
the Bernoulli random variable X to indicate whether a mu-
tation occurs on a particular branch. For example, Xa,n = 1 
if a evolves on the nth branch and Xa,n = 0 if mutation 
a does not occur on the nth branch. We define the 
Bernoulli random variable Y to indicate whether a muta-
tion has already evolved prior to a particular branch. For 
example, Yb,n = 1 if b evolved prior to the nth branch, 
and Yb,n = 0 if b did not evolve prior to the nth branch.

We model the probability of a, P(Xa,n), as a beta distri-
bution, the conjugate prior of the Bernoulli distribution. 
The shape parameters α and β of the beta distribution 
are given by the count of observed branches where 
Xa,n = 1 and Xa,n = 0, respectively:

α =
N

n=1

Xa,n 

β = N − α −
N

n=1

Ya,n 

Branches where mutation a has already occurred (i.e., 
Ya,n = 1) are subtracted because there is no possibility of 
further mutation in our model. Because most branches in 
our phylogeny are short (72% have ten or fewer mutations, 
and 99% have 100 or fewer mutations, supplementary fig. 
S4, Supplementary Material online), we do not consider 
branch lengths in our analysis.
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Because we seek to test whether P(Xa|Yb = 1) is different 
from P(Xa|Yb = 0), we partition the branches into two sets: 
those with mutation b, {L |Yb,l = 1 or Xb,n = 1}, and those 
without mutation b {M |Yb,m = 0 and Xb,n = 0}. To test 
whether the two distributions are different, we test the 
hypothesis that the expected value of Beta(αM, βM) is 
drawn from Beta(αL, βL) by computing the P value. This 
approach to modeling P(Xa) using the observed mutation 
data captures the higher uncertainty about P(Xa|Yb = 1) 
when the number of branches in {L} is small, because 
the variance of the beta distribution is higher for smaller 
values of α and β.

Detecting Evolutionary Dependency Between 
Simultaneously Occurring Mutations
To determine whether two mutations a and b occur sim-
ultaneously more often than expected, we again model the 
probability of their simultaneous occurrence using a beta 
distribution where:

α =
N

n=1

Xa,nXb,n 

β = N −
N

n=1

Xa,n −
N

n=1

Xb,n + α −
N

n=1

Ya,n −
N

n=1

Yb,n

+
N

n=1

Ya,nYb,n.

Alpha is the number of branches where both mutations 
occur, and beta is the number of branches where neither 
mutation occurs and neither mutation has already 
occurred.

The null expectation for the frequency with which mu-
tations occur on the same branch is based on the individ-
ual frequency of the mutations:

E(a, b) =

N

n=1
Xa,n

N −
N

n=1
Ya,n

×

N

n=1
Xb,n

N −
N

n=1
Yb,n

.

We then determine the probability of drawing the null 
expectation from the estimated distribution of co- 
occurrence probability, which constitutes the P value.

Implementation of Dependency Tests
Tests were implemented using Python 3.9.13, using the 
beta distribution from statsmodels v.0.11.1 (Seabold and 
Perktold 2010). Pseudocounts of 1 were added to βM, αL, 
and βL to ensure validity of the beta distribution (αM is 
always at least 1 otherwise the mutation would not be 
tested). The multipletests function from statsmodels was 
used to implement the Benjamini–Hochberg correction 
with alpha 0.01.

Evaluating Branch Lengths Between Dependent 
Mutations
For sequentially occurring dependent mutations, we 
sought to determine the median branch length separat-
ing occurrences of mutation a from occurrences of its 
preceding mutation b. We use ETE3 v3.1.2 to parse the 
phylogeny output by SNPPar to compute distances be-
tween the ancestor node of the branch where mutation 
b occurred, and the descendant node of the branch 
where mutation a occurred. This analysis was performed 
on a per-lineage-tree basis. If mutation b is inferred to be 
present on a particular lineage tree, but not to have oc-
curred within the evolution of the lineage (i.e., occurred 
on the branch separating the ancestor of that lineage 
from the M. tuberculosis common ancestor), we desig-
nate the root note as the node where mutation b oc-
curred. For each pair of mutations a and b, we take the 
median of the distance between all occurrences of a on 
background b.

Upon examination of the distribution of the median 
distance between dependent mutation pairs, we see that 
there is a small set (N = 49) of clear outliers with median 
distance > 1,000, which were removed from further ana-
lysis (supplementary fig. S4, Supplementary Material
online).

Assigning Mutations to Functional Categories
We define a set of known antibiotic resistance-associated 
sites based on World Health Organization data for 11 
antituberculosis antibiotics: rifampicin, isoniazid, etham-
butol, pyrazinamide, amikacin, kanamycin, capreomycin, 
streptomycin, levofloxacin, moxifloxacin, and ethiona-
mide (W. H. (hq) Global Tuberculosis Programme 
2021) (supplementary Data S5, Supplementary Material
online). We also define a set of suspected resistance- 
associated sites, which includes all known resistance- 
associated sites, as well as any site in the same gene 
as a known resistance-associated site, and the entire in-
tergenic regions upstream and downstream of each 
gene containing a resistance-associated site, using gene 
location data from Mycobrowser (Kapopoulou et al. 
2011), because noncoding regions can have substantial 
effects on resistance phenotypes (Farhat, Freschi et al. 
2019).

