
1

I Still Know What You Did Last Summer:
Inferring Sensitive User Activities on Messaging

Applications Through Traffic Analysis
Ardavan Bozorgi, Alireza Bahramali, Fateme Rezaei, Amirhossein Ghafari, Amir Houmansadr,

Ramin Soltani, Dennis Goeckel, Don Towsley Fellow, IEEE

Abstract—Instant Messaging (IM) applications such as Signal, Telegram, and WhatsApp have become tremendously popular in recent
years. Unfortunately, such IM services have been targets of governmental surveillance and censorship, as these services are home to
public and private communications on socially and politically sensitive topics. To protect their clients, popular IM services deploy
state-of-the-art encryption. Despite the use of advanced encryption, we show that popular IM applications leak sensitive information
about their clients to adversaries merely monitoring their encrypted IM traffic, with no need for leveraging any software vulnerabilities of
IM applications. Specifically, we devise traffic analysis attacks enabling an adversary to identify participants of target IM
communications (e.g., forums) with high accuracies. We believe that our study demonstrates a significant, real-world threat to the users
of such services.
We demonstrate the practicality of our attacks through extensive experiments on real-world IM communications. We show that
standard countermeasure techniques can degrade the effectiveness of these attacks. We hope our study will encourage IM providers
to integrate effective traffic obfuscation into their software. In the meantime, we have designed a countermeasure system, called
IMProxy that can be used by IM clients with no need for any support from IM providers. We demonstrate the effectiveness of IMProxy
through simulation and experiments.

Index Terms—Traffic Analysis, Secure Messaging Applications, Flow Correlation

✦

1 INTRODUCTION

INSTANT Messaging (IM) applications such as Signal [86],
Telegram [95], and WhatsApp [107] have become enor-

mously popular in recent years. Recent studies estimate
that over 3 billion people use mobile IM applications across
the world [43]. IM services enable users to form private
and public social groups and exchange messages of various
types, including text messages, images, videos, and audio
files. In particular, IM applications are used extensively to
exchange politically and socially sensitive content. As a
result, governments and corporations increasingly monitor
the communications made through popular IM services [2],
[3], [79], [97].

A notable example of oppressed IM services is Telegram
with over 500 million users globally [67], where a large
fraction of its users come from countries with strict media
regulations like Iran and Russia. In particular, Telegram is
so popular in Iran that it has been estimated to consume
more than 60 percent of Iran’s Internet bandwidth [11].
Consequently, Iranian officials have taken various measures
to monitor and block Telegram: from requesting Telegram
to host some of its servers inside Iran to enable surveil-
lance [97], to requesting Telegram to remove controversial
political and non-political channels [97]. Eventually, Iran
blocked Telegram entirely in April 2018 due to Telegram’s
non-compliance. Despite this, statistics suggest only a small
decrease in Telegram’s Iranian users who connect to it
through various kinds of VPNs [44]. Telegram has also
been blocked in Russia as Telegram operators refrained from
handing over their encryption keys to Russian officials for
surveillance [79]. Finally, in the light of Telegram’s crucial

role in recent Hong Kong protests, there are unconfirmed
reports [24], [81] that mainland Chinese and Hong Kong
authorities may have attempted to discover Hong Kong
protesters by misusing a Telegram feature that enabled them
to map phone numbers to Telegram IDs.

Signal is another example of IM applications with over
40 million monthly active users. Known for its privacy and
security considerations, Signal has been the communication
method of choice for activists, people in the hacker com-
munity, and others concerned about privacy. [87] In January
2021, due the concerns over a notification of updated terms
of service from WhatsApp application (which is the most
popular IM in the world), Signal started to gain popularity
as people are increasingly concerned with safeguarding
their private information [89]. What makes Signal one of
the leading SIMs is its efforts to minimize the amount of
metadata each message leaves behind in addition to hiding
the content of the messages. In this regard, Signal recently
has deployed a feature called Sealed Sender [90] that conceals
the identity of the sender of messages. In January 2021, the
Iranian government started blocking all Signal traffic. In
response, Signal added support for a simple TLS proxy in
its Android version in order to let user bypass the network
block. [45]

A Fundamental Vulnerability: Popular IM applications
such as Signal, Telegram, and WhatsApp, deploy encryption
(either end-to-end or end-to-middle) to secure user com-
munications. We refer to such services as secure IM (SIM)
applications. In this paper, we demonstrate that despite their

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

2

use of advanced encryption, popular IM applications leak sensitive
information about their clients’ activities to surveillance parties.
Specifically, we demonstrate that surveillance parties are
capable of identifying participants of target IM communi-
cations (e.g., politically sensitive IM channels) with very
high accuracies, and by only using low-cost traffic analysis
techniques. Note that our attacks are not due to security
flaws or buggy software implementations such as those
discovered previously [33], [51], [80], [113]; while important,
such security flaws are scarce, and are immediately fixed by
IM providers once discovered. Instead, our attacks enable
surveillance by merely watching encrypted IM traffic of IM
users, and assuming that the underlying IM software is
entirely secure. The key enabler of our attacks is the fact
that major IM operators do not deploy effective mechanisms
to obfuscate traffic characteristics (e.g., packet timing and
sizes), due to the impact of obfuscation on the usability and
performance of such services. We therefore argue that our
attacks demonstrate a fundamental vulnerability in major in-the-
wild IM services, and, as we will demonstrate, they work
against all major IM services.

We believe that our attacks present significant real-world
threats to the users of believed-to-be-secure IM services,
specially given escalating attempts by oppressive regimes
to crack down on such services, e.g., the recent attempts [2],
[3], [24], [81] to identify and seize the participants of contro-
versial IM communications.

Our Contributions: We design traffic analysis attack algo-
rithms for SIM communications; the objective of our attack
is to identify the participants of target SIM communications.
What enables our attack is that, widely-used SIM services do
not employ enough mechanisms to obfuscate statistical character-
istics of their communications.

We start by establishing a statistical model for IM traffic
characteristics. Such a model is essential in our search for
effective traffic analysis attacks on SIM services. To model
IM communications, we join over 1,000 public Telegram
channels and record their communications, based on which
we derive a statistical model for IM traffic features.

Based on our statistical model for IM communications,
we use hypothesis testing [74] to systematically design effec-
tive traffic analysis attack algorithms. Specifically, we design
two traffic analysis attack algorithms; our first algorithm,
which we call the event-based algorithm, relies on the sta-
tistical model that we derive for SIM communications to
offer an optimal matching of users to communications. Our
second algorithm, which we call the shape-based algorithm,
correlates the shapes of SIM traffic flows in order to match
users to target communications. Our shape-based algorithm
is slower but offers more accurate detection performance
than the event-based algorithm for smaller values of false
positive rates. In practice, the adversary can cascade the two
algorithms to optimize computation cost (and scalability)
versus detection performance. Note that, as demonstrated
through experiments, our statistical detectors outperform
deep learning based detectors trained on IM traffic when
the IM service has not deployed effective obfuscation. This
is because, as also demonstrated in recent work [63], deep
learning traffic classifiers outperform statistical classifiers
only in network applications with non-stationary noise con-

ditions (e.g., Tor), where statistical models becomes unreli-
able. These attacks are closest in nature to flow correlation
attacks.

We perform extensive experiments on live traffic of 5
popular SIMs to evaluate the performance of our attacks.
Signal, Telegram, WhatsApp, Wickr [108], and Wire [110]
are our target SIMs. We demonstrate that our algorithms
offer extremely high accuracies in disclosing the participants
of target SIM communications. In particular, we show that
only 15 minutes of Telegram traffic suffices for our shape-
based detector to identify the participant of a target SIM
communication with a 94% true positive (TP) and a 10−3

false positive (FP) rate—the adversary can reduce the FP
rate to 5×10−5 by observing an hour of traffic (the adversary
can do this hierarchically, e.g., by monitoring the users
flagged when using 15 minutes of traffic for longer traffic
intervals). Using our event-based detector on 15 minutes of
captured Signal traffic, we reach a 93% TP rate and a 6×10−3

FP rate. Similarly, we reach a 94% TP rate and a 6× 10−3 FP
rate on 15 minutes of captured Wire traffic.

We also study the use of standard traffic analysis coun-
termeasures against our attacks. In particular, we investi-
gate tunneling SIM traffic through VPNs, mixing it with
background traffic, adding cover IM traffic, and delaying
IM packets. As expected, our experiments show that such
countermeasures reduce the effectiveness of the attacks at
the cost of additional communication overhead as well as
increased latency for SIM communications. For instance,
we find that tunneling Telegram traffic through VPN and
mixing it with background web-browsing traffic reduces
the accuracy of our attack from 93% to 70%, and adding
cover traffic with a 17% overhead drops the accuracy to
62%. We argue that since many SIM users do not deploy
such third-party countermeasures due to usability reasons,
SIM providers should integrate standard traffic obfuscation
techniques into their software to protect their users against
the introduced traffic analysis attacks. In the meantime, we
have designed and deployed an open-source, publicly available
countermeasure system, called IMProxy, that can be used by
IM clients with no need to any support from IM providers. We
have demonstrated the effectiveness of IMProxy through
simulations and experiments.

In summary, we make the following contributions:
• We introduce traffic analysis attacks that reliably

identify users involved in sensitive communications
through secure IM services. To launch our attacks,
the adversary does not need to cooperate with IM
providers, nor does she need to leverage any security
flaws of the target IM services.

• We establish a statistical model for regular IM commu-
nications by analyzing IM traffic from a large number
of real-world IM channels.

• We perform extensive experiments on the popular SIM
services of Signal, Telegram, WhatsApp, Wickr, and
Wire to demonstrate the in-the-wild effectiveness of our
attacks.

• We study potential countermeasures against our at-
tacks. In particular, we design and evaluate IMProxy,
which is a proxy-based countermeasure system. IM-
Proxy works for all major IM services, with no need
for support from IM providers.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

3

• Our code and other artifacts are available online.1

2 BACKGROUND: SECURE INSTANT MESSAGING
(SIM) APPLICATIONS

We define a secure IM (SIM) service to be an instant
messaging service that satisfies two properties: (1) it deploys
strong encryption on its user communications (either end-
to-end or end-to-middle), and (2) it is not controlled or
operated by an adversary, e.g., a government. While our
attacks also apply to non-secure IM applications, an adver-
sary can use other trivial techniques to compromise privacy
of non-secure IM services. For instance, if the operator of an
IM service fully cooperates with a surveillant government,
e.g., the WeChat IM service in China, the IM provider can
let the adversary identify target users with no need for
traffic analysis mechanisms. Similarly, an IM service with
weak encryption can be trivially eavesdropped with no need
for sophisticated traffic analysis attacks. Table 1 overviews
some of the most popular SIM services.

2.1 How SIM Services Operate

Architecture: All major IM services are centralized, as shown
in Table 1. Therefore, all user communications in such
services are exchanged through servers hosted by the IM
provider companies, e.g., Telegram Messenger LLP (note
that some less popular services use a peer-to-peer architec-
ture, e.g., FireChat [92], Ring [78], and Briar [17]). Each IM
service has a server for authentication and key exchange.
A database server stores message contents and other user
information (possibly encrypted with client keys). Some
IMs use Content Delivery Networks (CDNs) to run their
databases to improve quality of service and resist attacks.
Existing IM services use various messaging protocols for
user communications, including Signal [32], Matrix [10],
MTProto [60], and Off-the-Record [16].

Popular IM services intermediate all user communica-
tions by having user traffic go through their servers. Such
a centralized architecture allows IM providers to offer high
quality of services and solves critical issues like reaching to
offline clients and clients behind NAT/firewalls. However,
this presents different privacy threats to the users, as IM
servers are involved in all user communications. Some IM
services deploy end-to-end encryption to alleviate this, as
presented below.
Security Features: IM services use standard authentication
mechanisms like authorization keys and public key certifi-
cates to authenticate IM servers and peers [13], [14]. Also,
they use standard techniques to ensure the integrity of mes-
sages. All major IM services encrypt user communications to
protect confidentiality [35]. Some IM providers additionally
deploy end-to-end encryption on user communications. This
prevents IM operators from seeing the content of commu-
nications; however, they can still see communication meta-
data, e.g., who is talking to whom and when. WhatsApp,
Skype, Line, as well as Telegram and Facebook Messenger
offer end-to-end encryption, while WeChat, Snapchat, and
the BlackBerry Messenger do not. Please refer to Johansen
et al. [46] for further discussion of other IM security features.

1. https://github.com/SPIN-UMass/IMProxy.

