Defeating DNN-Based Traffic Analysis Systems in Real-Time With
Blind Adversarial Perturbations

Milad Nasr

Alireza Bahramali

Amir Houmansadr

University of Masschusetts Amherst
{milad, abahramali, amir}@cs.umass.edu

Abstract

Deep neural networks (DNNs) are commonly used for var-
ious traffic analysis problems, such as website fingerprinting
and flow correlation, as they outperform traditional (e.g., sta-
tistical) techniques by large margins. However, deep neural
networks are known to be vulnerable to adversarial examples:
adversarial inputs to the model that get labeled incorrectly
by the model due to small adversarial perturbations. In this
paper, for the first time, we show that an adversary can defeat
DNN-based traffic analysis techniques by applying adversar-
ial perturbations on the patterns of live network traffic.

Applying adversarial perturbations (examples) on traffic
analysis classifiers faces two major challenges. First, the per-
turbing party (i.e., the adversary) should be able to apply the
adversarial network perturbations on /ive traffic, with no need
to buffering traffic or having some prior knowledge about up-
coming network packets. We design a systematic approach to
create adversarial perturbations that are independent of their
target network connections, and therefore can be applied in
real-time on live traffic. We therefore call such adversarial
perturbations blind.

Second, unlike image classification applications, perturbing
traffic features is not straight-forward as this needs to be done
while preserving the correctness of dependent traffic features.
We address this challenge by introducing remapping functions
that we use to enforce different network constraints while
creating blind adversarial perturbations.

Our blind adversarial perturbations algorithm is generic
and can be applied on various types of traffic classifiers. We
demonstrate this by implementing a Tor pluggable transport
that applies adversarial perturbations on live Tor connections
to defeat DNN-based website fingerprinting and flow correla-
tion techniques, the two most-studied types of traffic analysis.
We show that our blind adversarial perturbations are even
transferable between different models and architectures, so
they can be applied by blackbox adversaries. Finally, we show
that existing countermeasures perform poorly against blind
adversarial perturbations, therefore, we introduce a tailored
countermeasure.

1 Introduction

Traffic analysis is the art of inferring sensitive information
from the patterns of network traffic (as opposed to packet
contents), in particular, packet timings and sizes. Traffic anal-
ysis is useful in scenarios where network traffic is encrypted,
since encryption does not significantly modify traffic patterns.
In particular, previous work has studied traffic analysis al-
gorithms that either compromise the privacy of encrypted
traffic (e.g., by linking anonymous communications [37, 50])
or enhance its security by fingerprinting malicious, obfuscated
connections (e.g., stepping stone attacks [23,37,63]).

Recent advances in traffic analysis leverage deep neural net-
works (DNN5s) to design classifiers that are significantly (in
some cases, orders of magnitude) more efficient and more re-
liable than traditional traffic analysis techniques. In particular,
the recent website fingerprinting work of Deep Fingerprint-
ing [50] outperforms all prior fingerprinting techniques in
classifying webpages, and the DeepCorr [37] flow correlation
technique is able to link anonymized traffic flows with accura-
cies two orders of magnitude superior to prior flow correlation
techniques. Given the increasing use of DNNs in traffic analy-
sis applications, we ask ourselves the following question: can
DNN-based traffic analysis techniques get defeated through
adversarially perturbing —live—traffic patterns?

Note that adversarial perturbations is an active area of re-
search in various image processing applications [10, 14, 18,
22,31,35,36,45,54] (referred to as adversarial examples).
However, applying adversarial perturbations on network traf-
fic is not trivial, as it faces two major challenges. First, the
perturbing entity, i.e., the adversary,' should be able to apply
his adversarial perturbations on /ive network traffic, without
buffering the target traffic or knowing the patterns of upcom-
ing network packets. This is because in most traffic analysis
applications, as will be introduced, the adversary can not influ-
ence the generation of target traffic, but he can only intercept
the packets of the target traffic and perturb them on the fly.

'In our context, the adversary is not necessarily a malicious partyj it is
the entity who aims to defeat the underlying DNN traffic classifiers.

In this paper, we are the first to design techniques that ad-
versarially perturb live network traffic to defeat DNN-based
traffic classifiers; we call our approach blind adversarial per-
turbations. Our technique applies adversarial perturbations
on live packets as they appear on the wire. The key idea of our
adversarial perturbations algorithm is that it generates “blind”
perturbations that are independent of the target inputs” by
solving specific optimization problems. We design adversar-
ial perturbation mechanisms for the key features commonly
used in traffic analysis applications: our adversarial perturba-
tions include changing the timings and sizes of packets, as
well as inserting dummy network packets.

The second challenge to applying adversarial perturbations
on traffic analysis applications is that, any perturbation mecha-
nism on network traffic should preserve various constraints of
traffic patterns, e.g., the dependencies between different traffic
features, the statistical distribution of timings/sizes expected
from the underlying protocol, etc. This is unlike traditional
adversarial example studies (in the context of image process-
ing) that modify image pixel values individually. Therefore,
one can not simply borrow techniques from traditional adver-
sarial examples. We consequently design various remapping
functions and regularizers, that we incorporate into our op-
timization problem to enforce such network constraints. As
will be shown, in most scenarios the constraints are not dif-
ferentiable, and therefore we carefully craft custom gradient
functions to approximate their gradients.

Evaluations: Our blind adversarial perturbations algorithm
is generic and can be applied to various types of traffic classi-
fiers. We demonstrate this by implementing our techniques as
a Tor pluggable transport [46], called BLANKET, and evalu-
ating it on state-of-the-art website fingerprinting [3,50] and
flow correlation [37] techniques, the two most-studied types
of traffic analysis. Our evaluations show that our adversarial
perturbations can effectively defeat DNN-based traffic analy-
sis techniques through small, live adversarial perturbations.
For instance, our perturbations can reduce the accuracy of
state-of-the-art website fingerprinting [3, 50] works by 90%
by only adding 10% bandwidth overhead. Also, our adver-
sarial perturbations can reduce the true positive rate of state-
of-the-art flow correlation techniques [37] from 0.9 to 0.3 by
applying tiny delays with a 50ms jitter standard deviation.

We also show that our blind adversarial perturbations
are transferable between different models and architectures,
which signifies their practical importance as they can be im-
plemented by blackbox adversaries.

Countermeasures: We conclude by studying various coun-
termeasures against our adversarial perturbations. We start
by leveraging existing defenses against adversarial examples
from the image classification literature and adapting them

2Qur technique is blind about the target network connections that it per-
turbs, but it may need to learn some generic constraints of the underlying
network protocol (like the noise model and sizing distributions) in order to
train its perturbation models offline, e.g., using sample network flows.

to the traffic analysis scenario. We show that such adapted
defenses are not effective against our network adversarial
perturbations as they do not take into account the specific
constraints of traffic features. Motivated by this, we design
a tailored countermeasure for our network adversarial per-
turbations, which we demonstrate to be more effective than
the adapted defenses. The key idea of our countermeasure
is performing adversarial training, and using our attack as a
regularizer to train robust traffic analysis models.

2 Preliminaries

2.1 Problem Statement

Traffic analysis is to infer sensitive information from the
patterns of network traffic, i.e., packet timings and sizes.
Therefore, many works have investigated the use of traffic
analysis in various scenarios where traffic contents are en-
crypted. In particular, traffic analysis has been used to com-
promise anonymity in anonymous communications systems
through various types of attacks, specifically, website finger-
printing [3,6,19,27,40,41,47,50,51,57-60], and flow corre-
lation [12,23,24,33,37,38,38,49,53,64]. Traffic analysis has
also been used to trace back cybercriminals who obfuscate
their identifies through stepping stone relays [23,24,37,63].

Our problem: Defeating DNN-based traffic analysis algo-
rithms. The state-of-the-art traffic analysis techniques use
deep neural networks to offer much higher performances than
prior techniques. For instance, DeepCorr [37] provides a flow
correlation accuracy of 96% compared to 4% of statistical-
based systems like RAPTOR [53] (in a given setting). Also,
Var-CNN [3] leverages deep learning techniques to perform a
website fingerprinting attack which achieves 98% accuracy
in a closed-world setting. However, deep learning models are
infamous for being susceptible to various adversarial attacks
where the adversary adds small perturbations to the inputs to
mislead the deep learning model. Such techniques are known
as adversarial examples in the context of image processing,
but have not been investigated in the traffic analysis domain.
In this work, we study the possibility of defeating DNN-based
traffic analysis techniques through adversarial perturbations.

In our setting, some traffic analysis parties use DNN-
based traffic analysis techniques for various purposes, such as
breaking Tor’s anonymity or detecting cybercriminals. On the
other hand, the traffic analysis adversary(ies) aim at inter-
fering with the traffic analysis process through adversarially
perturbing traffic patterns of the connections they intercept.
To do so, the traffic analysis adversary(ies) perturb the traffic
patterns of the intercepted flows to reduce the accuracy of the
DNN-based classifiers used by the traffic analysis parties. To
further clarify the distinction between the players, in the flow
correlation setting, the traffic analysis “party” can be a mali-
cious ISP who aims at deanonymizing Tor users by analyzing
their Tor connections; however, the traffic analysis “adversary”

can be some (benign) Tor relays who perturb traffic patterns
of their connections to defeat potential traffic analysis attacks.

Challenges: Note that our problem resembles the setting
of adversarial examples for image classification. However,
applying adversarial perturbations on network traffic presents
two major challenges. First, the adversaries should be able to
apply adversarial perturbations on /ive network connections
where the patterns of upcoming network packets are unknown
to the adversaries. This is because in traffic analysis appli-
cations, the adversary is not in charge of generating traffic
patterns. For instance, in the flow correlation scenario, the traf-
fic analysis adversary is a benign Tor relay who intercepts and
(slightly) perturbs the traffic generated by Tor users. The sec-
ond challenge to applying network adversarial perturbations
is that they should preserve the various constraints of network
traffic, e.g., the dependencies of different traffic features.

