
/burl@stx null def /BU.S /burl@stx null def def
/BU.SS currentpoint /burl@lly exch def /burl@llx exch
def burl@stx null ne burl@endx burl@llx ne BU.FL BU.S
if if burl@stx null eq burl@llx dup /burl@stx exch def
/burl@endx exch def burl@lly dup /burl@boty exch def
/burl@topy exch def if burl@lly burl@boty gt /burl@boty
burl@lly def if def /BU.SE currentpoint /burl@ury exch
def dup /burl@urx exch def /burl@endx exch def burl@ury
burl@topy lt /burl@topy burl@ury def if def /BU.E BU.FL
def /BU.FL burl@stx null ne BU.DF if def /BU.DF BU.BB
[ /H /I /Border [burl@border] /Color [burl@bordercolor]
/Action ¡¡ /Subtype /URI /URI BU.L ¿¿ /Subtype /Link
BU.B /ANN pdfmark /burl@stx null def def /BU.BB
burl@stx HyperBorder sub /burl@stx exch def burl@endx
HyperBorder add /burl@endx exch def burl@boty Hyper-
Border add /burl@boty exch def burl@topy HyperBorder
sub /burl@topy exch def def /BU.B /Rect[burl@stx
burl@boty burl@endx burl@topy] def /eop where begin
/@ldeopburl /eop load def /eop SDict begin BU.FL end
@ldeopburl def end /eop SDict begin BU.FL end def
ifelse
IEEE/ACM TRANSACTIONS ON NETWORKING 1

SWEET:
Serving the Web by Exploiting Email

Tunnels
Amir Houmansadr, Member, IEEE, Wenxuan Zhou, Member, IEEE,
Matthew Caesar, Member, IEEE, and Nikita Borisov, Member, IEEE

Abstract—Open communications over the Internet poses serious threats to countries with repressive regimes, leading
them to develop and deploy censorship mechanisms within their networks. Unfortunately, existing censorship
circumvention systems do not provide high availability guarantees to their users, as censors can easily identify, hence
disrupt, the traffic belonging to these systems using today’s advanced censorship technologies. In this paper we propose
SWEET, a highly available censorship-resistant infrastructure. SWEET works by encapsulating a censored user’s traffic
inside email messages that are carried over public email services like Gmail and Yahoo Mail. As the operation of SWEET
is not bound to any specific email provider we argue that a censor will need to block email communications all together in
order to disrupt SWEET, which is unlikely as email constitutes an important part of today’s Internet. Through experiments
with a prototype of our system we find that SWEET’s performance is sufficient for web browsing. In particular, regular
websites are downloaded within couple of seconds.

Index Terms—Censorship circumvention, email communications, traffic encapsulation.

F

1 INTRODUCTION

THE Internet provides users from around the world
with an environment to freely communicate, ex-

change ideas and information. However, free com-
munication continues to threaten repressive regimes,
as the open circulation of information and speech
among their citizens can pose serious threats to their
existence. Recent unrest in the middle east demon-
strates that the Internet can be widely used by citizens
under these regimes as a very powerful tool to spread
censored news and information, inspire dissent, and
organize events and protests. As a result, repressive
regimes extensively monitor their citizens’ access to
the Internet and restrict open access to public net-
works [?] by using different technologies, ranging
from simple IP address blocking and DNS hijacking
to the more complicated and resource-intensive Deep
Packet Inspection (DPI) [?], [?].

With the use of censorship technologies, a number
of different systems were developed to retain the
openness of the Internet for the users living under

• Amir Houmansadr is with the University of Massachusetts
Amherst.
E-mail: amir@cs.umass.edu

• Wenxuan Zhou, Matthew Caesar, and Nikita Borisov are with the
University of Illinois Urbana-Champaign.