2.2 Prior Security Studies of IM Services

Metadata leakage: Coull and Dyer [25] are the first to apply
traffic analysis on messaging applications. They demon-
strate traffic analysis attacks that can infer various meta-data
of a target Apple iMessage user, specifically, the operating
system version, type of the IM action, and, to some degree,
the language of conversations. More recently, Park and
Kim [73] perform traffic analysis on the Korean KakaoTalk
IM service, to identify users’ online activities using basic
classification algorithms. Afzal et al. [4] identify the ac-
tivities associated with the Signal app such as receiving
or initiating calls, typing patterns, and media messages
by analyzing a user’s traffic patterns. Our work differs
from these works in that the design of our detectors rely
on theoretical foundations and meticulous modeling of IM
communications. Also, we believe that our attacks are able
to reveal IM meta-data that is more sensitive than what was
identified by prior works. We demonstrate the applicabil-
ity of our attacks on several IM services, and design and
evaluate tailored countermeasures.
Security vulnerabilities: Johansen et al. [46] surveyed
different implementations of SIM protocols such as Signal,
WhatsApp, and Threema, and evaluated their security and
usability; they conclude that none of the studied applica-
tions are infallible. Unger et al. [100] performed a compre-
hensive study of instant messaging protocols focused on
their security properties around trust establishment, con-
versation security, and transport privacy. Also, Aggarwal
et al. [5] study the implementation of encryption in widely-
used messaging applications.

Furthermore, there have been various identity enumer-
ation attacks on messaging applications. In particular, as
some IM services use SMS text message to activate new
devices, an adversarial phone company can initiate and
intercept such authorization codes to either identify users
or access their accounts. Alternatively, unconfirmed re-
ports [24] suggest that mainland Chinese and Hong Kong
authorities may have attempted to discover Hong Kong
protesters by misusing a Telegram feature that allowed one
to discover the Telegram IDs of phone contacts (therefore,
mapping phone numbers to their Telegram IDs); Telegram
has promised to fix this issue through an update that will
allow users to cloak their phone numbers [81].

Alternatively, Schliep et al. [82] evaluate the security of
the Signal protocol against Signal servers. They identify
vulnerabilities that allow the Signal server to learn the
contents of attachments, re-order and drop messages, and
add/drop participants from group conversations. Note that
their study targets an entirely different adversary than ours,
i.e., their adversary is a compromised/malicious Signal
server, whereas in our case the adversary is any third-
party who is able to wiretap encrypted IM traffic. Also,
their attacks only work against Signal, whereas our attacks
apply to all major IM services as they rely on fundamental
communication behavior of IM services.
Communication privacy: The centralized nature of popular
SIM services makes them susceptible to various privacy
issues. First, all user communications, including group com-
munications and one-on-one communications, are estab-
lished with the help of the servers run by the SIM providers;

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

https://github.com/SPIN-UMass/IMProxy

4

TABLE 1: Popular IM services [91]

IM Service Monthly Users Based in Owned by End-to-End Encryption Centralized
WhatsApp 2000 M United States Facebook ✓ ✓

Facebook Messenger 1300 M United States Facebook ✓(Secret Communications) ✓
WeChat 1251 M China Tencent ✗ ✓

Telegram 550 M UAE Telegram Messenger LLP ✓(Secret Chats) ✓
Snapchat 538 M United States Snap Inc ✗ ✓

Signal 40 M United States Open Whisper Systems ✓ ✓
Wickr < 1 M United States Amazon ✓ ✓
Wire < 1 M European Union Wire Swiss GmbH ✓ ✓

therefore, SIM providers have access to the metadata of all
communications, i.e., who is talking to whom, and channel
ownership and membership relationships. Recent works
suggest using various cryptographic techniques, such as
private set intersection, to protect privacy against the central
operators, e.g., for contact discovery [49], [58]. Second, even
if an IM service provider is not malicious, its servers may be
compromised by malicious adversaries [31] or subpoenaed
by governments, therefore putting client communication
metadata at risk.

In traditional SIM services, user communications are
encrypted end-to-middle, i.e., between clients and SIM
servers. In such services, the SIM providers can see not
only the users’ communication metadata but also their
communication contents. Recently, major SIM providers
such as WhatsApp have started to support end-to-end en-
cryption, therefore protecting communication content from
SIM providers [1]. Poor/buggy implementations of some
SIM services have resulted in various security flaws and
meta-data leakage threats despite their use of end-to-end
encryption [33], [51], [65], [80], [113], e.g., through on/off
notifications in Telegram [33] and the recent WhatsApp
vulnerability giving remote access to the hackers [113].
Censorship: The centralized architecture of popular SIM
services makes their censorship trivial: censors can easily
blacklist a handful of IP addresses or DNS records to block
all communications to a target SIM service. A straightfor-
ward countermeasure to unblock censored SIM services is
to use standard circumvention systems like VPNs [101],
Tor [28], and information-centric networks [59]. Alterna-
tively, major SIM services allow the use of circumvention
proxies to evade blocking, e.g., as built into the recent
versions of the Telegram software after censorship attempts
by Iranian and Russian authorities.

3 ATTACK AND THREAT MODEL

In this work, we demonstrate a fundamental attack on
IM services: our attacks are applicable to all major IM services,
and are not due to buggy software implementations that can be
fixed through software updates, as overviewed in Section 2.2.

Our attacks are performed by an adversary who merely
performs traffic analysis. In this setting, the attacker does
not need to compromise or coerce the SIM provider, nor
does she need to block the target IM service entirely. In-
stead, the adversary performs traffic analysis to identify the
participants of target IM communications in order to either
punish the identified IM participants or selectively block the
target communications. In particular, the adversary can use
traffic analysis to identify the administrators of controversial
political or social IM channels and force them to shut down
their channels (as seen in recent incidents [2], [3]). Alter-

natively, the adversary can use our traffic analysis attacks
to identify the members of controversial IM channels, and
thereby selectively disrupt the access to the target channels.

3.1 Introducing the Players
The adversary is a surveillance organization, e.g., an

intelligence agency run by a government. The goal of the
adversary is to identify (the IP addresses of) the members or
administrators (owners) of target IM communications.

A target IM communication can be a public IM channel
(e.g., a chat room) on politically or socially sensitive topics,
or a private IM communication between target users, e.g.,
dissidents and journalists.

For the adversary to be able to conduct the attack, she
needs to be intercepting the (encrypted) network traffic of
the monitored IM users, e.g., by wiretapping the ISPs of the
monitored users. Therefore, considering the Great Firewall
of China as the adversary, it can only perform the attack on
the IM users residing inside China.

3.2 Threat Model
We assume that the hosting IM service is a secure IM

(SIM) service, as defined in Section 2. Therefore, the adver-
sary does not leverage any security vulnerabilities of the
target SIM service in performing the attack. For instance, the
SIM system does not leak the IP addresses (or other sensitive
meta-data) of its clients to the adversary. Also, we assume all
traffic between IM clients and the IM servers to be encrypted
with strong encryption. Finally, the operators of the SIM
service do not cooperate with the adversary in identifying target
members.

3.3 How the Attack Is Performed
Figure 1 illustrates the setup of the attack. Suppose

that the adversary aims at identifying the participants of
a specific IM communication, C .
Adversary’s ground truth: For any target communication
C , the attacker needs to obtain some ground truth about the
content of the communication. This can be done in three
ways:
(1) If C is an open (public) communication e.g., a public

group or channel, the adversary joins C (as a member)
and records the messages sent on C along with their
metadata (e.g., time and size of the messages).

(2) The adversary has joined C and is capable of posting
messages to C . This can happen if C a closed group that
gives every member the ability to post messages, or this
could be because the adversary has gained an admin
role for C (e.g., the surveillance adversary has created a
channel on a politically sensitive topic to identify target
journalists, or the adversary has arrested the admin of
a sensitive channel and is misusing her account). In this
setting, not only the adversary can record the messages

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

5

SIM Server

Adversary joins the target
channel or group chat as a
member, and records the

communication messages.

Adversary joins the target
channel or group chat with

posting privileges, e.g., as an
admin. She records the

communication's messages as
well as posts to the channel

Target User

Target User

Target User

Target User

Target User

1

2

Adversary's Ground Truth

Not
Observable to

Adversary

Adversary Watching

Adversary is in a one-on-one
chat conversation with the

target user. She sends
messages to the target user.

3

Fig. 1: Alternative attack scenario

posted to C , but also she can post her own messages to
C with her desired (distinct) traffic patterns.

(3) The adversary is messaging the target user (e.g. an
anonymous political account) in the one-on-one chat
C , in which she can send her desired distinct traffic
patterns.

Adversary’s wiretap: The adversary monitors the (en-
crypted) network traffic of IM users to identify (the IP
addresses of) the members/admins of the target IM com-
muncation C . This can be performed by the adversary
wiretapping the network traffic of the ISPs or IXPs he is
controlling, e.g., by the Great Firewall of China. Alterna-
tively, the adversary can wiretap the network traffic of
specific individuals (e.g., suspected activists), perhaps after
obtaining a wiretapping warrant.
Adversary makes decisions: The adversary uses a detection
algorithm (as introduced in Section 5) to match the traffic
patterns of the wiretapped users to the ground truth traffic
patterns of the target communication C .

3.4 Related Traffic Analysis Attacks
Prior work has studied various kinds of traffic analysis

attacks in different contexts.
Flow correlation In this setting, the adversary tries to
link obfuscated network flows by correlating their traffic
characteristics, i.e., packet timings and sizes [26], [29], [38],
[53], [64], [85], [106], [117]. Flow correlation has particularly
been studied as an attack on anonymity systems like Tor [9],
[62], [76], [104], [118]: the adversary can link the ingress
and egress segments of a Tor connection (say, observed by
malicious Tor guard and exit relays) by correlating the traffic
characteristics of the ingress and egress segments. Recently,
Nasr et al. [63] introduce a deep learning based technique
called DeepCorr which learns a correlation function to
match Tor flows, and outperforms the previous statistical
techniques in flow correlation.
Flow watermarking This is the active version of flow
correlation attacks described above. In flow watermarking,
the adversary encodes an imperceptible signal into traffic
patterns by applying slight perturbations to traffic features,
e.g., by delaying packets [40], [41], [75], [105], [116]. Com-
pared to regular (passive) flow correlation techniques, flow

watermarks offer higher resistance to noise, but require
real-time modification of network traffic, and are subject to
detection attacks.
Website fingerprinting In Website Fingerprinting (WF), the
adversary intercepts network connections of some moni-
tored users and tries to match the patterns of the intercepted
connections to a set of target webpages. WF has particularly
been studied as an attack on Tor. Existing WF techniques
leverage various machine learning algorithms, such as k-
NN, SVM, and deep neural networks to design classifiers
that match monitored connections to target web pages [20],
[36], [37], [39], [47], [55], [70], [71], [77], [102].
Intersection Attacks These attacks [6], [27], [29], [50] try
to compromise anonymous communications by matching
users’ activity/inactivity time periods. For instance, Kesdo-
gan et al. [50] model an anonymity system as an abstract
threshold mix and propose the disclosure attack whose goal
is to learn the potential recipients for any target sender.
Side channel attacks Another class of traffic analysis
attacks aims at leaking sensitive information from encrypted
network traffic of Internet services [8], [12], [15], [21],
[34], [83], [94], [114]. For instance, Chang et al. [21] infer
speech activity from encrypted Skype traffic, Chen et al. [22]
demonstrate how online services leak sensitive client ac-
tivities, and Schuster et al. [83] identify encrypted video
streams.
Our Traffic Analysis Direction: Our attacks presented in
this paper are closest in nature to the scenario of flow correla-
tion techniques. Similar to the flow correlation setting, our
adversary intercepts a live target flow (e.g., by joining a
controversial IM channel), and tries to match it to the traffic
patterns of flows monitored in other parts of the network
(to be able to identify the IP addresses of the members
or admins of the target channel). However, we can not
trivially apply existing flow correlation techniques to the
IM scenario, since the traffic models and communication
noise are entirely different in the IM scenario. We, therefore,
design flow correlation algorithms tailored to the specific
scenario of IM applications. To do so, we first model traffic
and noise behavior in IM services, based on which we
design tailored flow correlation algorithms for our specific
scenario.

Note that one could alternatively use techniques from
the intersection attacks literature to design traffic analysis
attacks for IM services. However, flow correlation is sig-
nificantly more powerful than intersection attacks, as flow
correlation leverages not just the online/offline behavior of
the users, but also the patterns of their communications
when they are online. Also, typical IM clients tend to remain
online for very long time intervals. Therefore, we expect
attacks based on intersection to be significantly less reliable
(or require very long observations to achieve comparable
reliability) when compared to our flow correlation-based
attacks.

4 CHARACTERIZING IM COMMUNICATIONS

We start by characterizing IM traffic and deriving a
statistical model for it. We will use our model to design
attack algorithms that are able to identify the participants of
SIM communications.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

6

4.1 Main IM Messages
IM services allow their users to send different types

of messages; most commonly, text, image, video, file, and
audio messages. IM messages are communicated between
users through one of the following major communication
forms:

• Direct messages are one-on-one communications bet-
ween IM users. As mentioned earlier, popular IM ser-
vices are centralized, therefore all direct messages are
relayed through the servers of the IM providers, and
unless end-to-end encryption is deployed, the servers
can see communication contents.

• Private (Closed) Group Communications are com-
munications that happen between multiple users. In
groups, every member can post messages and read the
messages posted by others. Each group has an admin-
istrator member who created the group and has the
ability to manage the users and messages. An invitation
is needed for a user to join a closed group.