Sketch of our approach: In this work, we design blind adver-
sarial perturbations, a set of techniques to perform adversarial
network perturbations that overcome the two mentioned chal-
lenges. To address the first challenge (applying on live traffic),
we design blind perturbation vectors that are independent of
their target connections, therefore, they can be applied on any
(unknown) network flows. Figure | shows what is needed by
our blind adversary compared to traditional (non-blind) per-
turbation techniques. Note that, the blind adversary may still
need to know some generic information about its target net-
work protocol (like the typical noise model, the distribution
of typical packet sizes, etc.) as well as flow samples from the
same underlying distribution (e.g., sample Tor flows), but she
does not need to know the actual traffic packets that will arrive
on the target connection to be perturbed. We generate such
blind adversarial perturbations by solving a specific optimiza-
tion problem. We address the second challenge (enforcing
network constraints) by using various remapping functions
and regularizers that adjust perturbed traffic features to follow
the required constraints. Depending on the application, our
perturbation technique may need to be deployed on multi-
ple end-points, e.g., our BLANKET technique (Section 6.5)
needs to be run on a Tor client and its corresponding Tor
bridge, which use an out-of-band channel to exchange some
parameters needed to collaboratively generate perturbations.

2.2 Threat Model

Our use of adversarial perturbations aim at defending “DNN-
based” traffic analysis mechanisms only; therefore, non-DNN
traffic analysis techniques, e.g., flow watermarks [23-25] and
volume-based traffic classifiers [4], are out of our scope. Fu-
ture work can look into combining our defense with defenses
against such non-DNN mechanisms. Also, our work only
considers DNN-based traffic analysis techniques that use
traffic patterns (i.e., packet timing, sizes, and directions) for
classification, but not those that use packet contents. Such
pattern-based traffic analysis techniques (which are com-

A non-blind adversary needs to know all these patterns

B
. Rl

A blind adversary does not
need to know these in advance

I

Future (unknown) packets

A packet

200 0

Current Time

3
>

Time

Figure 1: Unlike traditional adversarial perturbation tech-
niques, our blind perturbation approach does not need to know
the features of upcoming packets.

monly [3,6,37,53,60,61] referred to as just traffic analysis) are
increasingly popular and relevant as they work on encrypted
network traffic. Therefore, malware classifiers that use packet
content signatures are out of our scope Our adversarial pertur-
bation techniques can be applied to any (pattern-based) traffic
analysis technique that uses raw traffic features for its analy-
sis, e.g., packet timings, inter-packet delays, directions, traffic
volumes, packet counts, etc. This includes the majority of
pattern-based traffic analysis systems [2,3,6,37,38,53,60,61].
On the other hand, our techniques may not be trivially ap-
plied on traffic analysis algorithms that use non-differentiable
and irreversible functions of traffic features, like the hash of
timings or entropy of packet contents; his represents a very
small class of traffic analysis algorithms. Applying our tech-
niques to such systems requires one to come up with specific
remapping functions or approximated gradient functions.

2.3 Adversary Model

Adversary’s knowledge of the target traffic. We assume
the adversary has no prior knowledge about the patterns of
upcoming network packets of the target connections to be
perturbed. However, the adversary may need to know some
generic statistical information about its target network proto-
col (e.g., the distribution of jitter), as well as the specifications
of the target protocol (e.g., the format of Tor packets); such
information is needed to ensure the applied perturbations are
statistically and semantically undetectable.

Adversary’s knowledge of the model. We start with an
adversary who has a white-box access to the target model to be
defeated, i.e., he knows the target DNN model’s architecture
and parameters (Section 4). Then, in Section 9 we extend
our attack to a blackbox setting where the adversary has no
knowledge of the target model’s architecture or parameters,
by leveraging the transferability of our technique.

Adversary’s knowledge of the training data. We assume
the adversary knows a set of samples from the same distribu-
tion as the training dataset of the target model. For example,
in the website fingerprinting application the adversary can
browse the target websites to be misclassified to obtain such

training samples.

Attack’s target. We consider four types of attacks, i.e., ST-
DT, ST-DU, SU-DT, and SU-DU, based on the adversary’s source
and destination targets as defined below:

a) Destination-targeted/untargeted (DT/DU): We call the
attack destination-targeted (DT) if the goal of the adversary is
to make the model misclassify arbitrary inputs into a specific,
target output class. On the other hand, we call the attack
destination-untargeted (DU) if the goal is to misclassify inputs
into arbitrary (incorrect) output classes.

b) Source-targeted/untargeted (ST/SU): A source-targeted
(ST) adversary is one whose goal is to have inputs from a
specific input class misclassified by the traffic analysis model.
By contrast, a source-untargeted (SU) adversary is one who
aims at causing arbitrary inputs classes to get misclassified.

3 Background
3.1 Deep Learning

A deep neural network consists of a series of linear and non-
linear functions, known as layers. Each layer has a weight
matrix w; and an activation function. For a given input x, we
denote the output of a DNN model by:

f@) = £ (2 G A (xx)))

where f;"" is the i—th layer of the deep neural network (note
that we use bold letters to represent vectors as in x). We focus
on supervised learning, where we have a set of labeled training
data. Let X be a set of data points in the target d-dimensional
space, where each dimension represents one attribute of the
input data points. We assume there is an oracle O which maps
the data points to their labels. For the sake of simplicity, we
only focus on classification tasks.

The goal of training is to find a classification model f that
maps each point in X to its correct class in the set of classes, Y.
To obtain f, one needs to define a lower-bounded, real-valued
loss function /(f(x),0(x)) that for each data point x measures
the difference between O(x) and the model’s prediction f(x).

Therefore, the loss function for f can be defined as:

Lf)= B [I(f(x)y)] M

(x.y)~Pr(X,Y)

and the objective of training is to find an f that minimizes
this loss function. Since Pr(X,Y) is not entirely available
to the training entities, in practice, a set of samples from it,
called the training set DT = X % Y, is used to train the
model [56]. Therefore, instead of minimizing (1), machine
learning algorithms minimize the expected empirical loss of
the model over its training set D:

1
LDtmin (f) = Tl Z

i
|D ram' (x7y>€D1rain

1(f(x),y))

Therefore, a deep neural network f is trained by tuning its
weight parameters to minimize its empirical loss function
over a (large) set of known input-output pairs (x,y). This is
commonly performed using a variation of the gradient descent
algorithm, e.g., back propagation [16].

3.2 Adversarial Examples

An adversarial example is an adversarially crafted input that
fools a target classifier or regression model into making in-
correct classifications or predictions. The adversary’s goal is
to generate adversarial examples by adding minimal pertur-
bations to the input data attributes. Therefore, an adversarial
example x* can be crafted by solving the following optimiza-
tion problem:

x"=x+argmin{z: O(x+2) #0(x)} =x+8, (3)

where x is a non-adversarial input sample,

8, is the adversarial perturbation added to it, and O(-) rep-
resents the true label of its input, as defined in the previous
section. The adversary’s objective is to add a minimal pertur-
bation §, to force the target model to misclassify the input x.
Adversarial examples are commonly studied in image classi-
fication applications, where a constraint in finding adversarial
examples is that the added noise should be imperceptible to
the human eyes.

In this paper, we will investigate the application of ad-
versarial examples on network connections with different
imperceptibility constraints.

Previous works [14, 18, 32, 35] have suggested several
ways to generate adversarial examples. The Fast Gradient
Sign Method (FGSM) [18] algorithm generates an adversarial
sample by calculating the following perturbation for a given
model f and a loss function :

8, = e x Sign(Vil(f(x),y)) 4

where V,I(f(x),y) is the model’s loss gradient w.r.t. the input
x, and the y is the input’s label. Therefore, the adversarial per-
turbation is the sign of the model’s loss gradient w.r.t. the input
x and label y. Also, € is a coefficient controlling the amplitude
of the perturbation. Therefore, the adversarial perturbation in
FGSM is the sign of model’s gradient. The adversary adds
the perturbation to x to craft an adversarial example. Kurakin
et al. [32] proposed a targeted version of FGSM, where the
adversary’s goal is to fool the model to classify inputs as a de-
sired target class (as opposed to any class in FGSM). Kurakin
et al. also introduced an iterative method to improve the suc-
cess rate of the generated examples. Dong et al. [14] showed
that using the momentum approach can improve Kurkain et
al’s iterative method. Also, Carlini and Wagner [9] designed
a set of attacks that can craft adversarial examples when the
adversary has various norm constraints (e.g., lo, /1, l»). Other
variations of adversarial examples [15, 52] have been intro-
duced to craft adversarial examples that consider different

sets of constraints or improve the adversary’s success rate.
Moosavi-Dezfooli et al. [35] introduced universal adversar-
ial perturbations where the adversary generates adversarial
examples that are independent of the inputs.

3.3 Traffic Analysis Techniques

We overview the two major classes of traffic analysis tech-
niques, which we will use to demonstrate our network adver-
sarial perturbations.

Flow correlation: Flow correlation aims at linking obfus-
cated network flows by correlating their traffic characteristics,
i.e., packet timings and sizes [2,23,37,38]. In particular, the
Tor anonymity system has been the target of flow correlation
attacks, where an adversary aims at linking ingress and egress
segments of a Tor connection by correlating traffic charac-
teristics. Traditional flow correlation techniques mainly use
standard statistical correlation metrics to correlate the vectors
of flow timings and sizes across flows, in particular mutual
information [12,64], Pearson correlation [33,49], cosine sim-
ilarity [24,38], and Spearman correlation [53]. More recently,
Nasr et al. [37] design a DNN-based approach for flow correla-
tion, called DeepCorr. They show that DeepCorr outperforms
statistical flow correlation techniques by large margins.
Website Fingerprinting: Website fingerprinting (WF) aims
at detecting the websites visited over encrypted channels like
VPNs, Tor, and other proxies [3,6,19,27,40,41,47,50,51,
57-60]. The attack is performed by a passive adversary who
monitors the victim’s encrypted network traffic, e.g., a mali-
cious ISP or a surveillance agency. The adversary compares
the victim’s observed traffic flow against a set of prerecorded
webpage traces, to identify the webpage being browsed. Web-
site fingerprinting differs from flow correlation in that the
adversary only observes one end of the connection, e.g., the
connection between a client and a Tor relay. Website finger-
printing has been widely studied in the context of Tor traffic
analysis [3,6,19,27,40,41,47,50,51,57,59].

Various machine learning classifiers have been used for
WE e.g., using KNN [58], SVM [40], and random forest [19].
However, the state-of-the-art WF algorithms use Convolu-
tional Neural Networks to perform website fingerprinting, i.e.,
Sirinam et al. [50], Rimmer et al. [47], and Bhat et al. [3].