Manuscript received ....

repressive regimes [?], [?], [?], [?], [?], [?]. The ear-
liest circumvention tools are HTTP proxies [?], [?],
[?] that simply intercept and manipulate a client’s
HTTP requests, defeating IP address blocking and
DNS hijacking techniques. The use of more advanced
censorship technologies such as DPI [?], [?], rendered
the use of HTTP proxies ineffective for circumvention.
This led to the advent of more advanced tools such
as Ultrasurf [?] and Psiphon [?], designed to evade
content filtering. While these circumvention tools have
helped, they face several challenges. We believe that
the biggest one is their lack of availability, meaning
that a censor can disrupt their service frequently or
even disable them completely [?], [?], [?], [?], [?].
The common reason is that the network traffic made
by these systems can be distinguished from regular
Internet traffic by censors, i.e., such systems are not
unobservable. For example, the popular Tor [?] network
works by having users connect to an ensemble of
nodes with public IP addresses, which proxy users’
traffic to the requested, censored destinations. This
public knowledge about Tor’s IP addresses, which is
required to make Tor usable by users globally, can be
and is being used by censors to block their citizens
from accessing Tor [?], [?]. To improve availability,
recent proposals for circumvention aim to make their
traffic unobservable to the censors by pre-sharing se-
crets with their clients [?], [?], [?]. Others [?], [?], [?], [?]



IEEE/ACM TRANSACTIONS ON NETWORKING 2

suggest to conceal circumvention by making infras-
tructure modifications to the Internet. Nevertheless,
deploying and scaling these systems is a challenging
problem, as discussed in Section 2.

A more recent approach in designing unobservalbe
circumvention systems is to imitate popular applica-
tions like Skype and HTTP, as suggested by Skype-
Morph [?], CensorSpoofer [?], and StegoTorus [?].
However, it has recently been shown [?] that these
systems’ unobservability is breakable; this is because
a comprehensive imitation of today’s complex proto-
cols is sophisticated and infeasible in many cases. A
promising alternative suggested [?], [?] is to not mimic
protocols, but run the actual protocols and find clever
ways to tunnel the hidden content into their genuine
traffic; this is the main motivation of the approach
taken in this paper.

In this paper, we design and implement SWEET,
a censorship circumvention system that provides high
availability by leveraging the openness of email com-
munications. Fig. 1 shows the main architecture. A
SWEET client, confined by a censoring ISP, tunnels its
network traffic inside a series of email messages that
are exchanged between herself and an email server
operated by SWEET’s server. The SWEET server acts
as an Internet proxy [?] by proxying the encapsu-
lated traffic to the requested blocked destinations. The
SWEET client uses an oblivious, public mail provider
(e.g., Gmail, Hotmail, etc.) to exchange the encapsulat-
ing emails, rendering standard email filtering mech-
anisms ineffective in identifying/blocking SWEET-
related emails. More specifically, to use SWEET for cir-
cumvention a client needs to create an email account
with some public email provider; she also needs to
obtain SWEET’s client software from an out-of-bound
channel (similar to other circumvention systems). The
user configures the installed SWEET software to use
her public email account, which sends/receives encap-
sulating emails on behalf of the user to/from the email
address of SWEET.
SWEET’s unobservability We claim that a censor
is not easily able to distinguish between SWEET’s
email messages and benign email messages. As de-
scribed later in Section 4, a SWEET client has two
options in choosing her email account: 1) Alien-
Mail a non-domestic email that encrypts emails (e.g.,
Gmail for users in China), and 2) DomesticMail a
domestic email account with no need for encryp-
tion (e.g., 163.com for users in China). As described
in Section 4, when AlienMail is used by a client
all of its SWEET emails are sent to a publicly
known email address, e.g., tunnel@sweet.org, en-
crypted; however, a censor will not be able to identify
these emails since they are proxied by the AlienMail
server running outside the censoring area. In sim-
pler words, the censor only observes that the client

is exchanging encrypted messages with the Alien-
Mail server (e.g., Gmail’s mail server in U.S.), but
he will not be able to observe neither the recipi-
ent’s email address (tunnel@sweet.org), nor the
IP address of the sweet.org mail server. As a re-
sult, existing approaches for spam filtering such as
shooting the spamming SMTP servers and drop-
ping spam emails are entirely infeasible. In the
case of DomesticMail, the SWEET server uses a sec-
ondary secret email account, which is only shared
with that particular client, for exchanging SWEET
emails (i.e., myotheremail@163.com instead of
tunnel@sweet.org address). As a result, the censor
will not be able to identify SWEET messages from their
recipient fields (since the censor does not know the as-
sociation of myotheremail@163.com with SWEET).
Also, the use of steganography/encryption to embed
tunneled data renders DPI infeasible.