• Public (Open) Group Communications which are also
called channels, are a broadcast form of communication
in which one or multiple administrators can post mes-
sages, and the members can only read or make limited
reactions to these posts. Users can join public channels
with no need for an invitation.

Note that some IM services offer other forms of commu-
nications, like status messages, that are not relevant to the
attacks discussed in our work.

4.2 Data Collection
Since among the services studied, Telegram is the only

one with publicly available communications in the form of
public channels, we used it to collect the content of real-
world public channels.

We use Telegram’s API to collect the communications of
1,000 random channels with different message rates, each
for a 24-hour span. For every collected Telegram message,
we extract the channel ID it was sent over, its timestamp, the
type of message (text, photo, video, audio or file), and the
message size. Telegram has a limit of 50 on the number of
new channels a user can join every day. Therefore, we use
multiple Telegram accounts over several days to perform
our data collection (also note that each Telegram account
needs to be tied to an actual mobile phone number, limiting
the number of accounts one can create). In Section 6.1,
we describe how we use the communication patterns we
collected for Telegram to generate traffic flows for the other
SIMs.

4.3 Modeling IM Communications
We use Telegram’s data to derive a model for IM traffic

for two reasons; first, Telegram hosts a very large number of
public channels that we can join to collect actual IM traffic.
This is unlike other popular IM services where most group
communications are closed/private. The second reason for
choosing Telegram for data collection is that Telegram has
been at the center of recent censorship and governmental
surveillance attempts [2], [3], [96], [97], as it is home to a
multitude of politically and socially sensitive channels.

Although we choose Telegram to obtain a statistical
model for IM traffic, we show that our techniques perform

0 200 400 600 800 1000 1200

Time (Seconds)

0

200

400

600

800

1000

1200

1400

P
ac

ke
t

L
en

gt
h

(B
yt

es
)

(a) Telegram

0 200 400 600 800 1000 1200

Time (Seconds)

0

200

400

600

800

1000

1200

1400

P
ac

ke
t

L
en

gt
h

(B
yt

es
)

(b) Signal

Fig. 2: Comparing the shape of traffic on two major SIM
services; by sending the same sequence of IM messages,
we observe similar traffic bursts regardless of the service
provider.

TABLE 2: Distribution of various message types

Type Count Volume (MB) Size range Avg. size
Text 12539 (29.4%) 3.85 (0.016%) 1B-4095B 306.61B

Photo 20471 (48%) 1869.57 (0.765%) 2.40KB-378.68KB 91.33KB
Video 6564 (15.4%) 232955.19 (95.3%) 10.16KB-1.56GB 35.49MB
File 903 (2.1%) 47.46 (0.019%) 2.54KB-1.88MB 52.56KB

Audio 2161 (5.1%) 9587.36 (3.92%) 2.83KB-98.07MB 4.44MB

similarly on other SIMs like WhatsApp and Signal. This is
because these services implement limited traffic obfuscation,
and therefore the shape of the traffic is similar across differ-
ent IMs. We have illustrated this in Figure 2, where the same
stream of messages are sent over two different SIM services,
resulting in similar traffic patterns.

We model two key features of IM traffic: inter-message
delays (IMDs) and message sizes. We also model the com-
munication latency of IM traffic. We use Maximum Likelihood
Estimation (MLE) [69] to fit the best probability distribution
for each of these features.
Inter-Message Delays (IMDs): The IMD feature is the time
delay between consecutive IM messages in an IM commu-
nication. In our model, we merge sent messages separated
by less than a threshold, te seconds. We do this because
extremely close messages create a combined traffic burst in
the encrypted IM traffic that cannot be separated by the
traffic analysis adversary. Such close messages can appear
(infrequently) when an administrator forwards a batch of
IM messages from another group. We also filter out the very
long IMDs that can correspond to long late-night inactivity
periods.

We show that the probability density function of IMDs
can be closely fitted to an exponential distribution using
our MLE algorithm; Figure 3 shows the probability density
function of IMDs for 200 IM channels with a message rate of
130 messages per day. We interpret the exponential behavior
of the IMDs to be due to the fact that messages (or message
batches) are sent independently in the channels (note that
this will be different for interactive one-on-one chats which
will be discussed in Section 6.1).

Also, we consider IMDs to be independent of the type
and size of messages, since in practice there is no correlation
between the time a message is sent and its type or size.
Messages Sizes: Table 2 shows the size statistics and
frequencies of the five main message types in our collected
IM messages. We use these empirical statistics to create a
five-state Markov chain, shown in Figure 6, to model the
sizes of the messages sent in an IM communication stream.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

7

Fig. 6: Markov chain of IM message sizes

We obtain the empirical transition probability matrix of this
Markov model for the aggregation of all channels, as well
as for groups of channels with similar rates.

Finally, Figure 4 shows the Complementary Cumulative
Density Function (CCDF) of the normalized message sizes
for different message types (the sizes are normalized by
the maximum message size of each category). We observe
that different message types are characterized by different
message size distributions.
Communication Latency: IM messages are delayed in tran-
sit due to two reasons: network latency and the IM servers’
processing latency. To measure such latencies, we collect IM
traffic from 500 channels, each for one hour (therefore, 500
hours worth of IM traffic) using Telegram’s API. We then set
up two IM clients, and send the collected IM traffic between
the two clients to measure the incurred communication
latencies. Using MLE, we find that transition latencies fit
best to a Laplacian distribution fµ,b(x), where µ is the
average and 2b2 is the variance of the delay. Since network
delay cannot be negative, we consider only the positive
parts of the Laplace distribution. Figure 5 shows a Quantile-
Quantile (Q-Q) plot of the packet latencies against the best
Laplace distribution.

5 DETAILS OF ATTACK ALGORITHMS

We design two algorithms for performing our attack (i.e.,
to map monitored IM users to their communication). As dis-
cussed in Section 3.4, our attack scenario is closest in nature

to the scenario of flow correlation attacks. Therefore, the
design of our attacks is inspired by existing work on flow
correlation. Prior flow correlation techniques use standard
statistical metrics, such as mutual information [23], [119],
Pearson correlation [52], [85], Cosine Similarity [42], [64],
and the Spearman Correlation [93], to link network flows by
correlating their vectors of packet timing and sizes. We use
hypothesis testing [74],2 similar to state-of-the-art flow cor-
relation works [41], [42], we design optimal traffic analysis
algorithms for the particular setting of IM communications.
In contrast to flow correlation studies which use the features
of network packets, we use the features (timing and sizes)
of IM messages for detection.

Note that the recent work of DeepCorr [63] uses a deep
learning classifier to perform flow correlation attacks on
Tor. They demonstrate that their deep learning classifier
outperforms statistical correlation techniques in linking Tor
connections. In Section 6.5, we compare our statistical classi-
fiers with a DeepCorr-based classifier tailored to IM traffic.
As we will show, when a SIM service has not deployed
strong traffic obfuscation, our statistical classifiers outperform
such deep learning based classifiers, especially for shorter
flow observations. Intuitively, this is due to the sparsity
of events in typical IM communications, as well as the
stationary nature of noise in IM communications in contrast
to the scenario of Tor. Note that this fully complies with Nasr
et al. [63]’s observation that DeepCorr only outperforms sta-
tistical classifiers in non-stationary noisy conditions, where
statistical traffic models become inaccurate.
Our hypothesis testing: Consider C to be a target SIM
communication (e.g., a public group on a politically sensi-
tive topic). For each IM user, U , the attacker aims at deciding
which of the following hypotheses is true:

• H0: User U is not associated with the target communi-
cation C , i.e., she is participant of communication C .

• H1: User U is associated with the target communication
C , i.e., she is posting messages to that communication
as an admin, or is a member of that communication and
therefore receives the communication’s messages.

2. Our approach is “threshold testing” by some of the more strict
definitions, however, we will use the term “hypothesis testing” in
this paper as threshold testing falls into the general class of statistical
hypothesis tests [74].

0 10000 20000 30000 40000

Inter Message Delays (Seconds)

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

P
D

F

Fitted Exponential Distribution

Histogram of Inter Message Delays

Fig. 3: The PDF of inter-message de-
lays and its fitted exponential distri-
bution

0.0 0.2 0.4 0.6 0.8 1.0
Normalized message sizes to their maximum

10−4

10−3

10−2

10−1

100

C
C

D
F

CCDF of text message sizes

CCDF of photo message sizes

CCDF of video message sizes

CCDF of file message sizes

CCDF of audio message sizes

Fig. 4: Complementary CDF (CCDF)
of IM Size distributions for different
types of messages

0.25 0.50 0.75 1.00 1.25 1.50
Theoritical quantiles

0.5

1.0

1.5

2.0

O
rd

er
ed

va
lu

es

Fig. 5: The Quantile-Quantile plot of
transition delay and its fitted Lapla-
cian distribution

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

8

As described in our threat model (Section 3), the adver-
sary can only observe encrypted SIM communications bet-
ween users and SIM servers. Therefore, we design detectors
that use traffic features, i.e., IMDs and message sizes. In the
following, we describe two detector algorithms.

5.1 Event-Based Detector
Our first detector, the Event-Based Detector, aims at

matching SIM events in a target user’s traffic to those of
the target communication C . An event e = (t, s) is a single
SIM message or a batch of SIM messages sent with IMDs
less than a threshold te (as introduced in Section 4.3). Each
single SIM message can be one of the five types of image,
video, file, text, or audio. t is the time that e appeared on
the SIM communication (e.g., sent to the public channel),
and s is the size of e. Note that an SIM communication
can include SIM protocol messages as well (handshakes,
notifications, updates, etc.); however, such messages are
comparatively very small as shown in Figure 7, and thus
the detector ignores them in the correlation process. It also
ignores messages with type text since they usually only
generate not more than a couple of MTU-sized packets
making them hard to detect. Recall that the adversary is
not able to see plaintext events in the user’s traffic due
to encryption. Therefore, the first stage of our event-based
detector is to extract events based on the user’s encrypted
SIM traffic shape. Figure 8 depicts the components of our
event-based detector.
Event Extraction: Each SIM event, e.g., a sent image,
produces a burst of MTU-sized packets in the encrypted
traffic, i.e., packets with very small inter-packet delays. This
is illustrated in Figure 7: SIM events such as images appear
as traffic bursts, and scattered packets of small size are SIM
protocol messages like notifications, handshakes, updates,
etc. Therefore, the adversary can extract SIM events by
looking for bursts of MTU-sized packets, even though she
cannot see packet contents due to encryption. We use the
IMD threshold te to identify bursts. Any two packets with
distance less than te are considered to be part of the same
burst. Note that te is a hyper-parameter of our model and
we discuss its choice in Section 4.3. For each burst, the
adversary extracts a SIM event, where the arrival time of the
last packet in the burst gives the arrival time of the event,
and the sum of all packet sizes in the burst gives the size of

0

500

1000

1500
Traffic of Uncorrelated User

0 200 400 600 800 1000 1200

Time (Seconds)

0

500

1000

1500
Traffic of correlated User

P
ac

ke
t

L
en

gt
h

Video
Message

Photo
Message

Audio
Message

File
Message

Time

Sequence of Messages in the Channel

Fig. 7: Event extraction: IM Messages sent/received by a target
user create bursts of (encrypted) packets; the adversary can
extract events from packet bursts.

Event
Extraction

Correlation
Function

Comparing
to a

Threshold decision

/H0 H1

Target Users'
Traffic Target Users'

Flows

Computing
Correlation

Metric

Target Channel's
Traffic

Target
Channel's

Flow

Fig. 8: Event-based detector

the event. Two SIM messages sent with an IMD less than te
are extracted as one event. Similarly, the adversary combines
events closer than te when capturing them from the target
communication.
Forming Hypotheses: We call a one-sided SIM commu-
nication an SIM flow. Therefore, a flow either consists of
the packets sent by a user to an SIM server, or the packets
received by the user from the SIM server. We represent a flow
with n events as f = {e1, e2, . . . , en}, where ei = (ti, si) is
the ith event.

Consider a user U and a target communication C .
Suppose that the adversary has extracted flow f (U) =

{e(U)
1 , e

(U)
2 , . . . , e

(U)
n } for user U (through wiretapping), and

flow f (C) = {e(C)
1 , e

(C)
2 , . . . , e

(C)
n } for the target commu-

nication C (using her ground truth). The detector aims at
deciding whether user U is participant of C . We can re-state
the adversary’s hypotheses presented earlier in this section
as follows:

• H0: User U is not a participant of the target communi-
cation; hence, f (C) and f (U) are independent.

• H1: User U is a participant of the target communication
C ; therefore, the user flow f (U) is a noisy version of the
communication flow f (C).