Defenses: Note that our blind adversarial perturbations tech-
nique serves as a defense mechanism against traffic analysis
classifiers (as it aims at fooling the underlying classifiers).
The literature has proposed other defenses against website
fingerprinting and flow correlation attacks [5,11,28,61]. Sim-
ilar to our work, such defenses work by manipulating traffic
features, i.e., packet timings, sizes, and directions.

In Section 7.5, we compare the performance of our blind
adversarial perturbations with state-of-the-art defenses, show-
ing that our technique outperforms all of these techniques in
defeating traffic analysis.

Also, note that some recent works have considered using
adversarial perturbations as a defense against traffic analysis.
In particular, Mockingbird [26] generates adversarial pertur-
bations to defeat website fingerprinting, and Zhang et al. [62]
apply adversarial examples to defeat video classification using
traffic analysis. However, both of these works are non-blind,
i.e., the adversary needs to know the patterns of the target
flows in advance; therefore, we consider them to be unusable
in typical traffic analysis scenarios. By contrast, our blind
perturbation technique modifies live network connections.

4 Blind Adversarial Perturbations

In this section, we present the key formulation and algorithms
for generating blind adversarial perturbations.

4.1 The General Formulation

We formulate the blind adversarial perturbations problem as
the following optimization problem:

argmgan eDS: f(x+38) # f(x))

where the objective is to find a (blind) perturbation vector, 8,
such that when added to an arbitrary input from a target input
domain D5, it will cause the underlying DNN model f(.) to
misclassify. In a source-targeted (ST) attack (see definitions
in Section 2.3), DS contains inputs from a target class to be
misclassified, whereas in a source-untargeted (SU) attack DS
will be a large set of inputs from different classes.

Note that one cannot find a closed-form solution for this
optimization problem since the target model f(.) is a non-
convex ML model, i.e., a deep neural network. Therefore, (5)
can be formulated as follows to numerically solve the problem
using empirical approximation techniques:

argmax Y U(f(x+8),f(x)) (6)

xeDS

where [is the target model’s loss function and DS C DS is the
adversary’s network training dataset.

Note that prior work by Moosavi-Dezfooli et al. [35] has
studied the generation of universal adversarial perturbations
for image recognition applications. We, however, take a dif-
ferent direction in generating blind perturbations: in contrast
to finding a perturbation vector 8 that maximizes the loss
function in [35], we aim to find a perturbation generator
model G. This generator model G will generate adversarial
perturbation vectors when provided with a random trigger
parameter z (we denote the corresponding adversarial pertur-
bation as 8, = G(z)), i.e., we are able to generate different
perturbations on different random z’s. Therefore, the goal of
our optimization problem is to optimize the parameters of the
perturbation generator model G (as opposed to optimizing a

perturbation vector & in [35]). Using a generator model in-
creases the attack performance, as shown previously [1,20]
and validated through our experiments. Hence, we formulate
our optimization problem as:
argmax Z 1r

G z~umform (0,1) xE@S

(x+G[), f(x)] (D

We can use existing optimization techniques (we have used
Adam [29]) to solve this problem. In each iteration of training,
our algorithm selects a batch from the training dataset and a
random trigger z, then computes the objective function.

4.2 Incorporating Traffic Constraints

Studies of adversarial examples for image recognition ap-
plications [14, 18,32, 35] simply modify image pixel values
individually. However, applying adversarial perturbations on
network traffic is much more challenging due to the various
constraints of network traffic that should be preserved while
applying the perturbations. In particular, inter-packet delays
should have non-negative values; the target network protocol
may need to follow specific packet size/timing distributions;
packets should not be removed from a connection; and, packet
numbers should get adjusted after injecting new packets.
One can add other network constraints depending on the
underlying network protocol. We use remapping and regular-
ization functions to enforce these domain constraints while
creating blind adversarial perturbations. A remapping func-
tion adjusts the perturbed traffic patterns so they comply with
some domain constraints. For example, when an adversary
adds a packet to a traffic flow at position i, the remapping
function should shift the indices of all consecutive packets.
We therefore reformulate our optimization problem by in-
cluding the remapping function M
arg max Z I(f

G ZNMmform (0,1) xGDS

G@)),f(x)] ¥

Moreover, we add a regularization term to the loss function
so that the adversary can enforce additional constraints, as
will be discussed. Therefore, the following is our complete
optimization problem:
argmax Z If

G z~unlf0rmOl xeDS
©))
We adjust (9) for a destination-targeted (DT)
attack by replacing I(f(M(x,G(z))),f(x)) with
—I(f(M(x,G(2))),0r), where Or is the target output
class. Also, recall that for source-targeted attacks, D°
contains samples only from the target classes.

4.3 Overview of The Algorithm

Algorithm | summarizes our approach to generate blind adver-
sarial perturbations (Figure 2 illustrates the main components

,G(2))), (%)) + R(G(2))]

Algorithm 1 Generating Blind Adversarial Perturbations

DS «+ adversary training data

f + target model

Ly < target model loss function

M < domain remapping function

R < domain regularizations function

G(z) + initialize the blind adversarial perturbation model parameters (8¢)

T < epochs
DT < the destination target class or false o.w.
ST < the source target classes or false o0.w.
for epocht € {1---T} do

for all mini-batch b; in DS do

if ST then
b; + select instances only with the ST class label
end if
z ~ Uniform
if DT then
J = (31 Lxen, (M (x,G(2))), f(x))) + R(G(2))
else
J = (557 Exen, L(f(M (x,G(2))),DT)) + R(G(2))
end if
Update G to minimize J
end for
end for
return G

of our algorithm). In each iteration, Algorithm | computes the
gradient of the objective function w.r.t. the blind perturbation
for given inputs, and optimizes it by moving in the direction
of the gradient. The algorithm enforces domain constraints
using various remapping and regularization functions. We
use the iterative mini-batch stochastic gradient ascent [16]
technique.

5 Perturbation Techniques

The (pattern-based) traffic analysis literature uses three main
features for building traffic analysis classifiers: 1) packet
timings [3, 371, 2) packet sizes [37], and 3) packet direc-
tions [3,47,50,58]. Our blind adversarial perturbation tech-
nique leverages these features to adversarially perturb traffic.
These features can be modified either by delaying packets,
resizing packets, or injecting new (dummy) packets (dropping
packets is not an option as it will break the underlying appli-
cations). We describe how we perform such perturbations.

5.1 Manipulating Existing Packets

The adversary can modify the timings and sizes (but not the
directions) of existing packets of a target network connec-
tion. We present a network connection as a vector of features:

= [f1, /2, , fu], where f; can represent the size, timing,
direction, or a combination of these features for the ith packet.
The adversary designs a blind adversarial perturbation model
G, as introduced in Section 4, such that it outputs a pertur-
bation vector G(z) = [g1,82," - ,&n) With the same size as F.

Random input z

Remapping Remapping | Adversarial location vectol
1 v i ion ve r o
_ Functlon >~ Network ...
_— N Flow
Direction-based N Direction-based |~ T

" Remapping | Adversarial ordering vector

Adversarial
Perturbation

Functlon

Sized-based ;

Time-based

~_ \ e | " Remapping
(—> I!egularlzer Functlon

o H

Adversarial amplitude vector,

Adversarial IPDs vector

/
/
/
/
/
/
ks
\
\
\
\
\
\
\
\
\

Sized-based

Crafted
Adversarial "
Time-based S u)

Blind Adversary

Figure 2: The block diagram of our blind adversarial perturbation technique

The adversary adds G(z) to the original traffic patterns as pack-
etsarrive,so FP =F+G(z) =[fi+ g1, fa+82, -, fi+gn] is
the patterns of the perturbed connection. The main challenge
is that the perturbed traffic features, F?, should not violate
the domain constraints of the target network application.

Perturbing timings: We first introduce how the timing
features can be perturbed. We use inter-packet delays (IPDs)
to represent the timing information of packets. An important
constraint on the timing features is that the adversary should
not introduce excessive delays on the packets as excessive de-
lays will either interfere with the underlying application (e.g.,
Tor relays are not willing to introduce large latencies) or give
away the adversary. We control the amount of delay added by
the adversary by using a remapping function M as follows:

M (x,G(z),1,0) = x+

G(z) —max(G(z) —u,0) — min(G(z) +4,0)
std(G(2))

min(std(G(z)),0)
(10)

where G(z) is the mean of perturbation G(z), and u and G are
the maximum allowed average and standard deviation of the
delays, respectively. Using this remapping function, we can
govern the amount of latency added to the packets.

A second constraint on timing features is that the perturbed
timings should follow the statistical distributions expected
Jrom the target protocol. Towards this, we leverage a regu-
larizer R to enforce the desired statistical behavior on the
blind perturbations. Our regularizer enforces a Laplacian dis-
tribution for network jitters, as suggested by prior work [38],
but it can enforce arbitrary distributions. To do this, we use
a generative adversarial network (GAN) [17]: we design a
discriminator model D(G(x)) which tries to distinguish the
generated perturbations from a Laplace distribution. Then, we
use this discriminator as our regularizer function to make the
distribution of the crafted perturbations similar to a Laplace
distribution. We simultaneously train the blind perturbation

Algorithm 2 GAN-based timing regularizer

DS « adversary training data
f < target model
G < blind adversarial perturbation model
D < discrimination model
u, b + target desired Laplace distribution parameters
forr e {1,2,---,T} do
7 ~ Lapace(u,b)
z ~ Uniform()
train D on G(z) with label 1 and 7’ with label 0
train G on D° using regularizer D
end for
return z

Algorithm 3 Size remapping function

a<+ G(2)
X < training input
N < maximum sum of added sizes
n <— maximum added size to each packet
s < cell sizes
for iin argsort(-a) do
if N <0 then
break
end if
8 = [min(s=~ di . ,N)|
N=N-3
x[i] = x[i]+8
end for
return x

model and the discriminator model. This is summarized in
Algorithm 2.

Perturbing sizes: An adversary can perturb packet sizes
by increasing packets sizes (through appending dummy bits).
However, modified packet sizes should not violate the ex-
pected maximum packet size of the underlying protocol as
well as the expected statistical distribution of the sizes. For
instance, Tor packets are expected to have certain packet sizes.