SWEET’s availability Given SWEET’s unobservabil-
ity discussed above, a censor can not efficiently dis-
tinguish between SWEET emails and benign email
messages. Hence, in order to block SWEET a cen-
sor needs to block all email messages to the outside
world. However, email is an essential service in to-
day’s Internet and it is very unlikely that a censor-
ship authority will block all email communications
to the outside world, due to different financial and
political reasons. This, along the fact that SWEET can
be reached through a wide range of domestic/non-
domestic email providers provides a high degree of
availability for SWEET.

Prototype implementation: We have built a prototype
implementation for SWEET and evaluated its perfor-
mance. We have also proposed and prototyped two
different designs for SWEET client. The first client
design uses email protocols, e.g., POP3 and SMTP, to
communicate with the SWEET system, and our second
design is based on using the webmail interface. Our
measurements show that a SWEET client is able to
browse regular-sized web destinations with download
times in the order of couple of seconds.

In fact, the high availability of SWEET comes for
the price of higher, but bearable, communication la-
tencies. Fig. 2 compares SWEET with several popu-
lar circumvention systems regarding their availability
and communication latency. As our measurements
in Section ?? show, SWEET provides communication
latencies that are convenient for latency-sensitive ac-
tivities like web browsing (i.e., few seconds). Such
additional, tolerable latency of SWEET comes with the
bonus of better availability, as discussed in Section 5.2.

Our contributions: In summary, this paper makes the
following main contributions: i) we propose a novel
infrastructure for censorship circumvention, SWEET,
which provides high availability, a feature missing



IEEE/ACM TRANSACTIONS ON NETWORKING 3

e
Client

Censoring ISP

Blocked 
destination

email messages

SWEET 
Server

Oblivious 
mail server

e
e

HTTP

Fig. 1. Overall architecture of SWEET.

Av
ai

la
bi

lit
y 

(h
ig

he
r i

s 
be

tte
r)

Communication Latency (higher is worse)

Direct 
Connection

Ideal 
Circumvetion

LAP*

Telex*
Cirripede*

Tor

Tor with
Bridges

Anonymizer
Proxies

SWEET

*: Require Internet 
infrastructure modifications 

Mix
Networks

Fig. 2. Availability and communication latency comparison of
circumvention systems.

in existing circumvention systems; ii) we develop
two prototype implementations for SWEET (one using
webmail and the other using email exchange proto-
cols) that allow the use of nearly all email providers
by SWEET clients; and, iii) we show the feasibility
of SWEET for practical censorship circumvention by
measuring the communication latency of SWEET for
web browsing using our prototype implementation.

Paper’s organization: The rest of this paper is orga-
nized as follows; in Section 2, we discuss the related
work on unobservable censorship circumvention. In
Section 3, we reviews our threat model. We provide
the detailed description of the proposed circumven-
tion system, SWEET, in Section 4. We discuss SWEET’s
censorship features, including its availability, in Sec-
tion 5 and compare it with the literature. Our proto-

type implementation and evaluations are presented in
Sections ?? and ??, respectively. Finally, we conclude
the paper in Section ??.

2 RELATED WORK

There has been much work on unobservable cen-
sorship circumvention systems [?], [?], [?], [?], [?],
[?], [?], [?], [?], [?]. Similar to SWEET, FreeWave [?],
CloudTransport [?], and CovertCast [?] also work by
tunneling circumvention traffic into the actual runs
of popular network protocols. For instance, Free-
Wave [?] tunnels Internet traffic inside VoIP com-
munications. This tunneling approach provides much
stronger unobservability against the censors compared
to imitation-based circumvention systems [?], [?], [?],
as demonstrated by Houmansadr et al. [?].