Therefore, we have{
H0 : t

(C)
i = t

(∗)
i + d

(∗)
i , s

(C)
i = s

(∗)
i , 1 ≤ i ≤ n

H1 : t
(C)
i = t

(U)
i + d

(U)
i , s

(C)
i = s

(U)
i , 1 ≤ i ≤ n

where f (∗) = {e(∗)1 , e
(∗)
2 , . . . , e

(∗)
n } is the flow of a user U ′ ̸=

U who is not a participant of communication C . Also, d(·)i is
the latency applied to the timing of the ith event. Note that
IM message sizes do not change drastically in transit, and
the order of messages remains the same after transmission.
Detection Algorithm: The adversary counts the number of
event matches between the user flow f (U) and the commu-
nication flow f (C). We say that the ith communication event
e
(C)
i matches some event e(U)

j in f (U) if:
• e

(C)
i and e

(U)
j have close timing: |t(C)

i − t
(U)
j | < ∆; and

• e
(C)
i and e

(U)
j have close sizes: |s(C)

i − s
(U)
j | < Γ× s

(C)
i .

where ∆ and Γ are thresholds values for the timing and
sizes of events. Note that even though the sizes of SIM mes-
sages do not change in transmission, the event extraction
algorithm introduced earlier may impose size modifications,
as network jitter is able to divide/merge event bursts (i.e.,
a burst can be divided into two bursts due to network jitter
or two bursts can be combined due to the small bandwidth
of the user). It should also be noted that defining closeness
of event sizes as a ratio of the size of the event rather than
using a fixed-size threshold improves the performance of
the detector.

Finally, the adversary calculates the ratio of the matched
events within a flow as r = k/n, where k is number of

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

9

TABLE 3: The empirical value of p1 measured for different
client bandwidths

Client Bandwidth
(Mbps) p1

0.1 0.824
0.5 0.902
1 0.921
10 0.974
100 0.983

matched events and n is the total number of events in
the flow of target communication. The detector decides the

hypothesis by comparing to a threshold: r = k
n

H1

≷
H0

η where

η is the detection threshold.

Analytical Bounds: We first derive an upper-bound on
the probability of false positive (PFP), i.e., the probability
that H1 is detected when H0 is true (Type I error). Let
p0 be the probability that a message with size s

(C)
i and

time t
(C)
i matches an event in f (U) when H0 is true, i.e.,

there exists only one message whose time t
(∗)
j satisfies

t
(C)
i ≤ t

(∗)
j ≤ t

(C)
i + ∆ and has the same size label as s

(C)
i .

From our observations, p0 = 0.002. This Type I error occurs
if more than η ·n events in f (C) match f (U), when H0 is true.
This is equivalent to the case that less than n − η · n events
in f (C) do not match f (U) when H0 is true. Consequently,

PFP = P(k ≥ ηn | H0) = P(n− k ≤ n− ηn | H0),

= F (n− ηn;n, 1− p0),

≤
(
1− η

p0

)−n+nηη (η

1− p0

)−nη

,

(1)

where F (r;m, p) = P(X ≤ r) is the cumulative density
function of a Binomial distribution with parameters m, p,
and the last step follows from the following inequality
which is tight when p is close to zero [7]:

F (r;m, p) ≤
(
r/p

p

)−k (
1− r/m

1− p

)k−m

(2)

Next, we upper-bound the probability of false negatives
(PFN), i.e., the probability that H0 is detected when H1 is
true, which occurs when less than k messages of f (C) match
f (U). Let p1 be the probability of the case that an event of
f (C) matches f (U) when H1 is true (Type II error).

Even though we mentioned earlier in this section that
when H1 is true, a delayed version of each event of f (U)

appears in f (C), the bandwidth of the target user can affect
the burst extraction process. As explained earlier in this
section, we merge bursts of packets for messages whose
IMD is less than te. Hence, suppose that the time it takes
for the user to send a message is large enough to make the
IMD between the current message and the next one less than
te. Therefore, these two consecutive messages are combined
in one burst. Table 3 shows the value of p1 observed from
our data for different bandwidths. Since the bandwidth of
our experiments is 1Mbps, p1 = 0.921.

Event
Extraction

Traffic
Normalization

Comparing
to a

Threshold decision

/H0 H1

Target Users'
Traffic Target Users'

Flows

Target
Users'

Traffic Bars

Target Channel's
Traffic

Target
Channel's

Flow

Target
Channel's
Traffic Bar

Correlation
Function

Computing
Correlation

Metric

Fig. 9: Shape-based detector

Note that Type II error occurs when less than η · n
messages of f (C) match f (U) when H1 is true. Therefore,

PFN = P (k ≤ ηn|H1) = F (ηn;n, p1)

≤
(

η

p1

)−nη (1− η

1− p1

)ηn−n

, (3)

where the last step follows from (2).

5.2 Shape-Based Detector
We design a second detector called the shape-based de-

tector. This detector links users to SIM communications
by correlating the shape of their network traffic, where
traffic shape refers to the vector of packet lengths over
time. Figure 9 illustrates the four stages of the shape-based
detector.
Event Extraction: The first stage of the shape-based detector
is to extract SIM events from network traffic, which is
performed similar to what was described earlier for the
event-based detector. As described in the following, we do
this in a way that accounts for the different bandwidths of
the users being correlated.
Normalizing Traffic Shapes: The shape-based detector con-
verts the extracted events into normalized traffic shapes by
replacing each event with a traffic bar. The reason for doing
so is that the shape of an IM event (e.g., the corresponding
packet burst) is a function of user network bandwidths; our
traffic normalization removes the impact of user bandwidth,
and therefore the adversary can correlate traffic shapes with
no knowledge of the underlying users’ bandwidths.

To perform this normalization, we replace each event
(i.e., each burst) with a traffic bar whose width is 2 × te,
where te is the threshold used during event extraction as
discussed in section 5.1. We choose this value to reduce the
chances of overlaps between consecutive bars. To capture
the sizes of events in traffic normalization, the height of each
bar is chosen such that the area under the bar is equal to
the size of the event. Our shape normalization also reduces
correlation noise by removing small traffic packets that are
not part of any SIM events.

To form the new normalized shape of traffic, we divide
each bar into smaller bins of width ts, the value of which
is discussed in Section 6.1, and with a height equal to the
height of the corresponding bar. Therefore each bar consists
of a number of bins of equal width and height. Furthermore,
we put bins with the same width ts and height 0 between
these bars. By doing so, after the traffic normalization, the
new shape of traffic will be a vector of heights of bins over
time.
Correlating Normalized Traffic Shapes: Our shape-
based detector correlates the normalized shapes of two
traffic streams of target communication C and user U
to decide if they are associated. Suppose that b(C) =

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

10

{b(C)
1 , b

(C)
2 , . . . , b

(C)
nC } and b(U) = {b(U)

1 , b
(U)
2 , . . . , b

(U)
nU } are

the respective vectors of heights of bins associated with the
target communication and user being tested, where nC and
nU are the number of events in target communication and
user flows, respectively. We use the following normalized
correlation metric:

corr = 2×
∑n

i=1 b
(C)
i b

(U)
i∑n

i=1(b
(C)
i)2 +

∑n
i=1(b

(U)
i)2

(4)

where n = min(nC , nU). Note that corr returns a value
between 0 and 1, which shows the similarity of the two
traffic shapes (1 shows the highest similarity). Finally, the
detector makes its decision by comparing corr to a thresh-

old, corr
H1

≷
H0

η, where η is the detection threshold.

6 ATTACK EXPERIMENTS

6.1 General Setup
We design our experimental setup to perform our attacks

in the setting of Figure 1, and based on the threat model
of Section 3. We use two SIM clients using different SIM
accounts (e.g., Telegram accounts) that are running IM soft-
ware on two separate machines. One of these IM clients is
run by the adversary, and the other one represents the target
client.

For Telegram, due to the large number of public channels
available, we use the first type of ground truth in Figure 1
(adversary joins the target channel as a reading-only mem-
ber). The adversary client joins target channel C , (e.g., a
public political Telegram channel) and records the metadata
of all the SIM communications of C , i.e., the timing and sizes
of all messages sent on that channel. The target client may
or may not be a member/admin of the target channel C .

Other than Telegram, the other SIM services do not
have public communications (group chats or channels). For
those SIM services, we focus on one-on-one communication
and use the third type of ground truth in Figure 1 where
adversary sends messages to the target in a one-on-one chat.
In this scenario, the adversary chooses the content of the
messages she sends to the target client, including the timing
and sizes. She can also record the timing and sizes of the
messages she receives from the target client.

Unlike public communications (e.g. channels in Tele-
gram), one-on-one communications in these SIM services
are private. Therefore, we had to generate the content of
communications, and have the adversary’s client send them
to her target. To generate the content of the messages,
we generate random content that matches the size and
frequency statistics of the five main message types collected
from Telegram, shown in Table 2. As stated in [54], to gen-
erate the IMDs, we used the Pareto Type I distribution with
scale and shape parameters of 5000 millisecond and 0.93
respectively. The result was a total of 267 hours of one-on-
one communication traces which included a total of 25367
messages, 17948 of which are media (non-text) messages.
When sending the messages, we record the timestamp and
at the same time, we capture the network traffic of the
target’s machine using tcpdump. It is not necessary to send
messages in the other direction (from target’s client to the
adversary) since as a result of symmetry, we could assume

that message was sent from the adversary to the target and
it would have the same timestamp, size, and network traffic
pattern.
Generating Traffic: With all of the studied SIM services,
the adversary is not able to see the contents of the target
client’s communications by intercepting her traffic (due to
encryption), however she can capture the encrypted traffic
of the target client. The adversary then uses the detection
algorithms introduced in Section 5 to decide if the target
user is associated with the target communication C . In a
real-world setting, the adversary will possibly have multiple
target communications, and will monitor a large number of
suspected clients.
WhatsApp The two clients were running on separate virtual
machines running Ubuntu 18.04. We use Selenium [84]
to connect to WhatsApp’s web application and send 100
hours of generated one-on-one traces. This results in a more
realistic packet capture as the target’s client would have
to click to download media messages upon arrival while
subsequent messages are arriving.
Signal The two clients run on separate virtual machines
running Ubuntu 20.04. We use temporary phone numbers
to create Signal accounts. Then on both machines, we use
version 0.8.4.1 of signal-cli [88], an open source command
line and dbus interface for the Signal messenger to write a
Python program for the adversary’s machine to send all of
the generated one-on-one traces and a separate Python pro-
gram on the target’s machine to receive those messages. Our
target’s client starts downloading media messages while
subsequent messages are arriving.
Wire Wire provides the following messaging solutions: Wire
Personal, Wire for Free, Wire for Enterprise, and Wire for
Governments. In this work we use Wire for Free to perform
our experiments. In the rest of the paper we refer to Wire
Personal as Wire. Wire offers two types of messaging: one-
on-one and group communications. We use different email
addresses to create Wire accounts for these experiments. We
use Selenium to connect to Wire’s web application [111] to
automate sending all of the generated one-on-one traces.
When sending photos on Wire’s web application, instead
of using Wire’s option to send compressed photos, we send
them as files. Because otherwise, the order by which the me-
dia is downloaded on the target’s client would be different
from the order of the arrived messages, which would be as a
result of Wire automatically downloading photos (not files)
as they arrive. At the time of the experiments, there was no
option to turn off this function.
Wickr Based on different customer needs, Wickr has de-
veloped several secure messaging apps: Wickr Me, Wickr
Pro, and Wickr Enterprise. In this work we use Wickr Pro to
perform the experiments. Note that in the rest of the paper
we refer to Wickr Pro as just Wickr. Wickr offers two types of
group communications: regular group communication and
secure room communication. A room is a private group.
The main difference between group communication and a
room is that in a room there is a subset of participants
called the administrators who can add new participants to the
room or remove any participants from the room. In a group
communication, only participants may remove themselves.
We use the Wickr IO Integration Gateway to automate the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

11

process of the experiments. We use the Wickr IO Docker
Container [109] to set up the Web Interface REST API
integration enabling the communication with Wickr client
using Python.
Parameter Selection. We choose burst detection threshold
as te = 0.5s based on the empirical distribution of network
jitter. Also, we set ts of the shape-based detector to 0.01s,
as it leaves enough separation between two consecutive
IM messages. Note that the optimum values of ∆ and Γ
in the event-based algorithm are different for each SIM
experiment.
Ethics. We performed our inference attacks only over public
IM channels or one-to-one communications between our
own accounts; therefore, we did not capture any private IM
communications. Also, we performed our attacks only on
our own IM clients, but no real-world IM clients. Therefore,
our experiments did not compromise the privacy of any
real-world IM members or admins.
Synchronization As the adversary’s clock may be skewed
across her vantage points, our adversary uses a simple
sliding window to mitigate this: for the first 10 seconds of
traffic, the adversary slides the two flows being compared
with 0.5 second steps, and uses the maximum correlation
value.