We use the remapping function M3, as shown in Algo-
rithm 3, to adjust the amplitude of size modifications as well
as to enforce the desired statistical distributions. The input

Algorithm 4 Packet insertion remapping function

Algorithm 5 Value Vector Gradient

1+ G(z)

X < training input

n < number of added packets

p = position of top n absolute values of [

for iin p do
insert +1 if I[i] > 0, otherwise —1 to x at position i and shift other
features

end for

return x

to Algorithm 3 is the blind adversarial perturbation (G(z)),
the desired maximum bytes of added traffic (), the desired
maximum added bytes to a single packet (n), and the expected
packet size distribution of the underlying network protocol
(s) (if the network protocol does not have any specific size
constraints, then s = 1). Algorithm 3 starts by selecting the
highest values from the output of the adversarial perturba-
tions and adds them to the traffic flows up to N bytes. Since
Algorithm 3 is not differentiable, we cannot simply use Al-
gorithm 1. Instead, we define a custom gradient function for
Algorithm 3 which allows us to train the blind adversarial
perturbation model. Given the gradient of the target model’s
loss w.r.t. the output of Algorithm 3 (i.e., V,M5(x,G(z))),
we modify the perturbation model’s gradient as:

Vo = 3, VaM®(x,G(2)) (11)

xeb;

where b; is the selected training batch. We do not need regu-
larization for packet sizes.

5.2 Injecting Adversarial Packets

In addition to perturbing the features of existing packets, the
adversary can also inject dummy packets with specific sizes
and at specific times into the target connection to be perturbed
(note that a dummy packet is created by injecting random data
into the application layer of TCP, which will be encrypted by
the transport layer). The goal of our adversary is to identify
the most adversarial timing and size values for the injected
packets. We design a remapping function M’ (Algorithm 4)
that obtains the ordering of injected packets as well as their
feature values. Similar to the previous attack, Algorithm 4 is
not differentiable and we cannot simply use it for Algorithm 1.
Instead, we use a custom gradient function for Algorithm 4
which allows us to train our blind adversarial perturbation
model. We define the gradient function for different types of
features as described in the following.

Injecting adversarial directions: While an adversary cannot
change the directions of existing packets, she can inject ad-
versarial directions by adding packets. A connection’s packet
directions can be represented as a series of -1 (downstream)
and +1 (upstream) values. However, generating adversarial
perturbations with binary values is not straightforward.

l,a+ G(z)
VM(x,G(EQ) <+ gradient w.r.t. M (x,G(z))
VG(z)+ 0
n <— number of added packets
p = position of top n values of /
for iin p do
VG()[i] = VM (x.G(2))
end for
return VG(z)

We generate a perturbation vector G(z) with the same size
as the target connection. Each element of this vector shows
the effect of inserting a packet at that specific position (i.e.,
!l in Algorithm 4). We select positions with largest absolute
values for packet injection; the sign of the selected position
determines the direction of the injected packet. Finally, we
modify the perturbation model’s gradient as:

Vo = Y, VaM! (x,G(2)) (12)

XEDb;

Injecting adversarial timings/sizes: Unlike packet direc-
tions, for the timing and size features, we need to learn both
the positions and the values of the added packets simultane-
ously. We design the perturbation generation model to output
two vectors for the locations and the values of the added pack-
ets, where the value vector represents the selected feature
(timing or sizes). We use the gradient function defined in (12)
for the position of the inserted packets. We use Algorithm 5 to
compute the gradients for the values of the inserted packets.

Injecting multiple adversarial features: To inject packets
that simultaneously perturb several features, we modify the
perturbation generation model G to output one vector for the
position of the injected packets and one for each feature set
to be perturbed. We use Algorithm 5 to compute the gradient
of each vector. Moreover, we cannot use (12) to compute the
gradient for the position vector, therefore, we take the average
between the gradient of all different input feature vectors.

6 Experimental Setup

Here we discuss the setting of our experiments as well as
the design of a Tor pluggable transport that implements our
techniques. Our DNN techniques are implemented using Py-
Torch [44] and our pluggable transport is implemented in
Python.

6.1 Maetrics

For a given blind adversarial perturbation generator G(-) and
test dataset D,.s, we define the attack success metric as:

a_ {@1&)@ 1[f(x+G() #y DU

13
‘Tlesr‘ Z(x,y)e@,m 1[f<x+ G(Z)) = t] DT ()

where DU and DT represent destination-untargeted and targeted
attack scenarios, respectively (as defined in Section 2.3). For
source-targeted (ST) cases, D5 contains instances only from
the target source class. Also, in our evaluations of the tar-
geted attacks (ST and DT), we only report the results for target
classes with minimum and maximum attack accuracies. For
example, “Max ST-DT” indicates the best results for the source
and destination targeted attacks, and we present the target
classes using the TargetDest <— TargetSrc notation, which
means class TargetDest is the targeted destination class and
TargetSrc is the targeted source class. The maximum accu-
racy shows the worst case scenario for the target model and
the minimum accuracy shows the lower bound on the adver-
sary’s success rate. If there are multiple classes that lead to a
max/min accuracy, we only mention one of them.

Note that while we can use A4 to evaluate attack success in
various settings, for the flow correlation experiments we use a
more specific metric (as there are only two output classes for a
flow correlation classifier). Specifically, we use the reduction
in true positive and false positive rates of the target flow
correlation algorithm to evaluate the success of our attack.

6.2 Target Systems

We demonstrate our attack on three state-of-the-art DNN-
based traffic analysis systems.

DeepCorr: DeepCorr [37] is the state-of-the-art flow correla-
tion system, which uses deep learning to learn flow correlation
functions for specific network settings like that of Tor. Deep-
Corr uses inter-packet delays (IPDs) and sizes of the packets
as the features. DeepCorr uses Convolutional neural networks
to extract complex features from the raw timing and size in-
formation, and it outperforms the conventional statistical flow
correlation techniques by significant margins. Since Deep-
Corr uses both timings and sizes of packets as the features,
we apply the time-based and size-based attacks on DeepCorr.

As mentioned earlier, non-blind adversarial perturba-
tions [26, 62] are useless in the flow correlation setting, as
the adversary does not know the features of the upcoming
packets in a target connection. Hence, our blind perturbations
are applicable in this setting.

Var-CNN: Var-CNN [3] is a deep learning-based website fin-
gerprinting (WF) system that uses both manual and automated
feature extraction techniques to be able to work with even
small amounts of training data. Var-CNN uses ResNets [21]
with dilated casual convolutions, the state-of-the-art convo-
lutional neural network, as its base structure. Furthermore,
Var-CNN shows that in contrast to previous WF attacks, com-
bining packet timing information (IPDs) and direction infor-
mation can improve the performance of the WF adversary.
In addition to packet IPDs and directions, Var-CNN uses cu-
mulative statistical information for features of network flows.
Therefore, Var-CNN combines three different models, two
ResNet models for timing and direction information, and one

fully connected model for metadata statistical information as
the final structure. Var-CNN considers both closed-world and
open-world scenarios.

Similar to the setting of flow correlation, a WF adversary
will not be able to use traditional (non-blind) adversarial per-
turbations [26, 62], as she will not have knowledge on the
patterns of upcoming packets in a targeted connection. There-
fore, WF is a trivial application for blind perturbations. Since
Var-CNN uses both IPD and packet direction features for fin-
gerprinting, we use both timing-based and direction-based
techniques to generate our adversarial perturbations.

Deep Fingerprinting (DF): Deep Fingerprinting (DF) [50] is
a deep learning based WF attack which uses CNNs to perform
WEF attacks on Tor. DF deploys automated feature extraction,
and uses the direction information for training. In contrast to
Var-CNN, DF does not require handcrafted features of packet
sequences. Similar to Var-CNN, DF considers both closed-
world and open-world scenarios. Sirinam et al. [S0] show that
DF outperforms prior WF systems in defeating WF defenses
of WTF-PAD [28] and W-T [61].

Codes. As we perform our attack in PyTorch, we use the
original code of DeepCorr, DF, and Var-CNN models and
convert them from TensorFlow to PyTorch. We then train
these models using the datasets of those papers.

6.3 Adversary Setup and Models

While our technique can be applied to any traffic analysis
setting, we present our setup for the popular Tor application.

Adversary’s Interception Points Our adversary has the
same placement as traditional Tor traffic analysis works [47,
50,59-61]. For the WF scenario, we assume the adversary
is manipulating the traffic between a Tor client and the first
Tor hop, i.e., a Tor bridge [13] or a Tor guard relay. There-
fore, our blind adversarial perturbation can be implemented
as a Tor pluggable transport [46], in which case the blind
perturbations are applied by both the Tor client software and
the Tor bridge. In the flow correlation setting, similar to the
literature, traffic manipulations are performed by Tor entry
and exit relays (since flow correlation attackers intercept both
egress and ingress Tor connections). In our evaluations, we
show that even applying our blind adversarial perturbations
on only ingress flows is enough to defeat flow correlation
attacks, i.e., the same adversary placement as the WF setting.

Adversarial Perturbation Models As mentioned in Sec-
tion 4, we design a deep learning model to generate blind
adversarial noises. For each type of perturbation, the adver-
sarial model is a fully connected model with one hidden layer
of size 500 and a ReLu activation function. The parameters of
the adversarial model are presented in Table 1. The input and
output sizes of the adversarial model are equal to the length
of features in the target flow. In the forward function, the
adversarial model takes in a given input, manipulates it based

Table 1: Tuned parameters of the adversarial models and
discriminator model

Model # H-layers Size Optimizer LR Activation
Direction-based 1 [500] Adam 1073 ReLu
Time-based 1 [500] Adam 1073 ReLu
Size-based (ordering) 1 [500] Adam 1073 ReLu
Size-based (amplitude) 1 [500] Adam 1073 ReLu
Discriminator 2 [1000, 1] Adam 1074 ReLu

on the attack method, and output a crafted version of the input.
In each iteration of training, we update the parameters of the
adversarial model based on the loss functions introduced in
Section 4. We use Adam optimizer to learn the blind noise
with a learning rate of 0.001.

Discriminator Model As mentioned in Section 4, we use a
GAN model to enforce the time constraints of our modified
network flows. To do so, we design a fully-connected discrim-
inator model containing two hidden FC layers of size 1000.
The parameters of the discriminator model are presented in
Table 1. The input and output sizes of this model are equal to
the sizes of the blind adversarial noise. In the training process,
we use Adam optimizer with a learning rate of 0.0001 to learn
the discriminator model.

6.4 Datasets

We use the following datasets to create network flows for our
experiments; these are the largest publicly available datasets
for our target applications.

