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Abstract—Despite the popular advantages of location-based
services (LBS), e.g., mobile navigation and recommender systems,
they impose significant privacy threats to their users because of
their mainly unrestricted access to users’ raw location infor-
mation over time. To limit the extent of such privacy leakage,
various location privacy protection mechanisms (LPPM) have
been designed, which perturb users’ location information or
identities before being presented to an LBS system. In this
work, we extend our recent preliminary work [1] by using
Markov chains to model real-world scenarios, in which a user’s
movements are dependent over the time domain. We define the
notion of perfect location privacy, and demonstrate the feasibility
of achieving the defined perfect location privacy by practical
LPPM systems. We model each user’s path using Markov chains
and show that perfect location privacy is achievable for a user
if the pseudonym of the user is changed before O(N

2
|E |−r )

observations by the adversary, in which |E | is the number of
edges in the Markov model and r is the number of all possible
locations. Results of our simulations are consistent with what we
prove in this paper.

I. INTRODUCTION

Today’s mobile devices offer a wide range of services to
their owners by recording and processing the geographic loca-
tions of their users. Such services, broadly known as location-
based services (LBS), include navigation, ride-sharing, dining
recommendation and auto collision warning. While such LBS
applications offer a wide range of popular and important
services to their users unfortunately, they impose significant
privacy threats to their users because of their unrestricted
access to the location information of mobile devices. Such
privacy compromises can be launched by various types of
adversaries including third-party applications, nearby mobile
users and cellular service providers.

To protect the location privacy of LBS users various mecha-
nisms have been designed [2]–[4], which are known as location
privacy protection mechanisms (LPPM). These mechanisms
tend to perturb a mobile user’s information before it is
disclosed to the LBS application. LPPMs that perturb location
information of the users are known as location perturbation
LPPMs and those that perturb the user’s identity information
are known as identity perturbation LPPMs. The improved
location privacy by these LPPM mechanisms usually comes

at the price of performance degradation for the underlying
LBS systems.

In this paper, we propose a mathematical framework for
location privacy for LBS services using information theory.
This work is built on our preliminary work [1], in which
we defined information theoretic notions of location privacy.
While our preliminary study assumed each user’s location in-
formation to be independent over the time domain to simplify
the derivations, in this work we extend the threat model to
a more complex, more realistic setting by considering depen-
dencies between locations over time. We use Markov chains
to model each user’s mobility over time. Also we assume
the strongest model for the adversary, i.e., we assume that
the adversary has complete statistical knowledge of the users’
movements. We formulate a user’s location privacy based on
the mutual information between the adversary’s observations
and the user’s actual location information. We define the notion
of perfect location privacy and show that properly designed
LPPM mechanisms can achieve the defined perfect location
privacy. Due to space limitations, when proving the results,
we refer to [1] when applicable, and only focus on the parts
that are novel and different from those we already proved in
[1].

II. RELATED WORK

Location privacy has been an active field of research over
the past decade [5]–[10]. Studies in this field can be classified
into two main classes: 1) works on designing effective LPPM
mechanisms for specific LBS systems and platforms, and 2)
works on deriving theoretical models for location privacy, e.g.,
by deriving metrics to quantify location privacy.

The LPPM designs can be further classified into two classes:
location perturbation LPPMs and identity perturbation LPPMs.
Location perturbation LPPMs aim at obfuscating the location
information of the users over the time and geographical
domains. Example techniques are location cloaking [5], [6]
and dummy locations [7], [8].

On the other hand, identity perturbation LPPMs try to
obfuscate the users’ identities while using an LBS system.
A common approach is called k-anonymity LPPM [3], [11] in
which each LBS user’s identity is kept indistinguishable within
a group of k LBS users. Another approach to identity pertur-



bation LPPM is to exchange user identities (or pseudonyms)
inside specified areas, called mixed-zones, as users traverse
such areas in order to confuse the adversaries [12], [13].

Several works aim at quantifying location privacy protec-
tion. Shokri et al. [9], [10] define the expected estimation error
of the adversary as a metric to evaluate LPPM mechanisms.
On the other hand, Ma et al. [14] use uncertainty about users’
location information to quantify users’ location privacy in
vehicular networks. Li et al. [15] define metrics to quantify
the tradeoff between privacy and utility of LPPM systems.
Shokri et al. [2] design LPPM mechanisms that will defeat
localization attacks.

The mutual information has been used as a measure of
privacy, [16], [17] but in this paper we specifically use the
mutual information for location privacy. This paper aims at
establishing an information theoretic framework for location
privacy. Such a framework will allow us to achieve provable
location privacy.