Several designs [?], [?], [?] seek unobservability by
sharing secret information with their clients, which are
not known to censors. For instance, the Tor network
has recently adopted the use of Tor Bridges, a set of
volunteer nodes connecting clients to the Tor network,
whose IP addresses are selectively distributed among
Tor users by Tor. As another example, Infranet [?]
shares a secret key and some secret URL addresses
with a client, which is then used to establish an un-
observable communication between the client and the
system. Collage [?] works by having a client and the
system secretly agree on some user-generated content
sharing websites, e.g., flickr.com, and communicate
using steganography. Unfortunately, sharing secrets
with a wide range of clients is a serious challenge,
as a censor can obtain the same secret information by
pretending to be a client.

Some recent research suggests circumvention being
built into the Internet infrastructure to better provide
unobservability [?], [?], [?]. These systems rely on
collaboration from some Internet routers that intercept
users’ traffic to uncensored destinations to establish
covert communication between the users and the cen-
sored destinations. Telex [?] and Cirripede [?] provide



IEEE/ACM TRANSACTIONS ON NETWORKING 4

this unobservable communication without the need
for some pre-shared secret information with the client,
as the secret keys are also covertly communicated
inside the network traffic. Cirripede [?] uses an addi-
tional client registration stage that provides some ad-
vantages and limitations as compared to Telex [?] and
Decoy routing [?] systems. Recent studies investigate
the real-world deployment of decoy routing systems
by evaluating the placement of decoy routers on the
Internet in adversarial settings [?], [?], [?].

There are two projects that work in a similar man-
ner to SWEET: FOE [?] and MailMyWeb [?]. Instead
of tunneling traffic, which is the case in SWEET,
these systems simply download a requested website
and send it as an email attachment to the requesting
user. This highly limits their performance compared to
SWEET, as discussed in Section 4.4.

3 THREAT MODEL

We assume that a user is confined inside a censoring
ISP. The ISP blocks the user’s access to certain Internet
destinations, namely blocked destinations. The censor is
assumed to use today’s advanced filtering technolo-
gies, including IP address blocking, DNS hijacking,
and deep packet inspection techniques [?]. The ISP
also monitors all of its egress/ingress traffic to detect
any use of circumvention techniques.

We assume that the censorship is constrained not
to degrade the usability of the Internet. In other words,
even though it selectively blocks certain Internet con-
nections, she is not willing to block key Internet ser-
vices entirely. In particular, the operation of SWEET
system relies on the fact that a censoring ISP does
not block all email communications, even though she
can selectively block emails/email providers. We also
assume that the ISP has as much information about
SWEET as any SWEET client.

We also consider active behaviors of the ISP. In
addition to traffic monitoring, the censor manipulates
its Internet traffic, e.g., by selectively dropping pack-
ets, and adding latency to some packets, to disrupt
the use of circumvention systems and/or to detect the
users of such systems. Again, such perturbations are
constrained to preserve the usability of the Internet for
benign users.

4 DESIGN OF SWEET
In this section, we describe the detailed design of
SWEET. Fig. 1 shows the overall architecture. SWEET
tunnels network connections between a client and a
server, called SWEET server, inside email communica-
tions. Upon receiving the tunneled network packets,
the SWEET server acts as a transparent proxy between
the client and the network destinations requested by
the client.

A client’s choices of email services A SWEET client
has two options for his email provider: AlienMail, and
DomesticMail.

1) AlienMail An AlienMail is a mail provider
whose mail servers reside outside the censor-
ing ISP, e.g., Gmail for the Chinese clients.
We only consider AlienMails that provide
email encryption, e.g., Gmail and Hushmail.
A SWEET client who uses an AlienMail does
not need to apply any additional encryp-
tion/steganography to her encapsulated con-
tents. Also, she simply sends her emails to the
publicly advertised email address of SWEET
server, e.g., tunnel@sweet.org, since the
censors will not be able to observe (and
block) the tunnel@sweet.org address in-
side SWEET messages, which are exchanged
ibetween the client and the AlienMail server
in an encrypted format.