6.2 Experiments in Normal Network Conditions
We experiment our attacks for each SIM (fully complying

with the ethical considerations of Section 6.1).
Event-Based Detector Figure 11 shows the ROC curve of
the event-based algorithm using Signal traffic data for 4
different observation lengths. We can see that, as expected,
longer traffic observations improve the accuracy of the detector.
For instance, the event-based detector offers a TP = 0.58
and FP = 5.4 × 10−3 with 3 min observation, while 30
mins of observation increases the TP to close to TP = 0.98.
To calculate FP, we pair each flow of messages with traces
of every other flow and feed it to the algorithm to see if
it detects any matches. In practice, an adversary can deploy
the attack with hierarchical observation intervals to optimize
accuracy and computation. For instance, the adversary can
monitor a mass of IM users for 15 mins of observation;
then the adversary will monitor only the clients detected
with 3 mins observations for longer time periods, e.g., 30
mins, to improve the overall FP performance while keeping
computations low.

Furthermore, Figure 12 compares the performance of the
event-based detector on our target SIMs. As can be seen,
with Signal and Wire, the detector has a worse performance
compared to other SIMs. It appears that they apply obfus-
cation algorithms on their traffic flows. However, we could
not find any official documentation about their obfuscation
techniques.
Shape-Based Detector We also experiment our shape-based
detector on each SIM. Figure 13 compares the performance
of the event-based and shape-based detectors on Wickr
traffic for 3 mins and 15 mins of observed traffic.

As can be seen, the shape-based detector outperforms the
event-based detector for smaller values of false positive rates. For
instance, for a target true positive rate of 0.8, the shape-
based detector offers a false positive of 1.5×10−3 compared

10−6 10−4 10−2 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Actual Telegram traffic
Simulated Telegram traffic
Analytical results

Fig. 10: Comparing the analytical upper bounds of the
event-based detector with empirical results (for 15 minutes
of Telegram traffic).

TABLE 4: The attack performances for one correlation.

Method # of CPU cycles One correlation
time

Shape-based 34 431 709 34431.70 ms
Event-based 123 962 123.96 ms

to 4 × 10−3 of the event-based detector (with 15 mins of
observation). The reason for this performance gap is the
impact of event extraction noise on the event-based detector.
Such noise has smaller impact on the shape-based detector
as it correlates the shape of traffic flows. For higher false
positive rates, the performance is opposite and the event-
based detector has more true positive rate than the shape-
based detector.

Note that for our event-based detector in Figure 13, for
short traffic observations (e.g., 3 mins) we cannot observe
small FPs in our ROC curve. This is because the event-based
correlation uses the number of matched events, which is
very coarse-grained due to the limited number of events in
short (e.g., 3 minutes) intervals. We use our analytical upper-
bounds (derived in (1) and (3)) to estimate the performance
trend for smaller false positive values for Telegram traffic in
Figure 10.

In terms of the performance time, our event-based detector
is two orders of magnitude faster than the shape-based detector.
Table 4 compares the number of CPU cycles each of the two
detectors take to calculate the correlation of a pair of 900
second Signal flows, as well as the correlation times of the
two detectors. The main reason for this difference is that the
event-based correlator uses the discrete time-series of event
metadata for its correlation, while the shape-based detector
uses traffic histograms over time.

6.3 Experiments in Poor Network Conditions
To evaluate the effect of the bandwidth of the target’s

device on the performance of the event-based detector, we
collected traffic for each SIM with the target device’s band-
width limited to 1Mbps, 5Mbps, and in some cases 10Mbps.
We used Wondershaper [112] to limit the bandwidth on
target’s VM. We then tuned the parameters of the event-
based detector to better detect events of the traffic of the
client with limited bandwidth.

Figure 14 shows the performance of the event-based
detector on Signal and Wire when the bandwidth of the
target user is limited to 10 Mbps and 5 Mbps compared

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

12

10−3 10−2 10−1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

3 minutes of traffic
5 minutes of traffic
15 minutes of traffic
30 minutes of traffic

Fig. 11: The performance of the
event-based detector on Signal traffic
for different traffic lengths.

10−4 10−3 10−2 10−1 100

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Wickr
Telegram
Signal
Wire
WhatsApp

Fig. 12: Performance of the event-
based detector on different SIMs (15
mins of observed traffic).

10−6 10−5 10−4 10−3 10−2 10−1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Event-based - 3 minutes
Event-based - 15 minutes
Shape-based - 3 minutes
Shape-based - 15 minutes

Fig. 13: Comparing event-based and
shape-based detectors on Signal traf-
fic.

to when there is no imposed limits. As expected, lower
bandwidth corresponds with lower performance of the de-
tector on both SIMs. With smaller bandwidths, there are
more overlaps between events which causes more errors
in the event extraction process. A similar pattern existed
in our experiments for Wickr, Telegram, and WhatsApp.
When we limit the bandwidth to 1Mbps, the performance
drops significantly making the detector ineffective. This is
expected as the the SIMs become almost unusable with a
1Mbps bandwidth when sending media messages.

6.4 Experiments to evaluate the effect of adversary’s
location

We also evaluate the performance of our event-based
algorithm while tunneling adversary’s traffic through VPNs
in different locations. This is to evaluate the effect of ad-
versary’s location with respect to its target. We tunnel the
traffic through VPNs in three locations: Japan, South Africa,
and Turkey. In setups where VPN is used, either a TorGurad
VPN client [99] or a NordVPN client [66] is installed on the
sender (adversary) virtual machine and the VPN has been
connected prior to sending messages. Figure 15 shows the
performance of the event-based detector while observing 15
minutes of Signal’s traffic as adversary’s traffic is tunneled
through a VPN server in different locations. We believe the
poor performance of the event-based detector when traffic
was tunneled through the VPN server in South Africa is due
to the very low bandwidth of the connection through that
VPN server (close to 1Mbps). As can be seen, tunneling the
traffic through VPN affects the performance of the detector
to some degree but does not make it ineffective as VPNs do
not obfuscate the traffic patterns of SIMs. VPNs however,
add a delay to adversary’s traffic. This indicates that when
directly sending messages to its target, the location of the
adversary has some effect on the performance of the event-
based detector. Figure 16 shows the performance of the
event-based detector while observing the traffic of different
SIM applications for 15 minutes as adversary’s traffic is
tunneled through a VPN server located in Japan. Comparing
this figure with Figure 12 shows how the location of the
adversary has some effect on the performance of the event-
based algorithm while the algorithm still has its lowest
performance on Signal.

6.5 Comparison with Deep Learning Techniques
As mentioned earlier in Section 3.4, the recent work

of DeepCorr [63] uses deep learning classifiers to perform
flow correlation attacks on Tor. They demonstrate that deep
learning classifiers outperform statistical correlation tech-
niques, like the ones we used in our work, in correlating
Tor connections. In this section, we compare our IM clas-
sifiers with deep learning classifiers. As we show in the
following, when the SIM service has not deployed effective
obfuscation, our statistical classifiers outperform deep-learning-
based classifiers, especially for shorter flow observations.
Intuitively, this is due to the sparsity of events in typical IM
communications, as well as the stationary nature of noise in
unobfuscated IM communications in contrast to the scenario
of Tor. Note that this fully complies with Nasr et al. [63]’s
observation that DeepCorr only outperforms statistical clas-
sifiers in non-stationary noisy conditions, where statistical
traffic models become inaccurate.

For fair comparisons, we obtain the original code of
DeepCorr [63], and adjust it to the specific setting of IM
traffic. Specifically, we divide the timing of each flow to
equal periods of length 1 second, and in each period we
assign values of {0, 1} to that period. We set the value
of a period 1 if there is a burst of packets in that period,
and 0 if there is no burst of packets. As an example, if we
use 15 minutes of traffic flows for correlation, our feature
dimension is a 900-length vector with values of 0, 1.

We design a DeepCorr model for each SIM using its
collected data. Figures 17 and 18 show the ROC curves of
our event-based detector compared with our deep-learning-
based detector, using 3 and 15 minutes of Wickr and Signal
traffic, respectively. As we can see, in case of Wickr, our
event-based technique outperforms the deep-learning-based
classifier for smaller false positive rates. For instance, for
a false positive rate of 10−3 when using 15 minutes of
traffic, our event-based detector achieves a 98% accuracy
compared to 95% of the DeepCorr-based technique. We see
that the performance advantage of our event-based detector
significantly increases for shorter flow observations, e.g.,
when 3 minutes of traffic is used for detection, our classifier
provides 93% accuracy compared to 62% of the DeepCorr-
based classifier (for the a false positive rate of 10−3).

On the other hand, for Signal, when 3 minutes of traffic is

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

13

10−3 10−2 10−1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Wire - no limit
Wire - 10Mbps BW
Wire - 5Mbps BW
Signal - no limit
Signal - 10Mbps BW
Signal - 5Mbps BW

Fig. 14: Performance of the event-
based detector on Signal and Wire
SIMs with different bandwidth limits
(15 mins of observed traffic).

10−3 10−2 10−1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

No VPN
Turkey
Japan
South Africa

Fig. 15: Performance of the event-
based detector on Signal when tun-
neling traffic through different VPN
server locations (15 mins of observed
Signal traffic).

10−4 10−3 10−2 10−1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Wickr
Telegram
Signal
Wire
WhatsApp

Fig. 16: Performance of the event-
based detector on different SIMs
when tunneling traffic through the
VPN located in Japan (15 mins of
observed traffic).

0.0 0.2 0.4 0.6 0.8 1.0
0.25

0.50

0.75

1.00

Event-based detector (3 minutes of traffic)
deepcorr 180

0 10−5 10−4 10−3 10−2 10−1 100

False Positive Rate
0.0

0.5

1.0

Event-based detector (15 minutes of traffic)
deepcorr 900

Tr
ue

 P
os

iti
ve

 R
at

e

Fig. 17: Comparing our event-based detector with a
DeepCorr-based classifier, for 3 and 15 mins of observed
Wickr traffic.

0 10−5 10−4 10−3 10−2 10−1 100

0.25

0.50

0.75

1.00 Event-based detector (3 minutes of traffic)
DeepCorr (3 minutes of traffic)

0 10−5 10−4 10−3 10−2 10−1 100

False Positive Rate
0.0

0.5

1.0

Event-based detector (15 minutes of traffic)
DeepCorr (15 minutes of traffic)

Tr
ue

 P
os

iti
ve

 R
at

e

Fig. 18: Comparing our event-based detector with a
DeepCorr-based classifier, for 3 and 15 mins of observed
Signal traffic.

used for detection, DeepCorr provides a FP rate of 1.9×10−4

compared to 5.4× 10−3 of our classifier (for the TP rates of
60% and 58% respectively). With 15 minutes of Signal traffic,
DeepCorr provides a TP rate of 99% compared to 95% of our
classifier (for a FP rate of 1.4×10−2). In contrast with Wickr,
on Signal, the deep-learning-based technique is performing
better than the event-based detector. We believe this is

because it can capture the noise in the traffic caused by the
Signal obfuscation mechanisms as mentioned in Section 6.2.

Furthermore, we train a DeepCorr model on the aggre-
gated data of all SIMs. We then test this aggregated model
on the test data of each SIM. Figure 22 compares the per-
formance of the aggregated model with individual models
trained on Wickr, Wire, and Signal traffics. We see that the
aggregated model has a similar performance compared to
the models trained on each dataset separately.
Temporal Constraints: According to [63], DeepCorr learns
the generic features of noise in Tor, regardless of the specific
circuits and end-hosts during the training process. There-
fore, there could be a need to re-train the DeepCorr model
trained on SIM traffic if the generic features of noise of a
SIM application change. Examples of such a change can be
if a SIM starts to use a new encoding or a new compression
algorithm for their text or media message. We believe this
type of change to be infrequent.

7 COUNTERMEASURES
We deploy and evaluate possible countermeasures

against our presented attacks. Intuitively, our attacks work
because in-the-wild SIM services do not obfuscate traffic
patterns enough. Therefore, we investigate various traffic
obfuscation mechanisms as countermeasures against our
traffic analysis-based attacks.

Note that obfuscation-based countermeasures have been
studied against other kinds of traffic analysis attacks
overviewed in Section 3.4. There are several key ideas used
in existing countermeasures: (1) tunneling traffic through
an overlay system that perturbs its patterns [57], [68], e.g.,
Tor, (2) adding background traffic (also called decoy) that
is mixed with the target traffic [30], [56], [72], [103], [115],
(3) padding traffic events (e.g., packets) [18], [19], [30], [48],
[102], and (4) delaying traffic events [18], [19], [30], [102],
[103]. In the following, we investigate various countermea-
sure techniques inspired by these standard approaches.