III. FRAMEWORK

A. Defining Location Privacy

As we defined in [1], we consider a network with N users
which uses an LPPM to support its users’ location privacy.
An adversary A is interested in identifying each user based on
their location and movements. We consider this adversary to be
the strongest adversary that has complete statistical knowledge
of the users’ movements based on the previous observations
or other resources. The adversary has a model that describes
users’ movements as a random process on the corresponding
geographic area.

Starting at time zero, users start moving. Let Xi (t) be the
location of user i at time t. The adversary is interested in
knowing Xi (t) for i = 1, 2, ..., N based on her past observations
through time. The adversary’s observations are anonymized
versions of the Xi (t)’s produced by the LPPM. Let Y be a
collection of observations available to the adversary. We define
perfect location privacy as follows:

Definition 1. User i has perfect location privacy at time t with
respect to adversary A, if and only if

lim
N→∞

I (Xi (t); YM ) = 0,

where I (.) shows the mutual information and M is the number
of previous observations of the adversary.

Above definitions shows that over time, the adversary’s
observations does not give any information about the user’s
location. With the assumption of N → ∞, this is valid for all
the applications that we consider.

Throughout this paper, in order to achieve location pri-
vacy, we use only anonymization techniques to confuse the
adversary. We perform a random permutation Π(N ) , chosen
uniformly at random among all N!, on the set of N users, and
then assign the pseudonym Π(N ) (i) to user i.

Π
(N ) : {1, 2, · · · , N } → {1, 2, · · · , N }

Throughout the paper, for simplicity of notations we some-
times drop the superscripts, e.g., Π(N ) = Π.

For i = 1, 2, · · · , N and time t = 1, 2, · · · , M , let X(M )
i =

(Xi (1), Xi (2), · · · , Xi (M))T be a vector which shows the ith

user’s locations at any time t. Using the permutation function
Π(N ) , the adversary observes a permutation of users’ location
vectors, X(M )

i ’s. In other words, the adversary observes

YM = Perm(XM
1 ,X

M
2 , · · · ,X

M
N ;Π(N ))

= (XM
Π−1 (1),X

M
Π−1 (2), · · · ,X

M
Π−1 (N ))

= (YM
1 ,Y

M
2 , · · · ,Y

M
N ),

where Perm(.) shows the applied permutation function. Then,

YM
Π(N ) (i) = XM

i = (Xi (1), Xi (2), · · · , Xi (M))T .

B. Markov Chain Model

Assume there is an area with r possible locations that users
can go to. We use a Markov chain MC with r states to model
movements of each user, Figure 1. We define E, the set of
edges in the this Markov chain such that (i, j) ∈ E if there
exists an edge from i to j with probability pi j > 0.
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Fig. 1. Markov chain model MC with r states and |E | number of edges.

We assume that this Markov chain gives the movement
pattern of each user and what differentiates between users is
their transition probabilities. That is, for fixed i and j, two
different users could have two different transition probabilities,
pi j .

Note that when we are determining pi j ’s, there are d degrees
of freedom which d = |E | − r . This is because for all i’s, we
must have

r∑
j=1

pi j = 1.

Thus, the Markov chain of the user u is completely determined
by d values from pi j ’s which we show them as

Pu = (pu1 , pu2 , · · · , pud )

and Pu is known to the adversary for u = 1, 2, · · · , N . We
define Ed the set of d edges whose pi j ’s belong to Pu .
Let Rp ⊂ Rd be the range of acceptable values for
(p1, p2, · · · , pd ), for example in Figure 2, for i = 1, 2, 3, we
have

Rp = {(p1, p2, p3) ∈ R3 : 0 ≤ pi ≤ 1, p1 + p2 ≤ 1}.
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Fig. 2. Three states Markov chain example

The statistical properties of each user is completely deter-
mined since the adversary knows the Markov chain of each
user. The adversary wants to be able to distinguish between
users by having M observations per user and also knowing
Pu’s.

In this model we have N users and we assume
that (p1, p2, · · · , pd ) are drawn independently from a d-
dimensional continuous density function, f (p), such that
∃ δ1, δ2 > 0, δ1 < f (p) < δ2 for p ∈ Rp and f (p) = 0
otherwise.

We now state and prove the main theorem that gives the
condition for perfect location privacy for a user in the above
setting.

Theorem 1. For an irreducible, aperiodic Markov chain with
r states and |E | edges, if M = cN

2
|E |−r −α , where c > 0 and

α > 0 are constants, then

lim
N→∞

I (X1(k); YM ) = 0, ∀k ∈ N, (1)

i.e., user 1 has perfect location privacy.

In the rest of the paper, we use notation M (k )
i as user

k’s number of visits to state i and also M (k )
i j as number of

transitions that user k has made from state i to j.
To prove theorem 1 we first introduce two lemmas.