2) DomesticMail A DomesticMail is an email
provider hosted inside the censoring ISP
and possibly collaborating with the censors,
e.g., 163.com for the Chinese clients. Since
the censors are able to observe the email
contents, the SWEET client using a Domes-
ticMail should hide the encapsulated con-
tents through steganography (e., by doing
image/text steganography inside email mes-
sages). Also, the client can not send her
SWEET emails to the public email address
of SWEET server (tunnel@sweet.org) since
the mail recipient field is observable to the
DomesticMail provider and/or the censor. In-
stead, the client generates a secondary email
address, myotheremail@somedomain.com
(which could be either DomesticMail or Alien-
Mail), and then provides the email cre-
dentials for this secondary account only to
SWEET server through an out-of-band chan-
nel (e.g., through an online social network).
The SWEET server uses this email address to
exchange SWEET emails only with this partic-
ular client.

In the following, we describe the details of
SWEET’s server and client architectures. To avoid
confusion and without loss of generality, we only
consider the case of AlienMail being used by the
client. If DomesticMail is used, the client and server
should also perform some steganography operations
to hide the encapsulated traffic, as well as they should
exchange a secondary email address, as described
above.



IEEE/ACM TRANSACTIONS ON NETWORKING 5

4.1 SWEET server

The SWEET server is the part of SWEET running
outside the censoring region. It helps SWEET clients to
evade censorship by proxying their traffic to blocked
destinations. More specifically, a SWEET server com-
municates with censored users by exchanging emails
that carry tunneled network packets. Fig. 3 shows the
main design of SWEET server, which is composed of
the following elements:
¬ Email agent: The email agent is an IMAP and SMTP
server that receives emails that contain the tunneled
Internet traffic, sent by SWEET clients to SWEET’s
email address.The email agent passes the received
emails to another components of the SWEET server,
the converter and the registration agent.The email
agent also sends emails to SWEET clients, which are
generated by other components of SWEET server and
contain tunneled network packets or client registration
information.
 Converter: The converter processes the emails
passed by the email agent, and extracts the tunneled
network packets. It then forwards the extracted data
to another component, the proxy agent. Also, the con-
verter receives network packets from the proxy agent
and converts them into emails that are targeted to the
email address of corresponding clients. The converter
then passes these emails to the email agent for delivery
to their intended recipients. As described later, the
converter encrypts/decrypts the email attachments of
a user using a secret key shared with that user.
® Proxy agent: The proxy agent proxies the network
packets of clients that are extracted by the converter,
and sends them to the Internet destination requested
by the clients. It also sends packets from the destina-
tion back to the converter.
¯ Registration agent: This component is in charge of
registering the email addresses of the SWEET clients,
prior to their use of SWEET. The information about
the registered clients can be used to ensure quality
of service and to prevent denial-of-service attacks on
the server. Additionally, the registration agent shares
a secret key with the client, which is used to encrypt
the tunneled information between the client and the
server.

The email agent of the SWEET server receives two
type of emails; traffic emails, which contain tunneled
traffic from the clients (sent to tunnel@sweet.org),
and registration emails, which carry client registration
information (sent to register@sweet.org).
Client registration: Before the very first use of the
SWEET service, a client needs to register her email ad-
dress with the system. This is automatically performed
by the client’s SWEET software.The objective of client
registration is twofold: to prevent denial-of-service
(DoS) attacks and to share a secret key between a client

and the server. A DoS attack might be launched on the
server to disrupt its availability, e.g., through sending
many malformed emails on behalf of non-existing
email addresses (this is discussed in Section 5). In or-
der to register (or update) the email address of a client,
the client’s SWEET software sends a registration email
from the user’s email address, to the SWEET’s regis-
tration email address. , i.e., register@sweet.org,
requesting registration. The email agent forwards all
received registration emails to the registration agent
(¯). For any new registration request, the registration
agent generates and sends an email to the requesting
email address (through the email agent) that contains a
unique computational challenge (e.g., [?]). After solving
the challenge, the client software sends a second email
to register@sweet.org that contains the solution
to the challenge, along with a Diffie-Hellman [?] public
key KC = gkC . If the client’s response is verified
by the registration agent, the client’s email address
will be added to a registration list, that contains the
list of registered email addresses with their expiration
time. Also, the registration agent uses its own Diffie-
Hellman public key, KR = gkR , to evaluate a shared
key kC,R = gkRkC for the later communications with
the client. The registration agent adds this key to the
client’s entry in the registration list , to be used for
communications with that client. The client is able to
generate the same kC,R key using SWEET’s publicly
advertised public key and her own private key [?].
Tunneling the traffic: Any traffic email received by
the email agent is processed as follows: the email
agent (¬) forwards the email to the converter(). The
converter processes the traffic email and extracts the
tunneled information. The converter, then, decrypts
the extracted information (using the key kC,R corre-
sponding to the user) and sends it to the proxy agent
(®). Finally, the proxy processes the received packet as
required, e.g., sends the packet to the requested des-
tination. Similarly, for any tunneled packet received
from the proxied destinations, the proxy agent sends
it to the converter. The converter encrypts the received
packet(s) (using the corresponding kC,R), and gener-
ate a traffic email containing the encrypted data as
an attachment, targeted to the email address of the
corresponding client. The generated email is passed
to the email agent, who sends the email to the client.
Note that to improve the latency performance, small
packets that arrive at the same time get attached to
the same email.