7.1 Tunneling Through Circumvention Systems
With/Without Background Traffic

As the first countermeasure, we tunnel SIM traffic
through standard circumvention systems, in particular VPN

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

14

10−3 10−2 10−1

False Positive Rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

No Circumvention System
Tor (web browsing traffic)
VPN (web browsing traffic)
Tor (IAT mode)
VPN
Tor

Fig. 19: The impact of various coun-
termeasures on the performance of
the event-based detector using dif-
ferent circumvention systems (15
minutes of observed Telegram traf-
fic)

10−2 10−1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

No delay
1/λ= 0.05s
1/λ= 0.08s

Fig. 20: Randomly delaying events
by an SIM server acts as an effective
countermeasure to our attacks. 1

λ is
the mean of the added delay in sec-
onds (15 minutes of observed Wire
traffic)

10−3 10−2 10−1

False Positive Rate

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

No delay
rpadding = 0.1
rpadding = 0.25
rpadding = 0.5
rpadding = 0.75
rpadding = 1

Fig. 21: Padding IM events by the
SIM server (or client) can act as
an effective countermeasure against
our attacks. (15 minutes of observed
Telegram traffic)

and Tor pluggable transports [98]. We use the same ex-
perimental setup as before and connect to 300 Telegram
channels. For each circumvention system, we perform the
experiments with and without any background traffic. In the
experiments with background traffic, the VM running the
SIM software also makes HTTP connections using Selenium.
The background HTTP webpages are picked randomly from
the top 50,000 Alexa websites. To amplify the impact of the
background traffic, the time between every two consecutive
HTTP GETs is taken from the empirical distribution of
Telegram IMDs, therefore producing a noise pattern similar
to actual SIM channels.

We observe that our event-based attack performs stronger
against our countermeasures. Therefore, we only present the
countermeasure results against the event-based detector.
Figure 19 shows the ROC curve of the event-based detector
using various circumvention systems and in different set-
tings. Our Tor experiments are done once with regular Tor,
and once using the obfs4 [68] transport with the IAT mode
of 1, which obfuscates traffic patterns.

We see that using regular Tor (with no additional obfusca-
tion) as well as using VPN does not significantly counter our
attacks, e.g., we get a TP of 85% and a FP of 5× 10−3 when
tunneling through these services (using 15 mins of traffic).
However, adding background traffic when tunneled through
Tor and VPN reduces the accuracy of the attack, but we get
the best countermeasure performance using Tor’s obfs4 obfuscator.

Note that tunneling through a generic circumvention
system like Tor is not the most attractive countermeasure
to the users due to the poor connection performance of such
systems.

7.2 IMProxy: An Obfuscation Proxy Designed for IM
Services

We design a proxy-based obfuscation system, called
IMProxy, built specifically for IM communications. IMProxy
combines two obfuscation techniques: changing the timing
of events (by adding delays), and changing the sizes of
events through adding dummy traffic. An IM client has
the ability to enable each of these countermeasures, and
specify the amplitude of obfuscation to make her desired

10−6 10−5 10−4 10−3 10−2 10−10

1

aggregared model on Wickr
Wickr model

10−6 10−5 10−4 10−3 10−2 10−1
0.5

1.0

aggregated model on Wire
Wire model

10−6 10−5 10−4 10−3 10−2 10−1

False Positive Rate

0.5

1.0

aggregated model on Signal
Signal model

Tr
ue

 P
os

iti
ve

 R
at

e

Fig. 22: Comparing the aggregated model trained on all the
data with models trained on each SIM’s dataset

tradeoff between performance and resilience. IMProxy does
not require any cooperation from IM providers, and can be used
to obfuscate any IM service.
Components of IMProxy: Figure 23 shows the design of
IMProxy. For a client to use IMProxy, she needs to install
a local proxy software. local proxy runs a SOCKS5 proxy
listening on a local port. The client will need to change the
setting of her IM software (e.g., Telegram software) to use
this local port for proxying or use a proxy that can filter out
IM software packets.

A second component of IMProxy is remote proxy, which
is a SOCKS5 proxy residing outside of the surveillance area.
The client needs to enter the (IP, port) information of this
remote proxy in the settings of her local proxy software.
Note that, in practice, remote proxy can be either run by the
client herself (e.g., as an AWS instance), or can be run by
the IM provider or trusted entities (similar to the MTProto
proxies run for Telegram users [61]).
How IMProxy works: Once an IM client sets up her system
to use IMProxy as above, her IM traffic to/from the IM
servers will go through proxy servers of IMProxy, as shown
in Figure 23. The IM traffic of the client will be handled
by local proxy and remote proxy, which obfuscate traffic
through padding and delaying.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

15

SIM Server

Sender
(Admin)

Local Proxy

Remote Proxy

Receiver
(Member)

Remote Proxy

Local Proxy

Padding
Packets

Removing
Padded
Packets

Padding
Packets

Delaying
Events

Removing
Padded
Packets

Non-Observable
by Adversary

Adversary
Watching

Adversary
Watching

Fig. 23: Design of our IMProxy countermeasure.

As shown in the figure, IMProxy acts differently on
upstream and downstream IM traffic. For upstream SIM
communications (e.g., messages sent by an admin), local
proxy adds padding to the traffic by injecting dummy
packets and events at certain times. First, some dummy
packets are injected close to the events in order to change
their sizes. The size of padding for each event is chosen
randomly, following a uniform distribution in [0, rpadding],
where rpadding is a parameter adjusted by each user. Sec-
ond, some dummy events (burst of packets) are injected
during the silence intervals; this is done randomly: during
each 1 second silence interval, an event is injected with a
probability ppadding , where ppadding is also adjusted by each
individual user. The size of dummy events is drawn from
the empirical distribution of the sizes of image messages, as
presented earlier. Finally, the dummy packets are removed
by remote proxy before getting forwarded to the IM server.
Note that all traffic between local proxy and remote proxy
is encrypted so the adversary can not identify the dummy
packets.

For downstream SIM communications (e.g., messages re-
ceived by a member), remote proxy adds dummy packets, as
above, which are then dropped by local proxy before being
released to the client’s IM software. In addition to padding,
remote proxy delays the packets in the downstream traffic.
In our implementation, remote proxy uses an Exponential
Distribution with rate λ to generate random delays (which
is based on our delay model in Figure 5). Note that no delay
is applied on upstream traffic, as the delay will transit to
the corresponding downstream traffic. Also, note that each
client can control the intensity of padding by adjusting the
ppadding and rpadding parameters, and control the amplitude
of delays by adjusting λ.

To implement the delaying of packets, we used the
NetFilterQueue and scapy modules in Python. To evaluate
the effects of addition and removal of dummy packets and
padding, we run a simulation using traffic collected without
the use of IMProxy.
Evaluation against oblivious adversary: We first evaluate
our IMProxy implementation against an adversary who is
not aware of how IMProxy works (or its existence). To do
so, we evaluate IMProxy against our event-based detector.

Figure 20 shows the ROC curve of the event-based
detector for different values of λ. Note that 1

λ defines the
average amount of delay added to the packets. As we can
see, increasing the added delay (by reducing λ) reduces the
performance of our attack, as it causes to missalign events
across the monitored flows. For instance, a 1

λ = 0.05s

reduces the adversary’s TP from 90% to 2% (for a constant
18× 10−4 false positive).

Figure 21 shows the ROC curves for the simulation
of the event-based detector with different rpadding and
ppadding = 10−4. Note that a ppadding = 10−4 causes a
7% average traffic overhead. As expected, increasing rpadding
reduces the performance of our attack; even a rpadding as small
of 10% and 7% of dummy events can have a noticeable
impact on countering the traffic analysis attacks, i.e., for a
10−3 false positive rate, the detection accuracy is reduced
from 93% to 62%. Increasing rpadding to 50% will further
reduce detection accuracy to 56%.
Evaluation against IMProxy-aware adversary: Next, we
evaluate IMProxy against an adversary who is aware that
target users are deploying IMProxy and also knows the
details of IMProxy. Our adversary trains a DeepCorr-based
classifier on IM traffic obfuscated using IMProxy (note that
our statistical detectors will suffer for such an adversary due
to the randomness of IMProxy’s obfuscation).

Figure 24 shows the performance of this DeepCorr-
based classifier against IMProxy-obfuscated connections on
Telegram (each flow is 15 mins). We use rpadding = 0.1 and
evaluate the performance for different values of ppadding .
As can be seen, IMProxy is highly effective even against an
IMProxy-aware classifier, demonstrating IMProxy’s efficiency
in manipulating IM traffic patterns. For instance, for a false
positive rate of 10−3, the IMProxy-aware classifier provides
true positive rates of 25% and 15% (for average obfuscation
delays of 0.5 and 1), which is significantly weaker compared
to 93% of the event-based detector when IMProxy is not
deployed. As we can see, delaying provides better pro-
tection than padding; however, we expect that most users
will prefer padding over delays due to the latency-sensitive
nature of IM communications.

Note that each user tradeoffs between privacy protection
and overhead by adjusting the countermeasure parameters.
Ideally, the countermeasure software can ask the user her
tolerable padding/delay overhead (or her target FP/FN
for the adversary), and then will choose the best counter-
measure parameters for the user. For instance, based on
Figure 24, assuming that a real-world adversary can tolerate
a FP of 10−3, if the user states that she intends to keep
the adversary’s TP below 0.3, the countermeasure software
delays packets with an average of 1s.

8 CONCLUSIONS
In this paper, we showed how popular IM applications

leak sensitive information about their clients to adversaries
who merely monitor encrypted traffic. Specifically, we de-
vised traffic analysis attacks that enable an adversary to
identify the administrators and members of target IM chan-
nels with practically high accuracies. We demonstrated the
practicality of our attacks through extensive experiments on
5 real-world IM systems. We believe that our study presents
a significant, real-world threat to the users of such services
given the escalating attempts by oppressive governments in
cracking down on social media.

We also investigated the use of standard countermea-
sures against our attacks and demonstrated their practical
feasibility at the cost of communication overhead and in-
creased IM latency. We designed and implemented an open-

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

16

10−3 10−2 10−1

False Positive Rate

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Padded flows (ppadding = 10−4)
Padded flows (ppadding = 5 * 10−4)
Delayed flows (1/λ= 0.5s)
Delayed flows (1/λ= 1s)
No delay

Fig. 24: Evaluating IMProxy against an IMProxy-aware clas-
sifier (trained using DeepCorr).

source, publicly available countermeasure system, IMProxy,
which works for major IM services with no need to support
from the IM providers. While IMProxy may be used as an
ad hoc, short-term countermeasure by IM users, we believe
that to achieve the best usability and user adoption, effective
countermeasures should be deployed by IM providers (i.e.,
through integrating traffic obfuscation techniques into their
software). We hope that our study will urge IM providers to
take action.

ACKNOWLEDGMENTS

This work has been supported by the NSF grants 1953786
and 1564067, and by DARPA and NIWC under contract
N66001-15-C-4067. The U.S. Government is authorized to
reproduce and distribute reprints for governmental pur-
poses notwithstanding any copyright notation thereon. The
views, opinions, and/or findings expressed are those of the
author(s) and should not be interpreted as representing the
official views or policies of the Department of Defense or
the U.S. Government.

REFERENCES

[1] “About end-to-end encryption,” https:
//faq.whatsapp.com/791574747982248/, 2022.

[2] “Continued Arrest of Telegram Channels Admin in Oru-
miyeh,” http://kurdistanhumanrights.net/en/continued-arrest-
of-telegram-channels-admin-in-orumiyeh/, 2018.

[3] “Admins of 12 Reformist Telegram Channels Ar-
rested in Iran Ahead of May 2017 Election,” https:
//www.iranhumanrights.org/2017/03/12-reformist-telegram-
channel-admins-arrested/, 2017.

[4] A. Afzal, M. Hussain, S. Saleem, M. K. Shahzad, A. T. S. Ho,
and K.-H. Jung, “Encrypted network traffic analysis of secure
instant messaging application: A case study of signal messenger
app,” Applied Sciences, vol. 11, no. 17, 2021. [Online]. Available:
https://www.mdpi.com/2076-3417/11/17/7789

[5] P. K. Aggarwal, P. Grover, and L. Ahuja, “Security Aspect in
Instant Mobile Messaging Applications,” in RAETCS, 2018.

[6] D. Agrawal, D. Kesdogan, and S. Penz, “Probabilistic treatment
of MIXes to hamper traffic analysis,” in IEEE S&P, 2003.

[7] R. Arratia and L. Gordon, “Tutorial on large deviations for the
binomial distribution,” Bull. Math. Biol., 1989.

[8] J. Atkinson, M. Rio, J. Mitchell, and G. Matich, “Your WiFi Is
Leaking: Ignoring Encryption, Using Histograms to Remotely
Detect Skype Traffic,” in MILCOM, 2014.

[9] A. Back, U. Moller, and A. Stiglic, “Traffic Analysis Attacks
and Trade-Offs in Anonymity Providing Systems,” in Information
Hiding, 2001.

[10] A. Balducci and J. Meredith, “Olm cryptogrpahic review.” NCC
Group PLC, Tech. Rep., 2016.

[11] “At least 60 percent of Iran Internet bandwidth usage accounts
for Telegram,” https://www.isna.ir/news/96062715757, 2017.

[12] D. Barradas, N. Santos, and L. Rodrigues, “Effective detection
of multimedia protocol tunneling using machine learning,” in
USENIX Security, 2018.

[13] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway,
“UMAC: Fast and secure message authentication,” in Crypto,
1999.

[14] J. Black and P. Rogaway, “CBC MACs for arbitrary-length mes-
sages: The three-key constructions,” in Crypto, 2000.

[15] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli,
“Revealing skype traffic: when randomness plays with you,” in
SIGCOMM CCR, 2007.