Lemma 1. Given Mi j ’s for all users which (i, j) ∈ E, then
Π(N ) and YM are independent.

Proof. (Sketch) This is the immediate result of the fact that
Mi j ’s are sufficient statistics for transition probabilities of the
Markov chain. Using this, we conclude given that we know
Mi j for all (i, j) ∈ E, no additional information about Π is
learned by observing YM . Specifically, if we let

M =
[
Mi j

]
(i, j )∈E

,

then

f (YM |M,Π) = f (YM |M).

�

Lemma 2. Consider user u with the given transition
probabilities Pu . Let M (u)

i be the number of visits to state i
and πui be the limiting probability of being at state i. Assume

that (i, j), (k, l) ∈ E, then as M → ∞,

(a)
M (u)

i

M → πui

(b)
M (u)

i j −p
u
i jM

(u)
i√

M (u)
i pu

i j (1−pu
i j )

d
−→ N (0, 1)

(c) limM→∞

�����
Cov(

M (u)
i j
√
M
,
M (u)

kl√
M

)
�����

exists and is finite

(d)
M (u)

i j −pi jM
(u)
i√

M (u)
i pi j (1−pi j )

,
M (u)

kl
−pklM

(u)
k√

M (u)
k

pkl (1−pkl )
are jointly Gaussian

where
d
−→ shows the convergence in distribution.

Proof. (Sketch) Part (a) is the result of Markov chain con-
vergence theorem which shows that any finite, irreducible,
aperiodic Markov chain has a unique stationary distribution
which is equal to the limiting distribution. Part (b) is the result
of the Central Limit Theorem (CLT). To show parts (c) and (d),
note that for a fixed i and given M (u)

i , the random variable
M (u)

i j ’s have multinomial distribution. Thus, as M (u)
i → ∞,

they converge to a jointly Gaussian distribution. �

Proof of Theorem 1.
To prove theorem 1, let P1 = (p1

1, p1
2, · · · , p1

d
). Define the

set B(N ) such that

B(N ) = {(x1, · · · , xd ) ∈ Rd : p1
i − ε ≤ xi ≤ p1

i + ε, i = 1, · · · , d},

where
ε =

1

N
1
d −θ

and 0 < θ < α
2 which α was given in M = cN

2
|E |−r −α .

Let J (N ) = {u : (pu1 , pu2 , · · · , pu
d

) ∈ B(N ) } and note that
∀u ∈ {1, · · · , N },

δ1(2ε )d ≤ p(u ∈ J (N )) ≤ δ2(2ε )d .

Thus, there exists δ > 0, such that δ1 < δ < δ2 and we can
write

P(u ∈ J (N )) = δ(2ε )d, for all u.

Thus |J (N ) | ∼ Bin(N, δ(2ε )d ). For expected value and
variance of |J (N ) | we have

E[|J (N ) |] = δN (2ε )d = δ2dNdθ , µ,

V ar ( |J (N ) |) = δN (2ε )d (1 − δ(2ε )d ) = δ2dNdθ (1 − δ2dNdθ ),

and as N → ∞, V ar (|J (N ) |) ≈ µ.
Using Chebyshev’s inequality

P
{���|J

(N ) | − E[|J (N ) |]��� >
µ

2

}
<

V ar (|J (N ) |)
µ2

4

P
{���|J

(N ) | − E[|J (N ) |]��� >
µ

2

}
<

µ
µ2

4

=
4
µ
→ 0, as N → ∞.

In particular with high probability,

|J (N ) | → ∞, as N → ∞.



Now note that, given that u ∈ J (N ) , as N → ∞ then ε → 0
and we can write

(pu1 , pu2 , · · · , pud ) → (p1
1, p1

2, · · · , p1
d ), as N → ∞.

This suggests that it is difficult for the adversary to distinguish
between these users. Now, to finish the proof of Theorem 1,
we show that for the adversary, all users in the J (N ) have the
same asymptotic Markov chain distribution. More specifically,
we have the following lemma.

Lemma 3. For all u ∈ J (N ) , and (i, j) ∈ Ed , we have

(a)
M (u)

i j −p
1
i jM

(u)
i√

M (u)
i p1

i j (1−p1
i j )

d
−→ N (0, 1).

(b) limM→∞

�����
Cov(

M (u)
i j
√
M
,
M (u)

kl√
M

)
�����

are the same for all users in

J (N ) .

Proof. To prove part (a), note that by definition of set J (N ) ,
for all u ∈ J (N )

���p
(u)
i j − p1

i j
��� < ε =

1

N
1
d −θ

,

As N → ∞, p(u)
i j → p1

i j and also π(u)
i → π1

i . Using lemma 2
and this we can write

M (u)
i

M
→ π(1)

i .