4.2 SWEET client

To use SWEET, a client needs to obtain a copy of
SWEET’s client software and install it on her machine.
The client also needs to create one or two email
account (depending on if she uses an AlienMail or a



IEEE/ACM TRANSACTIONS ON NETWORKING 6

Email 
Agent Coverter Proxy 

agent

e

e

Proxy 
connection Blocked

Destination

SWEET Server

Client

e

e

Registration Agent

Fig. 3. The main architecture of SWEET server.

DomesticMail for her primary email).A client needs
to configure the installed SWEET’s software with in-
formation about her email account. Prior to the first
use of SWEET by a client, the client software registers
the email address of its user with the SWEET server
and obtains a shared secret key kC,R, as described in
Section 4.1.

We propose two designs for SWEET client: a
protocol-based design, which uses standard email pro-
tocols to exchange email with client’s email provider,
and a webmail-based design, which uses the webmail
interface of the email provider. We describe these two
designs in the following.

4.2.1 Protocol-based design

Fig. 4(a) shows the three main elements.
¶ Web Browser: The client can use any web browser
that supports proxying of connections, e.g., Google
Chrome, Internet Explorer, or Mozilla Firefox. The
client needs to configure her browser to use a local
proxy server, e.g., by setting localhost:4444 as the
HTTP/SOCKS proxy. The client can use two different
browsers for browsing with and without SWEET to
avoid the need for frequent re-configurations of the
browser. Alternatively, some browsers (e.g., Chrome,
and Mozilla Firefox) allow a user to have multiple
browsing profiles, hence, a user can setup two profiles
for browsing with and without SWEET.
· Email Agent: It sends and receives SWEET emails
thorough the client’s email account. The client needs
to configure it with the settings of the SMTP and
IMAP/POP3 servers of her email account. The client
also needs to provide it with the account login infor-
mation.
¸ Converter: It sits between the web browser and the
email agent, and converts SWEET emails into network
packets and vice versa. It uses the keys shared with
SWEET, kC,R, to encrypt/decrypt email content.

Once the client enters a URL into the configured
browser (¶), the browser makes a proxy connection
to the local port that the converter (¸) is listening

on. The converter accepts the proxy connection and
keeps the state of the established TCP/IP connec-
tions. For packets that are received from the browser,
the converter generates traffic emails, targeted to
tunnel@sweet.org, having the received packets as
encrypted email attachments (using the key kC,R).
Such emails are passed to the email agent (·) that
sends the emails to the SWEET server through the
public email provider of the client.

The email agent is also configured to receive emails
from the client’s email account through an email re-
trieval protocol, e.g., IMAP or POP3. This allows the
email agent to continuously look for new emails from
the server. Once new emails are received, the email
agent passes them to the converter, who in turn ex-
tracts the packets from the emails, decrypts them, and
sends them to the browser over the existing TCP/IP
connection.

4.2.2 Webmail-based design
Alternatively, the SWEET client can use the web-
mail interface of the client’s public email provider.
as showed in Fig. 4(b).The main difference with the
protocol-based design is that in this case the email
agent (·) uses a web browser to exchange emails.
More specifically, the email agent uses its web browser
to open a webmail interface with the client’s email
account, using the user’s authentication credentials for
logging in. Through this HTTP/HTTPS connection,
the email agent communicates with the SWEET server
by sending and receiving emails.