[16] N. Borisov, I. Goldberg, and E. Brewer, “Off-the-record Commu-
nication, or, Why Not to Use PGP,” in WPES, 2004.

[17] “Secure P2P Messenger Releases First Version, Receives New
Funding,” https://briarproject.org/news/2018-1.0-released-
new-funding.html, 2018.

[18] X. Cai, R. Nithyanand, and R. Johnson, “CS-BuFLO: A Conges-
tion Sensitive Website Fingerprinting Defense,” in WPES, 2014.

[19] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg,
“A Systematic Approach to Developing and Evaluating Website
Fingerprinting Defenses,” in CSS, 2014.

[20] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
Distance: Website Fingerprinting Attacks and Defenses,” in CCS,
2012.

[21] Y.-C. Chang, K.-T. Chen, C.-C. Wu, and C.-L. Lei, “Inferring
speech activity from encrypted Skype traffic,” in GLOBECOM,
2008.

[22] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks
in web applications: A reality today, a challenge tomorrow,” in
IEEE S&P, 2010.

[23] T. Chothia and A. Guha, “A statistical test for information leaks
using continuous mutual information,” in CSF, 2011.

[24] C. Cimpanu, “Hong Kong protesters warn of Tele-
gram feature that can disclose their identities,”
https://www.zdnet.com/article/hong-kong-protesters-warn-
of-telegram-feature-that-can-disclose-their-identities/, 2019.

[25] S. E. Coull and K. P. Dyer, “Traffic Analysis of Encrypted Mes-
saging Services: Apple iMessage and Beyond,” SIGCOMM CCR,
2014.

[26] G. Danezis, “The traffic analysis of continuous-time mixes,” in
PETS, 2004.

[27] G. Danezis and A. Serjantov, “Statistical disclosure or intersection
attacks on anonymity systems,” in Information Hiding, 2004.

[28] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
generation Onion Router,” in USENIX Security, 2004.

[29] D. L. Donoho, A. G. Flesia, U. Shankar, V. Paxson, J. Coit,
and S. Staniford, “Multiscale Stepping-Stone Detection: Detecting
Pairs of Jittered Interactive Streams by Exploiting Maximum
Tolerable Delay,” in RAID, 2002.

[30] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-
Boo, I Still See You: Why Efficient Traffic Analysis Countermea-
sures Fail,” in IEEE S&P, 2012.

[31] J. Engler and C. Marie, “Secure messaging for normal
people,” NCC Group, Tech. Rep., 2015. [Online].
Available: https://www.nccgroup.trust/globalassets/our-
research/us/whitepapers/secure-messaging-for-normal-people-
whitepaper.pdf

[32] K. Ermoshina, F. Musiani, and H. Halpin, “End-to-End Encrypted
Messaging Protocols: An Overview,” in INSCI, 2016.

[33] O. Flisback, “Stalking anyone on Telegram,” https:
//oflisback.github.io/telegram-stalking/, 2015.

[34] J. Gu, J. Wang, Z. Yu, and K. Shen, “Walls have ears: Traffic-based
side-channel attack in video streaming,” in INFOCOM, 2018.

[35] S. Harris, CISSP All-in-One Exam Guide, 6th ed. McGraw-Hill
Osborne Media, 2012.

[36] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable
website fingerprinting technique,” in USENIX Security, 2016.

[37] G. He, M. Yang, X. Gu, J. Luo, and Y. Ma, “A novel active
website fingerprinting attack against Tor anonymous system,”
in CSCWD, 2014.

[38] T. He and L. Tong, “Detecting Encrypted Stepping-Stone Connec-
tions,” TSP, 2007.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

https://faq.whatsapp.com/791574747982248/
https://faq.whatsapp.com/791574747982248/
http://kurdistanhumanrights.net/en/continued-arrest-of-telegram-channels-admin-in-orumiyeh/
http://kurdistanhumanrights.net/en/continued-arrest-of-telegram-channels-admin-in-orumiyeh/
https://www.iranhumanrights.org/2017/03/12-reformist-telegram-channel-admins-arrested/
https://www.iranhumanrights.org/2017/03/12-reformist-telegram-channel-admins-arrested/
https://www.iranhumanrights.org/2017/03/12-reformist-telegram-channel-admins-arrested/
https://www.mdpi.com/2076-3417/11/17/7789
https://www.isna.ir/news/96062715757
https://briarproject.org/news/2018-1.0-released-new-funding.html
https://briarproject.org/news/2018-1.0-released-new-funding.html
https://www.zdnet.com/article/hong-kong-protesters-warn-of-telegram-feature-that-can-disclose-their-identities/
https://www.zdnet.com/article/hong-kong-protesters-warn-of-telegram-feature-that-can-disclose-their-identities/
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/secure-messaging-for-normal-people-whitepaper.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/secure-messaging-for-normal-people-whitepaper.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/secure-messaging-for-normal-people-whitepaper.pdf
https://oflisback.github.io/telegram-stalking/
https://oflisback.github.io/telegram-stalking/

17

[39] D. Herrmann, R. Wendolsky, and H. Federrath, “Website finger-
printing: attacking popular privacy enhancing technologies with
the multinomial naive-bayes classifier,” in CCSW, 2009.

[40] A. Houmansadr and N. Borisov, “The need for flow fingerprints
to link correlated network flows,” in PETS, 2013.

[41] A. Houmansadr, N. Kiyavash, and N. Borisov, “RAINBOW: A
Robust And Invisible Non-Blind Watermark for Network Flows,”
in NDSS, 2009.

[42] ——, “Non-blind watermarking of network flows,” IEEE TON,
2014.

[43] “Number of mobile phone messaging app
users worldwide from 2016 to 2021,” https:
//www.statista.com/statistics/483255/number-of-mobile-
messaging-users-worldwide, 2018.

[44] “Getting around Iran’s Telegram ban,” https:
//observers.france24.com/en/20180502-getting-around-iran’-
telegram-ban-”i-installed-vpn-old-lady-next-door”, 2018.

[45] “ Help users in Iran reconnect to Signal,” https:
//signal.org/blog/help-iran-reconnect/, 2021.

[46] C. Johansen, A. Mujaj, H. Arshad, and J. Noll, “Comparing
Implementations of Secure Messaging Protocols (long version),”
2017.

[47] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A
critical evaluation of website fingerprinting attacks,” in CCS,
2014.

[48] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, “Toward
an Efficient Website Fingerprinting Defense,” in ESORICS, 2016.

[49] D. Kales, C. Rechberger, T. Schneider, M. Senker, and C. Weinert,
“Mobile private contact discovery at scale,” in USENIX Security,
2019.

[50] D. Kedogan, D. Agrawal, and S. Penz, “Limits of anonymity in
open environments,” in Information Hiding, 2002.

[51] “Information leak from chat group. How do we
find out which user is sharing information? ,” https:
//security.stackexchange.com/questions/178435/information-
leak-from-chat-group-how-do-we-find-out-which-user-is-
sharing\-infor, 2018.

[52] B. N. Levine, M. K. Reiter, C. Wang, and M. Wright, “Timing
attacks in low-latency mix systems,” in FC, 2004.

[53] Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, and W. Jia, “A new cell-
counting-based attack against Tor,” IEEE TON, 2012.

[54] Y. Liu, D. Ghosal, F. Armknecht, A.-R. Sadeghi, S. Schulz, and
S. Katzenbeisser, “Robust and undetectable steganographic tim-
ing channels for i.i.d. traffic,” in Information Hiding, R. Böhme,
P. W. L. Fong, and R. Safavi-Naini, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 193–207.

[55] L. Lu, E.-C. Chang, and M. C. Chan, “Website fingerprinting
and identification using ordered feature sequences,” in ESORICS,
2010.

[56] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C. Chang, and
R. Perdisci, “HTTPOS: Sealing information leaks with browser-
side obfuscation of encrypted flows,” in NDSS, 2011.

[57] H. M. Moghaddam, B. Li, M. Derakhshani, and I. Goldberg,
“SkypeMorph: Protocol Obfuscation for Tor Bridges,” in CCS,
2012.

[58] H. Mozaffari and A. Houmansadr, “Heterogeneous Private In-
formation Retrieval,” in Network and Distributed Systems Security
(NDSS) Symposium 2020, 2020.

[59] H. Mozaffari, A. Houmansadr, and A. Venkataramani, “Blocking-
Resilient Communications in Information-Centric Networks Us-
ing Router Redirection,” in 2019 IEEE Globecom Workshops (GC
Wkshps), 2019.

[60] “MTProto Mobile Protocol,” https://core.telegram.org/mtproto.
[61] “MTProto proxy server for Telegram,” https://mtproto.co/.
[62] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,”

in IEEE S&P, 2005.
[63] M. Nasr, A. Bahramali, and A. Houmansadr, “DeepCorr: Strong

Flow Correlation Attacks on Tor Using Deep Learning,” in CCS,
2018.

[64] M. Nasr, A. Houmansadr, and A. Mazumdar, “Compressive
Traffic Analysis: A New Paradigm for Scalable Traffic Analysis,”
in CCS, 2017.

[65] L. H. Newman, “ENCRYPTED MESSAGING ISN’T MAGIC,”
https://www.wired.com/story/encrypted-messaging-isnt-
magic/, 2018.

[66] “Nordvpn,” https://nordvpn.com/, 2021.

[67] “How Many People Use Telegram in 2021? 55 Telegram Stats,”
https://backlinko.com/telegram-users#telegram-statistics, 2018.

[68] “[tor-project] Turning on timing obfuscation
(iat-mode=1) for some default bridges,” https:
//lists.torproject.org/pipermail/tor-project/2016-
November/000776.html.

[69] J.-X. Pan and K.-T. Fang, Maximum Likelihood Estimation. New
York, NY: Springer New York, 2002, pp. 77–158. [Online].
Available: https://doi.org/10.1007/978-0-387-21812-0 3

[70] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp,
K. Wehrle, and T. Engel, “Website Fingerprinting at Internet
Scale,” in NDSS, 2016.

[71] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website
fingerprinting in onion routing based anonymization networks,”
in WPES, 2011.

[72] ——, “Website Fingerprinting in Onion Routing Based
Anonymization Networks,” in WPES, 2011.

[73] K. Park and H. Kim, “Encryption is Not Enough: Inferring User
Activities on KakaoTalk with Traffic Analysis,” in WISA, 2015.

[74] H. V. Poor, An introduction to signal detection and estimation.
Springer Science & Business Media, 2013.

[75] Y. J. Pyun, Y. H. Park, X. Wang, D. S. Reeves, and P. Ning, “Tracing
traffic through intermediate hosts that repacketize flows,” in
INFOCOM, 2007.

[76] D. Ramsbrock, X. Wang, and X. Jiang, “A first step towards live
botmaster traceback,” in RAID, 2008.

[77] V. Rimmer, D. Preuveneers, M. Juarez, T. V. Goethem, and
W. Joosen, “Automated Website Fingerprinting through Deep
Learning,” in NDSS, 2018.

[78] D. Robertson, “The Licensing and Compliance Lab interviews
Guillaume Roguez, Ring Project Director,” Free Software
Foundation, 2016, https://www.fsf.org/blogs/licensing/the-
licensing-and-compliance-lab-interviews-guillaume-roguez-
ring-project-director.

[79] “Russia orders Telegram to hand over users’ encryption
keys,” https://www.theverge.com/2018/3/20/17142482/russia-
orders-telegram-hand-over-user-encryption-keys, 2018.

[80] H. Saribeykan and A. Margvelashvili, “Security Analysis of Tele-
gram,” https://courses.csail.mit.edu/6.857/2017/project/19.pdf,
2017.

[81] J. Schectman, “Exclusive: Messaging app Telegram
moves to protect identity of Hong Kong protesters,”
https://www.reuters.com/article/us-hongkong-telegram-
exclusive/exclusive-messaging-app-telegram-moves-to-protect-
identity-of-hong-kong-protesters-idUSKCN1VK2NI, 2019.

[82] M. Schliep, I. Kariniemi, and N. Hopper, “Is Bob Sending Mixed
Signals?” in WPES, 2017.

[83] R. Schuster, V. Shmatikov, and E. Tromer, “Beauty and the Burst:
Remote Identification of Encrypted Video Streams,” in USENIX
Security, 2017.

[84] “Python Language Bindings for Selenium WebDriver,” https:
//pypi.org/project/selenium/, 2020.

[85] V. Shmatikov and M.-H. Wang, “Timing analysis in low-latency
mix networks: Attacks and defenses,” in ESORICS, 2006.

[86] “Signal,” https://signal.org/en/, 2021.
[87] “The Inside Story of How Signal Became the Private Mes-

saging App for an Age of Fear and Distrust,” https:
//time.com/5893114/signal-app-privacy/, 2020.

[88] “Signal-cli, an unofficial commandline and dbus
interface for signalapp/libsignal-service-java,” https:
//github.com/AsamK/signal-cli, 2021.