Tor Flow Correlation Dataset For flow correlation experi-
ments, we use the publicly available dataset of DeepCorr [37],
which contains 7000 flows for training and 500 flows for
testing. These flows are captured Tor flows of top Alexa’s
websites and contain timings and sizes of each of them. These
flows are then used to create a large set of flow pairs includ-
ing associated flow pairs (flows belonging to the same Tor
connection) and non-associated flow pairs (flows belonging
to arbitrary Tor connections). Each associated flow pair is
labeled with 1, and each non-associated flow pair with O.

Tor Website Fingerprinting Datasets Var-CNN uses a
dataset of 900 monitored sites each with 2,500 traces. These
sites were compiled from the Alexa list of most popular web-
sites. Var-CNN is fed in with different sets of features repre-
senting a given trace; the direction-based ResNet model takes
a set of 1’s and -1’s as the direction of each packet such that
1 shows an outgoing packet and -1 represents an incoming
packet. The time-based ResNet uses the IPDs of the traces as
features. The metadata model takes in seven float numbers as
the statistical information of the traces. To be consistent with
previous WF attacks [47, 50, 59, 60], we use the first 5000
values of a given trace for both direction and time features.
DF uses a different dataset than Var-CNN. For the closed-
world setting, they collected the traces of 95 top Alexa web-

10

sites with 1000 visits for each. DF uses the same represen-
tation as Var-CNN for direction information of the packets.
Since CNNs only take in a fixed length input, DF considers
the first 5000 values of each flow.

6.5 The BLANKET Tor Pluggable Transport

To demonstrate the deployability of our techniques, we apply
our adversarial perturbations on live Tor Traffic. Specifically,
we have implemented our adversarial perturbation techniques
as a Tor pluggable transport [46], which we call BLANKET.”
We use BLANKET to perturb Tor connections generated us-
ing the datasets introduced above for different target systems.
To enforce its timing indistinguishability constraint, BLAN-
KET needs to measure the jitter of its client. The goal of
BLANKET is to defeat DNN-based traffic analysis attacks
(particularly, website fingerprinting and flow correlation) on
Tor connections by applying adversarial perturbations on
live Tor connections. We have implemented our pluggable
transport in Python using the Twisted framework, which is
available at https://github.com/SPIN-UMass/BLANKET.
BLANKET has two phases of operation.

Session initialization: Like other pluggable transports,
BLANKET needs to be installed both by a Tor client and
the Tor bridge she is connected to it. At the beginning of each
session, the client and the bridge will negotiate a set of adver-
sarial noise vectors (created using the generator function G
by the client) that they will use for traffic perturbation (the
noise vector includes the timing and the sizes of the packets
needed for perturbation), as well as a pair of AES keys to
encrypt traffic (similar to other pluggable transports). This
negotiation can be integrated into Tor’s regular client-bridge
handshaking, or alternatively exchanged through out-of-band
channels (e.g., email, a domain-fronted server, etc.). The cur-
rent implementation of BLANKET negotiates out of band.

Traffic perturbation: Figure 3 shows how BLANKET modi-
fies live Tor connections to apply our our adversarial perturba-
tions introduced in Section 4. Specifically, BLANKET applies
two types of perturbations: it perturbs the timings/sizes of
existing packets (on-the-fly) or injects new (dummy) packets
into the flow. To inject dummy packets, BLANKET simply
adds the new packets with their specific timing/sizes in the
transport layer; this keeps the underlying protocols (TCP/IP)
unmodified and semantically correct. On the receiver side of
our pluggable transport, the transport layer will remove the
injected dummy packets before passing them to the upstream
application (e.g., the next Tor relay); as a result the upstream
packets will also remain unmodified and semantically cor-
rect. To perturb an existing packet on-the-fly, BLANKET
changes the timing and sizes of the packets as follows: to
change the size of a packet, the sender’s BLANKET will pad
that packet with random bytes, which are removed by the re-

3BLANKET stands for BLind Adversarial NetworK pErturbaTions.

https://github.com/SPIN-UMass/BLANKET

Pluggable Transport Layer

Pluggable Transport Layer

Real-time packets|

3 -0

Application Tor client

Perturbation Noise
O _—>
O

Injection Noise

sjexoed 108(U|

Perturbation Generator Model

&

Tor bridge

uondAioug

D
1
3
]
2
3
o
<
3
3

<
B
8
=
o
@

N

Sender

Receiver

Figure 3: Overview of our BLANKET Tor pluggable transport, which applies blind adversarial perturbations on live Tor
connections (the figure only shows the client-to-bridge operations; bridge-to-client operations work similarly).

ceiver’s BLANKET (note that both the sender and the receiver
know the exact index of the padded and dummy packets as the
perturbation vectors are shared between them during the ini-
tialization process). Similar to padding, manipulating packet
sizes does not impact the correctness of the underlying and
higher protocols as this is performed at the transport layer.
Note that, similar to state-of-the-art pluggable transports
like obfs [39], all packet contents are encrypted using the AES
keys negotiated during initialization; therefore, as long as the
encryption protocol is secure, it is not possible to distinguish
BLANKET’s dummy or padded packets from benign Tor.
Finally, packet timings are modified by delaying the pack-
ets by the sender’s BLANKET. Our timing perturbations do
not affect the correctness of the underlying/upstream proto-
cols, since the perturbations are in the order of milliseconds,
significantly smaller than the timeout values in both TCP/IP
and HTTP/S (or Tor) protocols (in the order of seconds).

7 Experiment Results

We use BLANKET to evaluate our blind adversarial perturba-
tions against the target systems of Section 6.2 using each of
the three key traffic features and their combinations. We also
compare our attack with traditional attacks.

Computation costs: Our perturbation model, G, is trained
offline and before being used to perturb live connections;
therefore, training the perturbation model does not introduce
any runtime overheads. Also, note that G only needs to be
generated once for each installation; it takes 5 hours to train
G on our NVIDIA TITAN X GPU.

7.1 Adversarially Perturbing Directions

As explained in Section 4, an adversary cannot change the
directions of existing packets, but he can insert packets with
adversarial directions. We evaluated our attack for different
adversary settings and strengths against Var-CNN [3] and
DF [50] (which use direction features). We used 10 epochs
and Adam optimizer to train the blind adversarial perturba-

11

tions model with a learning rate of 0.001. Tables 2 and 3
show the success of our attack (using 4 in (13)) on DF and
Var-CNN, respectively, when they only use packet directions
as their features. As can be seen, both DF and Var-CNN
are highly vulnerable to adversarial perturbation attacks
when the adversary only injects a small number of packets.
Specifically, we were able to generate targeted perturbations
that misclassify every input into a target class with only 25%
bandwidth overhead.

7.2 Adversarially Perturbing Timings

We consider two scenarios for generating adversarial timing
perturbations: with and without an invisibility constraint. In
both scenarios, we limited the adversaries’ power such that
the added noise to the timings of the packets has a maximum
mean and standard deviation as explained in Section 4. For
the invisibility constraint, we force the added noise to have
the same distribution as natural network jitter, which follows
a Laplace distribution [37]. The detailed parameters of our
model are presented in Table |.

Figure 4 shows the performance of our attack against Deep-
Corr when the adversary only manipulates the timings of
packets. As expected, Figures 4a and 4b show that increasing
the strength (mean or standard deviation) of our blind noise
results in better performance of the attack, but even a per-
turbation with average 0 and a tiny standard deviation of
50ms significantly reduces the true positive of DeepCorr
from 95% to 55%.

Also, we can create effective adversarial perturbations
with high invisibility: Figure 5 shows the histogram of the
generated timing perturbations, with parameters u = 0,6 =
30ms, learned under an invisibility constraint forcing it to fol-
low a Laplace distribution. For this invisible noise, Figure 4c
compares the performance of timing perturbations on Deep-
Corr with different attack strengths; it also shows the impact
of arbitrary Laplace distributed perturbations on DeepCorr.

We also apply our timing perturbations on Var-CNN. Ta-
ble 4 shows our attack success (A4) with and without an invis-
ibility constraint. We realize that timing perturbations have

Table 2: Direction perturbation attack on DeepFingerprinting [50] WF scheme (92% WF accuracy)

o Bandwith Overhead (%) SU-DU (%) Max ST-DU (#, %) Min ST-DU (#, %) Max SU-DT (#, %) Min SU-DT (#, %) Max ST-DT (#<#, %) Min ST-DT (#+#, %)
20 0.04 242 —,100.0 -,0.0 77,31.9 4,0.1 —,100.0 -,0.0

100 2.04 49.6 —,100.0 47,0.0 34,77.6 89,13.2 —,100.0 ~,00

500 1111 91.8 —,100.0 49,4.0 92,97.1 82,47.8 —,100.0 23+ 69,0.1

1000 25.0 95.7 —,100.0 21,29.0 —,100.0 10,67.0 —,100.0 72 47,4.4

2000 66.66 97.7 —,100.0 48,94.7 —,100.0 37,89.4 —,100.0 78 < 60,35.4

Table 3: Direction perturbation attack on Var-CNN [3] WF scheme (93% WF accuracy)

(x Bandwith Overhead (%) | 4: SU-DU(%) Max ST-DU(# %) Min ST-DU(#, %) Max SU-DT (# %) Min SU-DT (# %) Max ST-DT (#—#, %) Min ST-DT (##, %)
20 | 0.04 76.1 —,100.0 ~,0.0 2,68.3 8,53.2 —,100.0 ~,0.0

100 | 2.04 80.3 —,100.0 —,100.0 4,76.5 2,66.8 —,100.0 -,0.0

500 | 11.11 96.8 —,100.0 —,100.0 3,98.9 9,81.7 —,100.0 —,10.0

1000 | 25.0 98.2 —,100.0 —,100.0 —,100.0 0,96.6 —,100.0 ~,20.0

2000 | 66.66 99.0 —,100.0 —,100.0 —,100.0 8,97.6 —,100.0 ~,30.0
much larger impacts on Var-CNN than direction perturbations. 78%.

Moreover, as expected, in the untargeted scenario (SU-DU) and
for different bandwidth overheads, our attack has better perfor-
mance without the invisibility constraint. However, even with
an invisibility constraint, our attack reduces the accuracy
of Var-CNN drastically, i.e., a blind timing perturbation
with an average 0 and a tiny standard deviation of 20ms
reduces the accuracy of Var-CNN by 89.6%.