4.3 The choice of the proxy protocol
As mentioned before, the SWEET server uses a proxy
agent to receive the tunneled traffic of clients and to
establish connections to the requested destinations. We
consider the use of both SOCKS [?] and HTTP [?]
proxies in the design, as each provides unique advan-
tages. Our server’s proxy agent runs a SOCKS proxy
and an HTTP proxy in parallel, each on a different
port. A user can choose to use the type of proxy by



IEEE/ACM TRANSACTIONS ON NETWORKING 7

Web 
Browser Coverter Email

Agent

e

e

Proxy
connection Client's

Public Mail 
Server

SWEET Client

e

e

SWEET
Server

e

e

(a) The protocol-based design.

Client's
WebMail 
server

SWEET
Server

e

e

HTTPS
connectionWeb 

Browser Coverter 

e

e

Proxy
connection

SWEET Client

Email Agent

Web 
Browser

(b) The webmail-based design.

Fig. 4. Design of SWEET client software.

configuring her client to connect to the corresponding
port.

The use of the SOCKS proxy allows the client
to make any IP connection through the SWEET sys-
tem, including dynamic web communications, such as
Javascript or AJAX, and instant messaging. In con-
trast, an HTTP proxy only allows access to HTTP
destinations. However, an HTTP proxy may speed up
connections by using HTTP-layer optimizations such
as caching or pre-fetching of web objects.

4.4 An alternative approach: Web download

A trivial approach in providing censorship circumven-
tion using email is to download an entire webpage and
attach it as an email attachment to emails that are tar-
geted to the requesting users. In fact, this approach is
under development by the open-source foe project [?],
and the for-profit service of MailMyWeb [?]. Unfortu-
nately, this simple approach only provides a limited
access to the Internet: a user can only access static
websites. In particular, this approach cannot be used to
access destinations that require end-to-end encryption,
contain dynamic web applications like HTML5 and
Javascript sockets, or need user login information.
Also, this approach does not support accessing web
destinations that require a live Internet connection,

e.g., video streaming websites, instant messaging, etc.
In fact, the MailMyWeb service uses some heuristics to
tackle some of these shortcomings partially, which are
privacy-invasive and inefficient. For example, in order
to access login-based websites MailMyWeb requests
a user to send her login credentials to MailMyWeb
by email. Also, a user can request for videos hosted
only on the YouTube video sharing website, which
are then downloaded by MailMyWeb and sent as
email attachments; this causes a large delay between
the time a video is requested until it is has received
by the user. SWEET, on the other hand, provides a
comprehensive web browsing experience to its users
since it can tunnel any kind of IP traffic.

5 DISCUSSIONS AND COMPARISONS

In this section, we evaluate SWEET’s circumvention
capabilities by discussing important features that are
essential for an effective circumvention.

5.1 Unobservability
We say a circumvention tool provides unobservability
if censors are not able to identify neither the traffic, nor
the clients using that tool. Unobservability has been
considered as a main feature in the design of recent
circumvention systems [?], [?], [?], [?], [?], [?].



IEEE/ACM TRANSACTIONS ON NETWORKING 8

We claim that a censor is not easily able to distin-
guish between SWEET’s email messages and benign
email messages. As described in Section 4, a SWEET
client has two options in choosing her email account:
1) AlienMail a non-domestic email that encrypts emails
(e.g., Gmail for users in China), and 2) DomesticMail a
domestic email account with no need for encryption
(e.g., 163.com for the users in China). When AlienMail
is used by a SWEET client all of its SWEET emails are
encrypted and are exchanged with a publicly known
email address of SWEET, e.g., tunnel@sweet.org;
however, a censor will not be able to identify these
SWEET emails since they are proxied by the AlienMail
server running outside the censoring area. In simpler
words, the censor only observes that the client is
sending/receiving messages with an AlienMail server
(e.g., Gmail’s mail server in U.S.), but he will not
be able to observe neither the recipient’s email ad-
dress (tunnel@sweet.org), nor the IP address of the
sweet.org mail server. As a result, existing approaches
for spam filtering such as shooting spamming SMTP
servers and dropping spam emails are entirely in-
feasible. In the case of DomesticMail, the SWEET
server uses a secret secondary email account, which
is only shared with that particular client, for exchang-
ing SWEET emails (i.e., myotheremail@163.com in-
stead of tunnel@sweet.org address). As a result,
the censor will not be able to identify SWEET mes-
sages from their recipient field (since the censor can
not associate the private email address with SWEET).
Also, the use of steganography to embed tunneled
data renders DPI infeasible.