[89] “Why messaging app Signal is surging in popularity right
now,” https://www.cnn.com/2021/01/12/tech/signal-growth-
whatsapp-confusion/index.html, 2021.

[90] “Technology preview: Sealed sender for Signal,” https:
//signal.org/blog/sealed-sender/, 2018.

[91] “Most popular mobile messaging apps worldwide as of
January 2018, based on number of monthly active users,”
https://www.statista.com/statistics/258749/most-popular-
global-mobile-messenger-apps, 2018.

[92] T. Simonite, “FireChat Could Be the First in a Wave of Mesh
Networking Apps,” MIT Technology Review, 2014. [Online].
Available: https://www.technologyreview.com/s/525921/the-
latest-chat-app-for-iphone-needs-no-internet-connection/

[93] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang,
and P. Mittal, “RAPTOR: routing attacks on privacy in tor,” in
USENIX Security, 2015.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

https://www.statista.com/statistics/483255/number-of-mobile-messaging-users-worldwide
https://www.statista.com/statistics/483255/number-of-mobile-messaging-users-worldwide
https://www.statista.com/statistics/483255/number-of-mobile-messaging-users-worldwide
https://observers.france24.com/en/20180502-getting-around-iran'-telegram-ban-"i-installed-vpn-old-lady-next-door"
https://observers.france24.com/en/20180502-getting-around-iran'-telegram-ban-"i-installed-vpn-old-lady-next-door"
https://observers.france24.com/en/20180502-getting-around-iran'-telegram-ban-"i-installed-vpn-old-lady-next-door"
https://signal.org/blog/help-iran-reconnect/
https://signal.org/blog/help-iran-reconnect/
https://security.stackexchange.com/questions/178435/information-leak-from-chat-group-how-do-we-find-out-which-user-is-sharing\ -infor
https://security.stackexchange.com/questions/178435/information-leak-from-chat-group-how-do-we-find-out-which-user-is-sharing\ -infor
https://security.stackexchange.com/questions/178435/information-leak-from-chat-group-how-do-we-find-out-which-user-is-sharing\ -infor
https://security.stackexchange.com/questions/178435/information-leak-from-chat-group-how-do-we-find-out-which-user-is-sharing\ -infor
https://core.telegram.org/mtproto
https://mtproto.co/
https://www.wired.com/story/encrypted-messaging-isnt-magic/
https://www.wired.com/story/encrypted-messaging-isnt-magic/
https://nordvpn.com/
https://backlinko.com/telegram-users#telegram-statistics
https://lists.torproject.org/pipermail/tor-project/2016-November/000776.html
https://lists.torproject.org/pipermail/tor-project/2016-November/000776.html
https://lists.torproject.org/pipermail/tor-project/2016-November/000776.html
https://doi.org/10.1007/978-0-387-21812-0_3
https://www.fsf.org/blogs/licensing/the-licensing-and-compliance-lab-interviews-guillaume-roguez-ring-project-director
https://www.fsf.org/blogs/licensing/the-licensing-and-compliance-lab-interviews-guillaume-roguez-ring-project-director
https://www.fsf.org/blogs/licensing/the-licensing-and-compliance-lab-interviews-guillaume-roguez-ring-project-director
https://www.theverge.com/2018/3/20/17142482/russia-orders-telegram-hand-over-user-encryption-keys
https://www.theverge.com/2018/3/20/17142482/russia-orders-telegram-hand-over-user-encryption-keys
https://courses.csail.mit.edu/6.857/2017/project/19.pdf
https://www.reuters.com/article/us-hongkong-telegram-exclusive/exclusive-messaging-app-telegram-moves-to-protect-identity-of-hong-kong-protesters-idUSKCN1VK2NI
https://www.reuters.com/article/us-hongkong-telegram-exclusive/exclusive-messaging-app-telegram-moves-to-protect-identity-of-hong-kong-protesters-idUSKCN1VK2NI
https://www.reuters.com/article/us-hongkong-telegram-exclusive/exclusive-messaging-app-telegram-moves-to-protect-identity-of-hong-kong-protesters-idUSKCN1VK2NI
https://pypi.org/project/selenium/
https://pypi.org/project/selenium/
https://signal.org/en/
https://time.com/5893114/signal-app-privacy/
https://time.com/5893114/signal-app-privacy/
https://github.com/AsamK/signal-cli
https://github.com/AsamK/signal-cli
https://www.cnn.com/2021/01/12/tech/signal-growth-whatsapp-confusion/index.html
https://www.cnn.com/2021/01/12/tech/signal-growth-whatsapp-confusion/index.html
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps
https://www.technologyreview.com/s/525921/the-latest-chat-app-for-iphone-needs-no-internet-connection/
https://www.technologyreview.com/s/525921/the-latest-chat-app-for-iphone-needs-no-internet-connection/

18

[94] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust
smartphone app identification via encrypted network traffic anal-
ysis,” TIFS, 2017.

[95] “What is Telegram? What do I do here?” https:
//telegram.org/faq, 2013.

[96] “Where is Telegram based?” https://telegram.org/faq, 2013.

[97] “Telegram and Instagram being restricted in Iran,”
https://techcrunch.com/2018/01/02/telegram-and-instagram-
being-restricted-in-iran, 2018.

[98] “Tor: Pluggable Transports,” https:
//www.torproject.org/docs/pluggable-transports.html.en.

[99] “Torgaurd,” https://torguard.net/, 2020.

[100] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg,
and M. Smith, “SoK: Secure Messaging,” in IEEE S&P, 2015.

[101] “Virtual Private Networking: An Overview,” Microsoft
Technet, Tech. Rep., 2011. [Online]. Available: https:
//docs.microsoft.com/en-us/previous-versions/windows/it-
pro/windows-2000-server/bb742566(v=technet.10)

[102] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg,
“Effective Attacks and Provable Defenses for Website Finger-
printing,” in USENIX Security, 2014.

[103] T. Wang and I. Goldberg, “Walkie-Talkie: An Efficient Defense
Against Passive Website Fingerprinting Attacks,” in USENIX
Security, 2017.

[104] X. Wang, S. Chen, and S. Jajodia, “Tracking Anonymous Peer-to-
peer VoIP Calls on the Internet,” in CCS, 2005.

[105] ——, “Network flow watermarking attack on low-latency anony-
mous communication systems,” in IEEE S&P, 2007.

[106] X. Wang, D. S. Reeves, and S. F. Wu, “Inter-packet delay based
correlation for tracing encrypted connections through stepping
stones,” in ESORICS, 2002.

[107] “WhatsApp,” https://www.whatsapp.com/, 2020.

[108] “Wickr,” https://wickr.com/, 2021.

[109] “Wickr IO,” https://wickrinc.github.io/wickrio-docs/#wickr-io,
2020.

[110] “Wire,” https://wire.com/en/, 2020, 2021.

[111] “Wire Web Application,” https://app.wire.com, 2020, 2021.

[112] “Wondershaper,” https://github.com/magnific0/wondershaper.

[113] “WhatsApp reveals major security flaw that
could let hackers access phones,” https:
//www.cnn.com/2019/05/14/tech/whatsapp-
attack/index.html, 2019.

[114] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M.
Masson, “Uncovering Spoken Phrases in Encrypted Voice over
IP Conversations,” TISSEC, 2010.

[115] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic Morphing: An
Efficient Defense Against Statistical Traffic Analysis,” in NDSS,
2009.

[116] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao, “DSSS-based
flow marking technique for invisible traceback,” in IEEE S&P,
2007.

[117] Y. Zhang and V. Paxson, “Detecting Stepping Stones.” in USENIX
Security, 2000.

[118] Y. Zhu and R. Bettati, “Unmixing Mix Traffic,” in PETS, 2005.

[119] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “On flow
correlation attacks and countermeasures in mix networks,” in
PETS, 2004.

Ardavan Bozorgi received the B.S. degree in
Computer Engineering from the University of
Tehran in 2018. He is currently working towards
the Ph.D. degree with the College of Informa-
tion and Computer Sciences at the University
of Massachusetts Amherst, MA, USA. His re-
search interests include privacy, security, and
traffic analysis.

Alireza Bahramali received the B.S. degree
in Electrical Engineering from the University
of Tehran in 2017, and the M.S. degree in
Computer Science from the University of Mas-
sachusetts Amherst in 2020. He is currently a
Ph.D. student at the University of Massachusetts
Amherst, MA, USA, studying computer science.
His research interests include security and pri-
vacy, traffic analysis, machine learning, and
wireless communication systems.

Fateme Rezaei received B.S. degree in Com-
puter Engineering from Sharif University of Tech-
nology in 2015, M.S. and Ph.D. degrees in Com-
puter Science from University of Massachusetts
Amherst in 2021. Her research interests include
Privacy and Security, and Traffic Analysis. She
is currently working at Snap Inc. as a Software
Engineer.

Amirhossein Ghafari received a B.S degree
in Software Engineering from the University of
Tehran in 2018 and an M.S. degree in Computer
Science from the University of Massachusetts
Amherst in 2022. He is currently a Software En-
gineer at NVIDIA, Santa Clara, CA. His research
interests are network security, traffic analysis,
and censorship.

Amir Houmansadr (Member, IEEE) received
the Ph.D. degree from the University of Illinois at
Urbana–Champaign in 2012. He is currently an
Associate Professor with the Manning College
of Information and Computer Sciences, Univer-
sity of Massachusetts Amherst. His broad area
of research is network security and privacy. He
has received several awards, including the Best
Practical Paper Award at the IEEE Symposium
on Security & Privacy in 2013, the Google Fac-
ulty Research Award in 2015, and the NSF CA-

REER Award in 2016.
Ramin Soltani received the B.S. degree in Elec-
trical Engineering from the University of Tehran
in 2009, M.S. degree in Electrical Engineering
from the Sharif University of Technology in 2012,
and the M.S. and Ph.D. degrees in Electrical and
Computer Engineering from the University of
Massachusetts Amherst, in 2019. He is currently
a Senior Engineer at Samsung Semiconductor
Inc., San Diego, CA. His research interests in-
clude wireless communication, 5G NR, security
and privacy, machine learning, and networking.
Dennis Goeckel (S’89–M’92–SM’04–F’11) re-
ceived the Ph.D. degree from the University
of Michigan in 1996. He is currently a Profes-
sor at the Electrical and Computer Engineer-
ing Department, University of Massachusetts
Amherst, His research interests are in physi-
cal layer communications and wireless network
theory. He received the NSF CAREER Award
in 1999 for coded modulation for high-speed
wireless communications and the University of
Massachusetts Distinguished Teaching Award in

2007.
Don Towsley (Fellow, IEEE and ACM) holds a
Ph.D. in Computer Science (1975) from Univer-
sity of Texas. He is currently a Distinguished
Professor at the Manning College of Information
& Computer Sciences,. His research interests
include performance modeling and analysis, and
quantum networking. He has received several
achievement awards including the 2007 IEEE
Koji Kobayashi Award and the 2011 INFOCOM
Achievement Award.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3218191

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on November 21,2022 at 18:11:23 UTC from IEEE Xplore. Restrictions apply.

https://telegram.org/faq
https://telegram.org/faq
https://telegram.org/faq
https://techcrunch.com/2018/01/02/telegram-and-instagram-being-restricted-in-iran
https://techcrunch.com/2018/01/02/telegram-and-instagram-being-restricted-in-iran
https://www.torproject.org/docs/pluggable-transports.html.en
https://www.torproject.org/docs/pluggable-transports.html.en
https://torguard.net/
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/bb742566(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/bb742566(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/bb742566(v=technet.10)
https://www.whatsapp.com/
https://wickr.com/
https://wickrinc.github.io/wickrio-docs/#wickr-io
https://wire.com/en/
https://app.wire.com
https://github.com/magnific0/wondershaper
https://www.cnn.com/2019/05/14/tech/whatsapp-attack/index.html
https://www.cnn.com/2019/05/14/tech/whatsapp-attack/index.html
https://www.cnn.com/2019/05/14/tech/whatsapp-attack/index.html

	Introduction
	Background: Secure Instant Messaging (SIM) Applications
	How SIM Services Operate
	Prior Security Studies of IM Services

	Attack and Threat Model
	Introducing the Players
	Threat Model
	How the Attack Is Performed
	Related Traffic Analysis Attacks

	Characterizing IM Communications
	Main IM Messages
	Data Collection
	Modeling IM Communications

	Details of Attack Algorithms
	Event-Based Detector
	Shape-Based Detector

	Attack Experiments
	General Setup
	Experiments in Normal Network Conditions
	Experiments in Poor Network Conditions
	Experiments to evaluate the effect of adversary's location
	Comparison with Deep Learning Techniques

	Countermeasures
	Tunneling Through Circumvention Systems With/Without Background Traffic
	IMProxy: An Obfuscation Proxy Designed for IM Services

	Conclusions
	References
	Biographies
	Ardavan Bozorgi
	Alireza Bahramali
	Fateme Rezaei
	Amirhossein Ghafari
	Amir Houmansadr
	Ramin Soltani
	Dennis Goeckel
	Don Towsley