7.3 Adversarially Perturbing Sizes

We evaluate our size perturbation attack on DeepCorr, which
is the only system (among the three we studied) that uses
packet sizes for traffic analysis. As DeepCorr is mainly stud-
ied in the context of Tor, our perturbation algorithm enforces
the size distribution of Tor on the generated size perturbations.
Figure 6 shows the results when the adversary only manipu-
lates packet sizes. As can be seen, size perturbations are less
impactful on DeepCorr than timing perturbations, suggesting
that DeepCorr is more sensitive to the timings of packets.

7.4 Perturbing Multiple Features

In this section, we evaluate the performance of our adver-
sarial perturbations when we perturb multiple features si-
multaneously. Var-CNN uses both packet timing and direc-
tions to fingerprint websites. Table 5 shows the impact of
adversarially perturbing both of these features on Var-CNN;
we see that combining perturbation attacks increases
the impact of the attack, e.g., in the untargeted scenario
(SU-DU), the combination of both attacks with parameters
o = 100,u = 0,6 = 10ms results in an attack success of
A = 83.9% while the time-based and direction-based per-
turbations alone result in 4 = 68.1% and 4 = 80.3%, respec-
tively. Similarly, in Figure 7, we see that by combining time
and size perturbations, the accuracy of DeepCorr drops from
95% to 59% (with FP = 103) by injecting only 20 packets,
while using only time perturbations the accuracy drops to

12

7.5 Comparison With Traditional Attacks

There exist traditional attacks on DNN-based traffic analysis
systems that use techniques other than adversarial perturba-
tions. In this section, we compare our adversarial perturbation
attacks with such traditional approaches.

Packet insertion techniques: Several WF countermeasures
work by adding new packets. We show that our adversarial
perturbations are significantly more effective with simi-
lar overheads. WTF-PAD [28] is a state-of-the-art technique
which adaptively adds dummy packets to Tor traffic to evade
website fingerprinting systems. Using WTF-PAD on the DF
dataset reduces the WF accuracy to 3% at the cost of a 64%
bandwidth overhead. Similarly, the state-of-the-art Walkie-
Talkie [61] reduces DF’s accuracy to 5% with a 31% band-
width overhead and a 36% latency overhead [50]. On the other
hand, our injection-based targeted blind adversarial attack re-
duces the detection accuracy to 1% (close to random guess)
with only a 25% bandwidth overhead and no added latency
(using the exact same datasets). To compare existing WF coun-
termeasures with our results while using Var-CNN model, we
refer to their paper [3] where WTF-PAD can decrease the
accuracy of Var-CNN by 0.4% (from 89.2% to 88.8%) with
27% bandwidth overhead. However, according to Table 3,
with a similar bandwidth overhead (1000 inserted packets and
25% overhead), our attack reduces the accuracy by 91.6%
which significantly outperforms WTF-PAD. Our results
suggest that, our blind adversarial perturbation technique
drastically outperforms traditional defenses against deep
learning based website fingerprinting systems.

Time perturbation techniques: Figure 4c compares our
technique with a naive countermeasure of adding random
Laplacian noise to packet timings. We see that by adding a
Laplace noise with zero mean and 20ms standard deviation,
the accuracy of DeepCorr drops from 0.88 TP (for 10~3 FP) to
0.78 TP, but using our adversarial perturbation technique with

1.0 1.0 1.0
0.8 0.8 0.8
[[1
2 2 2
=0.6 =0.6 =0.6
@ @ @
o o o
c“‘-’ 4 nu; 4 % 2 —— 0=10ms
'__3_0' —— g=10ms EO' u=0ms EO' —— g=20ms
0.2 —— 0=20ms 0.2 —— u=20ms 02l Laplace 0 = 10 ms
' —— o0=50ms : —— u=50ms ' --e-- Laplace 0 = 20 ms
0.0 —— no noise 0.0 —— no noise 0.0 no noise
1074 1073 1072 107t 10° 1074 1073 1072 107t 10° 1074 1073 102 107t 10°
False Positive False Positive False Positive
(a) u=Oms (b) o6 = 20ms (¢) u = Oms with invisibility constraint

Figure 4: Timing perturbations on DeepCorr for different attack strengths, with/without an invisibility constraint.

—— Blind adversarial noise m

0.05

g
=)

e Laplace distribution

0.04

e
o

o

o

3
o
o

Probability

o

=)

N
o
»

True Positive

o
=
2
o©
N

00050 006 002 002 0.0

Delay (seconds) 1074 1073

1072

143

2

=

n

o

a

v

E N=0
—— N =20KB —— N=20
—— N=40KB 02 —— N=50
—— N =100KB 00 —— no noise
—— no noise 10-4 16-3 10-2 10-1 100

10! 100 False Positive

False Positive

Figure 5: Blind timing perturbations
generated to follow a Laplace distribu-
tion with u = 0,6 = 30ms.

the same mean and standard deviation, the accuracy drops to
0.68 and 0.71 without and with invisibility, respectively.

Non-blind adversarial perturbations: Two recent works [26,
62] use “non-blind” adversarial perturbations to defeat traffic
analysis classifiers. As discussed earlier, we consider these
techniques unusable in regular traffic analysis applications,
as they can not be applied on live connections. Nevertheless,
we show that our technique even outperforms these non-blind
techniques; for instance, when DF is the target system, Mock-
ingbird [26] reduces the accuracy of DF by 59.8% with a
56.5% bandwidth overhead (in full-duplex mode), while our
direction-based blind perturbation technique reduces the ac-
curacy of DF by much higher 91.8% and with a much lower
bandwidth overhead of 11.11%.

8 Countermeasures

In this section, we evaluate defenses against our blind adver-
sarial perturbations. We start by showing why our perturba-
tions are hard to counter. We will then borrow three coun-
termeasure techniques from the image classification domain,
and show that they perform poorly against blind adversarial
perturbations. Finally, we will design a tailored, more efficient

Figure 6: Size perturbations on DeepCorr
for different attack strengths

13

Figure 7: Hybrid size/timing perturba-
tions on DeepCorr for different attack
strengths

defense on blind adversarial perturbations.

Uniqueness of Our Adversarial Perturbations: A key prop-
erty that impacts countering adversarial perturbations is the
uniqueness of adversarial perturbations: if there is only one
(few) possible adversarial perturbations, the defender can iden-
tify them and train her model to be robust against the known
perturbations. As explained before, our adversarial perturba-
tions are not unique: our algorithm derives a perturbation
generator (G(z)) that for random zs can create different per-
turbation vectors. To demonstrate the non-uniqueness of our
perturbations, we created 5,000 adversarial perturbations for
the applications studied in this paper (we stopped at 5,000
only due to limited GPU memory). Figure 9 shows the his-
togram of the /2 distance between the different adversarial
perturbations that we generated for DeepCorr. We can say
that the generated perturbations are not unique, and, the
adversary cannot easily detect them. These different per-
turbations however cause similar adversarial impacts on their
target model, as shown in Figure 8.

Adapting Existing Defenses: Many defenses have been
designed for adversarial examples in image classification ap-
plications, particularly, adversarial training [32,34,55], gra-
dient masking [43,48], and region-based classification [7]. In

Table 4: Timing perturbation attack on Var-CNN [3] WF scheme (93% WF accuracy)

Limited Noise Stealthy Noise

u,6 A: SU-DU(%) Max ST-DU (#, %) Max SU-DT (#, %) Max ST-DT (#«—#, %) SU-DU (%) Max ST-DU (#, %) Max SU-DT (#, %) Max ST-DT (#+#, %)
0.5 377 100.0 17,38.3 —,100.0 22.0 100.0 17,403 —,100.0
0,10 66.2 100.0 53,83.4 —,100.0 38.2 100.0 53,83.4 —,100.0
0,20 96.0 100.0 80,94.8 —,100.0 89.2 100.0 80,95.8 —,100.0
0,30 94.0 100.0 80,99.1 -,100.0 90.4 100.0 80,99.7 -,100.0
0,50 98.7 100.0 80,100.0 —,100.0 97.9 100.0 80,100.0 —,100.0

Table 5: Hybrid time/direction perturbations on Var-CNN [3].
01,6, | BW Overhead (%) | A: SU-DU(%) Max ST-DU(#, %) Min ST-DU (#, %) Max SU-DT (#, %) Min SU-DT (#, %) Max ST-DT (#<#, %) Min ST-DT (#+#, %)
20,0,5 0.04 79.0 —,100.0 4,30.0 2,69.4 6,40.3 —,100.0 -0
100,0,10 | 2.04 83.9 ~,100.0 ~,100.0 2,92.8 3,723 ~,100.0 -,10.0
500,0,20 | 11.11 97.0 —,100.0 ~,100.0 3,99.9 4,92.6 —,100.0 —,20.0
1000, 0,30 | 25.0 98.6 ~,100.0 ~,100.0 ~,100.0 0.96.7 ~,100.0 -,30.0
2000, 0,50 | 66.66 99.0 —,100.0 —,100.0 —,100.0 9,97.7 —,100.0 -,30.0

Fraction
o
°
2

o
o
£

0.02

0’0&.42 0.46

Figure 8: The accuracy
of DeepCorr with different

0.50

True positive

0.54

0.58

blind adversarial noises

0.62

200

6
I, dis

00 800 1000
tance

Figure 9: The /; distance be-
tween DeepCorr’s different
adversarial noises

Table 6: Evaluating various defenses against blind adversarial
perturbations (website fingerprinting application)

Adversary Strength ~ Original

No Def Madry et al. [34]

IGR [48]

o =20
o =100
o =500

92%
92%
92%

60%
28%
8%

84%
48%
19%

62%
23%
2%

RC [7] Our Defense
54% 84%
23% 60%
7% 24%

Table 7: Evaluating various defenses against blind adversarial
perturbations (flow correlation application). FP=10"*.

Adversary Strength Original

No Def Madry et al. [34]

IGR [48]

u=0,6=10
1=0,6=>50
1=0,6=100

79%
79%
79%

63%
21%
13%

70%
25%
18%

62%
23%
13%

RC[7] Our Defense
63% 74%
22% 32%
14% 23%

Appendix A, we discuss how we deploy these defenses.