In addition, to ensure unobservability the user’s
email traffic patterns should mimic that of normal
email communications, to defeat traffic analysis by a
censor; this limits the bandwidth available to the user,
as discussed in Section ??.

5.2 Availability

SWEET’s availability is tied to the assumption that
a censor is not willing to block all email commu-
nications. As the use of SWEET does not require
using any specific email provider, users can always
find an email service to get connected to SWEET. IP
filtering and DNS hijacking would not be able to stop
SWEET traffic as a SWEET user’s traffic is destined
to her public email provider, but not to an IP ad-
dress or nameserver belonging to the SWEET system.
Moreover, deep packet inspection (DPI) is rendered
ineffective due to the use of encrypted emails in the
case of AlienMail, and steganography in the case of
DomesticMail.

As another approach to disrupt the operation of
SWEET, a censor might try to launch a denial-of-
service (DoS) attack on SWEET server. The common

techniques for DoS attacks, e.g., ICMP flooding and
SYN flooding, can be mitigated by protecting the
SWEET server using up-to-date firewalls. Alterna-
tively, a censor can play the role of a SWEET client
and send traffic through its SWEET client software in a
way that overloads the SWEET server. As an example,
the attacker can flood the SWEET’s SOCKS proxy by
initiating many incomplete SOCKS connections, or
sending SYN floods. A censor could even send such
attacking requests on behalf of a number of rogue
(non-existing) email addresses, to render an email
blacklist maintained by SWEET server ineffective in
preventing such attacks. To protect against possible
DoS attacks, SWEET requires a new user to register her
email address with SWEET server prior to her first use.
Such registration can be performed in an unobservable
manner by SWEET’s client software through the email
communication channel (see Section 4.1). Also, to en-
sure the quality of service for all users, the SWEET
server can limit the use of SWEET by putting a cap on
the volume of traffic communicated by each registered
email address.

5.3 Other properties of SWEET

Confidentiality: As mentioned before, SWEET en-
crypts the tunneled traffic, i.e., email attachments are
encrypted using a key shared between a user and
SWEET server. This ensures the confidentiality of user
communications from any entity wiretapping the traf-
fic, including the censorship authorities and the public
email provider. Note that the email attachments are
encrypted even if the user choose a plaintext email ser-
vice. To make a connection confidential from SWEET
server, the user can use an end-to-end encryption
with the final destination, e.g., by using HTTPS, or
alternatively the user can use SWEET to connect to
another circumvention system, like Anonymizer [?].
Ease of deployment: We argue that SWEET can be
easily deployed on the Internet and provide service
to a wide range of users. First of all, SWEET is low-
cost and needs few resources for deployment. It can
be deployed using a single server that runs a few
light-weight processes, including a mail server and a
SOCKS proxy. To service in a large scale SWEET server
can be deployed in a distributed manner as several
machines in different geographic locations. Secondly,
the operation of SWEET is standalone and does not
rely on collaboration from other entities, e.g., end-
hosts or ISPs. This provides a significant advantage to
recent research that relies on collaboration from ISPs
[?], [?], [?], or end-hosts [?], [?]. In fact, the easy setup
and low-resources of SWEET’s deployment allows it
to be implemented by individuals with different levels
of technical expertise. For instance, an ordinary home
user can deploy a personal SWEET server to help


	Introduction
	Related work
	Threat model
	Design of SWEET
	SWEET server
	SWEET client
	Protocol-based design
	Webmail-based design

	The choice of the proxy protocol
	An alternative approach: Web download

	Discussions and comparisons
	Unobservability
	Availability
	Other properties of SWEET