Now we define Wn as

Wn =
M (u)

i j − p1
i j M

(u)
i√

M (u)
i p1

i j (1 − p1
i j )

and we can write that as

Wn =
M (u)

i j − pui j M
(u)
i + pui j M

(u)
i − p1

i j M
(u)
i√

M (u)
i p1

i j (1 − p1
i j )

=

M (u)
i j − pui j M

(u)
i√

M (u)
i pui j (1 − pui j )

.

√
pui j (1 − pui j )√
p1
i j (1 − p1

i j )
+

M (u)
i√

M (u)
i

.
p(u)
i j − p1

i j√
p1
i j (1 − p1

i j )
.

Since p(u)
i j → p1

i j ,
p (u)
i j −p

1
i j√

p1
i j (1−p1

i j )
→ 1 and using Lemma 2 we

have that
M (u)

i j − pui j M
(u)
i√

M (u)
i pui j (1 − pui j )

d
−→ N (0, 1).

Now we need to show that as N → ∞,

M (u)
i√

M (u)
i

.
p(u)
i j − p1

i j√
p1
i j (1 − p1

i j )
→ 0.

We define B as,

B =

√
M (u)

i√
p1
i j (1 − p1

i j )
(p(u)

i j − p1
i j ).

Since
M (u)

i

M → π(1)
i we can write,

|B | <
1√

p1
i j (1 − p1

i j )
ε

√
π(1)
i M =

λ

√
c.N

2
d −α .

1

N
1
d θ
= γ.Nθ− α

2

where λ, γ are constants. Note 0 < θ < α
2 , so as N → ∞,

γ.Nθ− α
2 → 0,

which means that,

M (u)
i√

M (u)
i

.
p(u)
i j − p1

i j√
p1
i j (1 − p1

i j )
→ 0.

and we can say that Wn
d
−→ N (0, 1). Part (b) can be shown

similarly by applying the CLT. �

At this point, we have all the components needed to prove
Theorem 1. We have basically established that there exists a
large number (|J (N ) |) of users who are indistinguishable from
user 1. Now, by using exactly the same reasoning as Lemma
4 and Lemma 5 in [1] and combining them with lemmas 1,2
and 3, we can conclude that

lim
N→∞

I (X1(k); YM ) = 0, ∀k ∈ N,

i.e., user 1 has perfect location privacy.

IV. SIMULATION

Here, we provide some simulation results that verify the
result in Theorem 1. We consider a network with N users
and r locations. Possible path of each user can be modeled as
an irreducible, aperiodic Markov chain with r states and |E |
number of edges. After obtaining M observations per user, the

adversary estimates transition probabilities p(u)
i j as

M (u)
i j

Mi
and

by using nearest neighbor decoding in Rd , she matches a user
to the observed paths.
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Fig. 3. The Markov chain MC which models of users’ path.

We see that if the adversary’s number of observations, M ,
is more than O(N

2
|E |−r ), then the adversary’s error probability



(when adversary fails to map user with pseudonym Π(i) to
user i) goes to zero. On the other hand, if the number of
observations is much smaller, then the error probability goes to
one suggesting that users might have perfect location privacy.

In our simulations we consider r = 3 and M = βN
2

|E |−r .
We model each user’s path as a Markov chain MC shown in
figure 3. Since in this model |E | = 6 we can write M = βN

2
3 .

In order to have N unique users, we generate each user’s
transition probabilities Pu at random based on a uniform distri-
bution on Rp and we consider them known to the adversary.
For a fixed β = 5, figure 4 shows that as N increases, the
error probability of the adversary converges to a fix positive
value. We have repeated this for different values of β and have
observed the same effect. This is consistent with our result that
M = O(N

2
|E |−r ) is the threshold for perfect privacy.

Fig. 4. Pe (N ) vs. N for Markov chain MC with β = 5.

Fig. 5. Pe (β) vs. β for Markov chain MC with N = 500.

Next, we fix N = 500. Simulation results in figure 5 shows
that as β grows, the adversary’s error probability goes to zero
which shows that the adversary maps users with less error
probability. On the other hand, as β becomes smaller, the error
probability approaches 1. These results are consistent with the
our main result that users have perfect privacy if the adversary
obtains less than O(N

2
|E |−r ) observations per user.

V. CONCLUSION

We provided an information theoretic definition for perfect
location privacy. Using Markov chains, we modeled each
user’s movements over time. We proved that for such a user,
perfect location privacy is achievable if pseudonym of the
user is changed before O(N

2
|E |−r ) observations is made by the

adversary. Simulated results for different scenarios are also
consistent with this result.
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