We define a set of antigenic genes based on data from 
immune epitope database (IEDB) (Vita et al. 2019). 
Following previous work on M. tuberculosis antigens 
(Coscolla et al. 2015), a list of all antigens was downloaded 
on January 7, 2022 with the following query criteria: linear 
peptide, organism = “Mycobacterium tuberculosis com-
plex” (ID 77643), positive assays only, T-cell binding, any 
MHC restriction class, human host, any disease type, and 
any reference type. Any gene present in this list is consid-
ered antigenic.

To define gene essentiality, we take the union of all 
essential genes listed in Supplementary Table 3  of 
Minato et al. (2019), which summarizes the results of three 
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studies on gene essentiality (Minato et al. 2019). We use 
two previous studies to define positions that contain 
lineage-associated variants (Freschi et al. 2021; Coll et al. 
2014).

Defining Resistance-Potentiating Mutations
We define any sequential mutation pair where the se-
cond mutation is a known resistance-conferring muta-
tion and the first mutation is not as resistance 
potentiating. After observing that certain initial muta-
tions occur before many different resistance-conferring 
mutations, we focus our analysis on these “most potenti-
ating” initial mutations by selecting only those where the 
initial mutation is followed by over 30 different 
resistance-conferring mutations.

GO Category Enrichment
We test whether our lists of dependent positions are en-
riched in particular GO categories. We downloaded the 
GO molecular function (MF) annotation for all 3,992 pro-
teins in the M. tuberculosis proteome from pantherdb.org 
(Release 17.0, retrieved December 13, 2022) (Gene 
Ontology Consortium 2021; Mi et al. 2019; Ashburner 
et al. 2000), 2,558 of which have a GO MF annotation. 
For each GO MF, we compute the binomial P value of ob-
serving at least k hits to that GO MF category given that we 
observed n hits and that the current GO MF category has a 
frequency p among the 3992 proteins, using binom.cdf 
from SciPY v1.10.1 (Virtanen et al. 2020). We allow for mul-
tiple hits to the same protein (i.e., sampling with replace-
ment) by counting each hit to a different nucleotide 
position. We do not count the same nucleotide position 
more than once. Multiple testing corrections were per-
formed using the multipletests function of statsmodels 
v.0.14.0 (Seabold and Perktold 2010), implementing a 
Benjamini–Hochberg correction with alpha 0.01.

For testing whether the dependent mutations occurring 
after antibiotic resistance are enriched in any particular 
GO category, we have 1,987 hits to a unique nucleotide 
position, n = 1,622 of which are found in genes with a 
GO MF annotation. For testing whether dependent muta-
tions not associated with antibiotic resistance or antigenic 
genes are enriched in any particular GO category, we have 
3,724 hits to a unique nucleotide position, n = 2,744 of 
which occur in a gene with a GO MF annotation.

Testing for Epistatic Effects of Dependent Mutations 
Using Linear Mixed Models
We measure which dependent mutations have a direct ef-
fect on antibiotic resistance, by running a series of linear 
mixed models of antibiotic MIC, including linear (additive) 
and interaction (epistatic) terms of each pair of variants 
(supplementary table S1, Supplementary Material online).

Association tests were run using GEMMA v0.98.1 using 
LMM mode and a missing allele threshold of 20% (Zhou 
and Stephens 2012). MIC data were obtained by combin-
ing data from multiple studies, for a total of 1,469 isolates 

(Farhat, Freschi, et al. 2019; Ezewudo et al. 2018; Eldholm 
et al. 2015; Phelan, Coll, McNerney, et al. 2016; Lee et al. 
2014). For antibiotics tested in media other than 7h10, 
MIC values were normalized by dividing by the ratio of 
the critical concentration in 7h10 to the critical concentra-
tion in the tested media. MIC values were converted from 
a range to a number by taking the midpoint of the range, 
or the endpoint if only one point was provided (e.g., “>10” 
becomes “10,” and “2–4” becomes “3”), and then were log 
transformed. Alleles were encoded as 0 for ancestral state, 
1 for nonancestral, or missing for positions where the allele 
could not be confidently called. Each evolutionarily de-
pendent pair of sites was tested in a single multivariate lin-
ear mixed model, which included both sites as an 
independent term as well as an interaction term to cap-
ture epistatic effects. We controlled for population struc-
ture using a genetic relationship matrix (GRM) 
computed using all alleles (not just homoplastic variants) 
with a minor allele frequency greater than 0.1% across all 
31,428 isolates in our data set.

Computing Heritability
Heritability calculations were run using GEMMA v0.98.1 
(Zhou and Stephens 2012), using the MIC values processed 
as described above. For each set of sites, the sites of interest 
were used to define a GRM, and the PVE by the GRM was 
calculated. This is equivalent to the heritability.

Three sets of sites were tested: 1) all homoplastic sites 
(sites with at least five independent mutations), 2) homo-
plastic mutations in a known or suspected resistance- 
conferring site, and 3) homoplastic mutations in a known 
or suspected resistance-conferring site, or found to be a de-
pendent mutation with a mutation in a known resistance- 
conferring site (including both single and pair terms).

Determining Physical Distance Between nusG and 
rpoB Mutations
We downloaded the solved structure of the RNA polymer-
ase—NusG complex (PDB ID: 6z9p) (Said et al. 2021) from 
the RCSB PDB (Berman et al. 2000). We used MUSCLE 
from the EBI webserver with default parameters 
(Madeira et al. 2019) to align the sequence of M. tubercu-
losis NusG and RpoB to the sequence of the crystal struc-
ture. Then, we used PyMOL v2.4.0 to measure the physical 
distance between the residue corresponding to M. tuber-
culosis position 734624 (NusG R124), to any residue in 
the RpoB protein (Schrödinger LLC, 2015).

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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