Our Tailored Defense: We use the adversarial training ap-
proach in which the defender uses adversarial perturbations
crafted by our attack to make the target model robust against
the attacks. We assume the defender knows the objective
function and its parameters. We evaluate our defense when
the defender does not know if the attack is targeted or untar-
geted (for both source and destination). The defender trains
the model for one epoch, and then generates blind adversarial

14

Algorithm 6 Our tailored adversarial defense

Randomly initialize network N

Ly < target model loss function

M < domain remapping function

R <+ domain regularizations function

G(z) + initialize the blind adversarial perturbation model parameters (8¢)

T <« epochs

Z<+1] // List of adversarial perturbations

for epocht € {1---T} do
Train the model N for one epoch on training dataset D'"
Z <+ generate adversarial perturbations using Algorithm | from all
possible targets and focus classes

end for

DT extend(D' +Z)

return N

perturbations from all possible settings using Algorithm 1.
Then, he extends the training dataset by including all of the
adversarial samples generated by the adversary and trains the
target model on the augmented train dataset. Algorithm 6
sketches our defense algorithm.

Comparing our defense vs. prior defenses: We compare
our defense with previous defenses borrowed from the image
classification literature. Tables 6 and 7 compare the perfor-
mances of different defenses on DF and DeepCorr scenarios,
respectively. As we see, none of the prior defenses for adver-
sarial examples are robust against our blind adversarial
attacks, and in some cases, utilizing them even improves the
accuracy of the attack. However, the results show that our tai-
lored defense is more robust than prior defenses. Since the at-
tacker knows the exact attack mechanism, all defense methods
cannot perform well when the adversary uses higher strengths
in crafting adversarial perturbations. While our defense is
more robust against blind adversarial attacks, if increases the
training time of the target model by orders of magnitude which
makes it not scalable for larger models. Therefore, designing
efficient defenses against blind adversarial perturbations is an
important future work.

Table 8: Transferability of direction-
based perturbations (surrogate model:
DF [50], original model: [47])

Table 9: Transferability of timing per-
turbations (surrogate model: AlexNet,
original model: DeepCorr [37])

Table 10: Transferability of size per-
turbations: (surrogate model: AlexNet,
original model: DeepCorr [37])

Adversary Strength Transferability (%)

Adversary Strength ~ Transferability (%)

Adversary Strength ~ Transferability (%)

o = 100 30.65 u=0,6=20
o = 500 85.90 1=20,6=20
o = 1000 96.53 u=50,6=20

46.24 N=10 75.32
76.14 N=20 83.11
88.51 N =50 90.24

9 Transferability

An adversarial perturbation scheme is called transferable
if the perturbations it creates for a target model can evade
other models as well. A transferable perturbation algorithm is
much more practical, as the adversary will not need to have
a whitebox access to its target model; instead, the adversary
will be able to use a surrogate (whitebox) model to craft its
adversarial perturbations, and then apply them to the original
blackbox target model.

In this section, we evaluate the transferability of our blind
adversarial perturbation technique. First, we train a surro-
gate model for our traffic analysis application. Note that, the
original and surrogate models do not need to have the same
architecture, but they are trained for the same task (likely with
difference classification accuracies). Next, we create a pertur-
bation generation function G(z) for our surrogate model (as
described before). We use this G(z) to generate perturbations,
and apply these perturbations on some sample flows. Finally,
we feed the resulted perturbed flows as inputs to the original
model (i.e., the target blackbox model) of the traffic analysis
application. We measure transferability using a common met-
ric from [42]: we identify the input flows that are correctly
classified by both original and surrogate models before ap-
plying the blind adversarial perturbation; then, among these
samples, we return the ratio of samples misclassified by the
original model over the samples misclassified by the surrogate
model as our transferability metric.

Direction-based technique To evaluate the transferability of
our direction-based perturbations, we use the DF system [50]
as the surrogate model and the WF system of Rimmer et
al. [47] as the original model. Note that the model proposed
by Rimmer et al. uses CNNs, however, it has a completely
different structure than DF. We train both models on DF’s
dataset [50], and generate blind adversarial perturbations for
the surrogate DF model. Then we test the original model
using these perturbations. Table 8 shows the transferability of
our direction-based attack with different noise strengths. As
can be seen, our direction-based attack is highly transferable.

Time-based technique For the transferability of the time-
based attack, we use DeepCorr [37] as the original model. We
use AlexNet [30] as the surrogate model, which has a com-
pletely different architecture. We train AlexNet on the same
dataset used by DeepCorr. Since the main task of AlexNet is

15

image classification, we modify its hyper-parameters slightly
to make it compatible with the DeepCorr dataset. To calculate
transferability, we fix the false positive rates of both surrogate
and original models to the same values (by choosing the right
flow correlation thresholds). Table 9 shows high degrees of
transferability for the time-based attack with different blind
noise strengths (for a constant false positive rate of 10™%).

Size-based technique To evaluate the transferability of the
size-based perturbations, we use DeepCorr as the original
model and AlexNet as the surrogate model, and calculate
transferability as before. Table 10 shows the transferability of
the size-based technique with different blind noise strengths
for a false positive rate of 1074,

To summarize, we show that blind adversarial pertur-
bations are highly transferable between different model
architectures, enabling their use by blackbox adversaries.

10 Limitations and Future Directions

As mentioned earlier, this work is focused on defeating DNN-
based traffic analysis techniques that use raw traffic features,
e.g., packet timing, sizes, and directions; this includes a large
corpora of prior traffic analysis techniques implemented for
different scenarios [2, 3, 6,37, 38,53, 60, 60, 61]. However,
our attack can not be directly applied to content-based traffic
analysis techniques (e.g., signature-based malware detection
algorithms), nor can it be applied trivially on traffic analysis
techniques that use non-differentiable, irreversible functions
of traffic features, e.g., hashes of the timestamps. Future work
can extend blind adversarial perturbations to such traffic anal-
ysis techniques by fabricating tailored remapping functions
or approximating gradient functions.

Additionally, note that our use of adversarial perturbations
aim at defending “DNN-based” traffic analysis mechanisms
only. Non-DNN traffic analysis techniques, in particular flow
watermarking techniques [23-25] and volume-based traffic
classifiers [4], can not be protected by our defense. Future
work can look into combining defenses against such non-
DNN mechanisms with our defense.

To keep our adversarial perturbation process hidden from
the adversary, our perturbation generator function enforces
various constraints to make the perturbed connections seman-
tically and statistically indistinguishable from benign connec-

tions. To enforce semantic indistinguishability, the perturber
needs to be aware of the semantics of the underlying network
protocol, e.g., it needs to know the format of Tor packets. To
enforce statistical indistinguishability, the perturber needs to
measure some statistical properties of the target traffic, e.g.,
the network jitter of Tor traffic. The lack of such information
to the perturbation entity will reduce the performance of our
technique (note that this is not an issue in the applications
evaluated in our work).

11 Conclusions

In this paper, we introduced blind adversarial perturbations, a
mechanism to defeat DNN-based traffic analysis classifiers
which works by perturbing the features of live network con-
nections. We presented a systematic approach to generate
blind adversarial perturbations through solving specific op-
timization problems tailored to traffic analysis applications.
Our blind adversarial perturbations algorithm is generic and
can be applied on various types of traffic classifiers with dif-
ferent network constraints.

We evaluated our attack against state-of-the-art traffic anal-
ysis systems, showing that our attack outperforms traditional
techniques in defeating traffic analysis. We also showed that
our blind adversarial perturbations are even transferable be-
tween different models and architectures, so they can be ap-
plied by blackbox adversaries. Finally, we showed that ex-
isting defenses against adversarial examples perform poorly
against blind adversarial perturbations, therefore we designed
a tailored countermeasure against blind perturbations.

Acknowledgements

We thank our shepherd Esfandiar Mohammadi and anony-
mous reviewers for their feedback. The work was supported
by the NSF CAREER grant CNS-1553301, and by DARPA
and NIWC under contract N66001-15-C-4067. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright nota-
tion thereon. The views, opinions, and/or findings expressed
are those of the author(s) and should not be interpreted as rep-
resenting the official views or policies of the Department of
Defense or the U.S. Government. Milad Nasr was supported
by a Google PhD Fellowship in Security and Privacy.

References

[1] S. Abdoli, L. Hafemann, J. Rony, 1. Ayed, P. Cardinal,
and A. Koerich. Universal Adversarial Audio Perturba-
tions. arXiv preprint arXiv:1908.03173, 2019.

[2] A. Bahramali, R. Soltani, A. Houmansadr, D. Goeckel,
and D. Towsley. Practical Traffic Analysis Attacks on
Secure Messaging Applications. In NDSS, 2020.

16

[3] S.Bhat, D. Lu, A. Kwon, and S. Devadas. Var-CNN and
DynaFlow: Improved Attacks and Defenses for Website
Fingerprinting. CoRR, 2018.

[4] Avrim Blum, Dawn Song, and Shobha Venkataraman.
Detection of interactive stepping stones: Algorithms and

confidence bounds. In RAID, 2004.

[5] X. Cai, R. Nithyanand, and R. Johnson. Cs-buflo: A
congestion sensitive website fingerprinting defense. In

WPES, 2014.

[6] X. Cai, X. Zhang, B. Joshi, and R. Johnson. Touch-
ing from a distance: Website fingerprinting attacks and

defenses. In ACM CCS, 2012.

[71 X. Cao and N. Gong. Mitigating evasion attacks to
deep neural networks via region-based classification. In

ACSAC, 2017.

[8] N. Carlini and D. Wagner. Adversarial examples are not
easily detected: Bypassing ten detection methods. In
ACM Workshop on AlSec, 2017.

[9] N. Carlini and D. Wagner. Towards evaluating the ro-
bustness of neural networks. In IEEE S&P, 2017.

[10] P.Chen, Y. Sharma, H. Zhang, J. Yi, and C. Hsieh. EAD:
Elastic-Net Attacks to Deep Neural Networks via Ad-
versarial Examples. In AAAI, 2017.

[11] G. Cherubin, J. Hayes, and M. Juarez. Website finger-
printing defenses at the application layer. In PETS,

2017.

[12] T.Chothia and A. Guha. A statistical test for information
leaks using continuous mutual information. In CSF,

2011.

[13] R. Dingledine and N. Mathewson. Design
of a Blocking-Resistant Anonymity System.
https://svn.torproject.org/svn/projects/

design-paper/blocking.html.

[14] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li.
Boosting adversarial attacks with momentum. In CVPR,

2018.

[15] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati,
C. Xiao, A. Prakash, T. Kohno, and D. Song. Robust
physical-world attacks on deep learning visual classifi-

cation. In CVPR, 2018.

[16] I. Goodfellow, Y. Bengio, and A. Courville. Deep learn-

ing. MIT press Cambridge, 2016.

[17] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-

gio. Generative Adversarial Nets. In NIPS. 2014.

https://svn.torproject.org/svn/projects/design-paper/blocking.html
https://svn.torproject.org/svn/projects/design-paper/blocking.html

[18] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and Harnessing Adversarial Examples. In ICLR, 2015.

[19] J. Hayes and G. Danezis. k-fingerprinting: A robust
scalable website fingerprinting technique. In USENIX
Security, 2016.

[20] J. Hayes and G. Danezis. Learning Universal Adversar-
ial Perturbations with Generative Models. In IEEE S&P
Workshops, 2018.

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual
Learning for Image Recognition. In CVPR, 2016.

[22] W. He, B. Li, and D. Song. Decision Boundary Analysis
of Adversarial Examples. In /CLR, 2018.

[23] A. Houmansadr, N. Kiyavash, and N. Borisov. RAIN-
BOW: A Robust And Invisible Non-Blind Watermark
for Network Flows. In NDSS, 2009.

[24] A. Houmansadr, N. Kiyavash, and N. Borisov. Non-
blind watermarking of network flows. IEEE/ACM TON,

2014.

[25] Amir Houmansadr and Nikita Borisov. SWIRL: A Scal-
able Watermark to Detect Correlated Network Flows. In

NDSS, 2011.

[26] M. Imani, M. Rahman, N. Mathews, A. Joshi, and
M. Wright. Mockingbird: Defending Against Deep-
Learning-Based Website Fingerprinting Attacks with

Adversarial Traces. CoRR, 2019.

[27] R. Jansen, M. Juarez, R. Galvez, T. Elahi, and C. Diaz.
Inside Job: Applying Traffic Analysis to Measure Tor

from Within. In NDSS, 2018.

[28] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright.
Toward an efficient website fingerprinting defense. In

ESORICS, 2016.

[29] D. Kingma and J. Ba. Adam: A Method for Stochastic
Optimization. ICLR, 2014.

[30] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet
classification with deep convolutional neural networks.
In NIPS, 2012.

[31] A. Kurakin, I. Goodfellow, and S. Bengio. Adversar-
ial examples in the physical world. arXiv preprint

arXiv:1607.02533, 2016.

[32] A. Kurakin, I. Goodfellow, and S. Bengio. Adver-

sarial machine learning at scale. arXiv preprint
arXiv:1611.01236, 2016.

[33] B. Levine, M. Reiter, C. Wang, and M. Wright. Timing
attacks in low-latency mix systems. In FC, 2004.

17

[34] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[35] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and
P. Frossard. Universal adversarial perturbations. In

CVPR, 2017.

[36] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deep-
Fool: A Simple and Accurate Method to Fool Deep

Neural Networks. In CVPR, 2016.

[37] M. Nasr, A. Bahramali, and A. Houmansadr. Deepcorr:
strong flow correlation attacks on tor using deep learn-

ing. In ACM CCS, 2018.

[38] M. Nasr, A. Houmansadr, and A. Mazumdar. Compres-
sive Traffic Analysis: A New Paradigm for Scalable

Traffic Analysis. In ACM CCS, 2017.

[39] A Simple Obfuscating Proxy. https://www.

torproject.org/projects/obfsproxy.html.en.

[40] A.Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zin-
nen, M. Henze, and K. Wehrle. Website Fingerprinting

at Internet Scale. In NDSS, 2016.

[41] A. Panchenko, L. Niessen, A. Zinnen, and T. En-
gel. Website fingerprinting in onion routing based

anonymization networks. In WPES, 2011.

[42] N. Papernot, P. McDaniel, and 1. Goodfellow. Trans-
ferability in Machine Learning: from Phenomena to
Black-Box Attacks using Adversarial Samples. arXiv

preprint arXiv:1605.07277, 2016.

[43] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami.
Distillation as a defense to adversarial perturbations

against deep neural networks. In IEEE S&P, 2016.

[44] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic Differentiation in PyTorch. In

NIPS Autodiff Workshop, 2017.

[45] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Caval-
laro. Intriguing properties of adversarial ML attacks in

the problem space. In IEEE S&P, 2020.

[46] Tor: Pluggable transports. https://www.torproject.

org/docs/pluggable-transports.html.en.

[47] V. Rimmer, D. Preuveneers, M. Juarez, T. Van, and
W. Joosen. Automated website fingerprinting through

deep learning. In NDSS, 2018.

[48] A.Ross and F. Doshi-Velez. Improving the adversarial
robustness and interpretability of deep neural networks

by regularizing their input gradients. In AAAI, 2018.

https://www.torproject.org/projects/obfsproxy.html.en
https://www.torproject.org/projects/obfsproxy.html.en
https://www.torproject.org/docs/pluggable-transports.html.en
https://www.torproject.org/docs/pluggable-transports.html.en

[49] V. Shmatikov and M. Wang. Timing analysis in low-
latency mix networks: Attacks and defenses. In ES-
ORICS, 2006.

[50] P. Sirinam, M. Imani, M. Juarez, and M. Wright. Deep
fingerprinting: Undermining website fingerprinting de-
fenses with deep learning. In ACM CCS, 2018.

[51] P. Sirinam, N. Mathews, M. Rahman, and M. Wright.
Triplet Fingerprinting: More Practical and Portable Web-
site Fingerprinting with N-shot Learning. In ACM CCS,
2019.

[52] J. Su, D. Vargas, and K. Sakurai. One Pixel Attack for
Fooling Deep Neural Networks. /EEE TEVC, 2017.

[53] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford,
M. Chiang, and P. Mittal. RAPTOR: routing attacks on
privacy in tor. In USENIX Security, 2015.

[54] C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Er-
han, I. Goodfellow, and R. Fergus. Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199,

2013.

[55] F. Tramer, A. Kurakin, N. Papernot, I. Goodfellow,
D. Boneh, and P. McDaniel. Ensemble adversar-
ial training: Attacks and defenses. arXiv preprint

arXiv:1705.07204, 2017.

[56] V. Vapnik. The nature of statistical learning theory.

Springer science & business media, 2013.

[57] T. Wang. High Precision Open-World Website Finger-

printing. In IEEE S&P, 2020.

[58] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Gold-
berg. Effective Attacks and Provable Defenses for Web-

site Fingerprinting. In USENIX Security, 2014.

[59] T. Wang and 1. Goldberg. Improved website fingerprint-

ing on tor. In WPES, 2013.

[60] T. Wang and I. Goldberg. On realistically attacking tor
with website fingerprinting. PETS, 2016.

[61] T. Wang and I. Goldberg. Walkie-talkie: An efficient
defense against passive website fingerprinting attacks.
In USENIX Security, 2017.

[62] X.Zhang, J. Hamm, M. K Reiter, and Y. Zhang. Statis-
tical privacy for streaming traffic. In NDSS, 2019.

[63] Y. Zhang and V. Paxson. Detecting Stepping Stones. In
USENIX Security, 2000.

[64] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao. On
flow correlation attacks and countermeasures in mix
networks. In WPES, 2004.

18

A Adapting Traditional Defenses to Adversar-
ial Examples

Madry et al. [34] presented a scalable adversarial training
approach to increase the robustness of deep learning mod-
els to adversarial examples. In each iteration of training, this
method generates a set of adversarial examples and uses them
in the training phase. Madry et al.’s defense is the most robust
defense among the adversarial training based defenses [8]. We
cannot use this method as is, since in the image recognition
applications, pixels can take real values, while in direction-
based traffic analysis methods, features take only two values
(-1, +1). Therefore, we modify this defense to our setting. To
generate a set of adversarial examples in the training process,
we randomly choose a number of packets and flip their direc-
tions from -1 to +1 and vice versa. Similarly, for the packet
timings and sizes we enforced all of application constraints
for generating the adversarial examples.

From the gradient mask approach, we used the input gra-
dient regularization (IGR) technique of Ross and Doshi-
Velez [48]. IGR is more robust against adversarial attacks
compared to its previous work [43]. Their defense trains a
model to have smooth input gradients with fewer extreme
values which becomes more resistant to adversarial examples.
We utilize this approach to train a robust model using DF
structure. We evaluated the direction-based attack against this
defense with parameter A = 10.

While the previous defenses train a robust model against
adversarial attacks, Cao and Gong [7] designed a defense
method which does not change the training process. They
proposed a region-based classification (RC) method which
creates a hypercube centered at the input to predict its la-
bel. Then, the method samples a set of data points from the
crafted hypercube and uses an existing trained model to pro-
duce predicted label for each sampled data point; Finally, it
uses majority voting to generate the final class label for the
given input. We need to make changes to the region-based
classification defense. In contrast to images, we cannot create
a hypercube centered at the input by just adding random real
values to the packet direction sequences which have values
-1, 1. Instead, for each input, we create the hypercube by ran-
domly choosing a number of packets in the sequence and
flipping their directions. To apply region-based classification
in the test phase of the direction-based method while adding
blind perturbations, we randomly choose 125 packets and
change their directions to form the hypercube. Similar to Cao
and Gong, we call this number as the radius of the hypercube.
We choose this value for the radius because 125 is the max-
imum number of packets we can use to form the hypercube
while the accuracy of the region-based method does not go
below the accuracy of the original DF model. Using radius of
125 for hypercubes, we apply the region-based classification
against our attack. For time and size based methods, we use
the strength of the adversary to generate the hypercubes.

	Introduction
	Preliminaries
	Problem Statement
	Threat Model
	Adversary Model

	Background
	Deep Learning
	Adversarial Examples
	Traffic Analysis Techniques

	Blind Adversarial Perturbations
	The General Formulation
	Incorporating Traffic Constraints
	Overview of The Algorithm

	Perturbation Techniques
	Manipulating Existing Packets
	Injecting Adversarial Packets

	Experimental Setup
	Metrics
	Target Systems
	Adversary Setup and Models
	Datasets
	The BLANKET Tor Pluggable Transport

	Experiment Results
	Adversarially Perturbing Directions
	Adversarially Perturbing Timings
	Adversarially Perturbing Sizes
	Perturbing Multiple Features
	Comparison With Traditional Attacks

	Countermeasures
	Transferability
	Limitations and Future Directions
	Conclusions
	Adapting Traditional Defenses to Adversarial Examples

