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Abstract. Image-Adaptive watermarking systems exploit visual models to 
adapt the watermark to local properties of the host image. This leads to a 
watermark power enhancement, hence an improved resilience against different 
attacks, while keeping the mark imperceptible. Visual models consider different 
properties of the human visual system, such as frequency sensitivity, luminance 
sensitivity and contrast masking. Entropy masking is another human visual 
system’s characteristic, which rarely has been addressed in visual models. In 
this paper we have utilized this masking effect to improve the robustness of 
Image-Adaptive watermarks while keeping their transparency. Experimental 
results show a significant amount of enhancement to the power of watermark. 
The work has been expanded to video watermarking, considering special 
properties of the entropy masking effect.  

1   Introduction 

The extreme development of Internet has made the transmission, distribution and 
access to digital media very convenient. As a result, media producers are more 
frequently dealing with illegal and unauthorized usage of their productions. Amongst 
all digital media, video files could be the most valuable products that are being used 
vastly, while violating copyright laws that could impose huge damage to filmmaking 
industry.  

Over the last two decades digital watermarking has been addressed as an effective 
solution to safeguard copyright laws, and an extensive research activity has been done 
on the area. Generally speaking, a digital watermark is an invisible mark that is 
inserted into a digital media such as audio, image or video and could be utilized to 
identify illegal distributions of copyright protected digital media and also lawbreaking 
customers. A digital watermark must have special features to make its desired 
functionalities. The embedded mark should be robust enough against various 
watermarking attacks while keeping the perceived quality of the host signal 
unchanged (the imperceptibility requirement). Watermarking attacks consist of 
deliberate attacks made maliciously to remove or change the mark sequence by 
lawbreakers and unintentional attacks caused as a result of different kinds of coding 
and compression made to the digital media prior to transmission and/or storage and 
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also errors occurred during the transmission of the media through the transmission 
networks.  In addition, inserted watermark must prohibit the malicious insertion of 
additional marks by embedding the maximum possible watermark power, exploiting 
the maximum affordable capacity of the digital media. 

 

                                       

Fig. 1. Comparison of Cox scheme (Image-Independent) and IA-DCT scheme (Image-
Adaptive): (a) top-left: Original image, (b) top-middle: watermarked image by Cox scheme, (c) 
top-right: watermarked image by IA-DCT scheme, (d) bottom-middle: Cox’s watermark and (e) 
bottom-right: IA-DCT’s watermark (watermarks are scaled to be visible) 

Watermarking algorithms, as far as digital images are concerned, can be classified 
into two different categories: Image-Independent watermarking schemes and Image-
Adaptive watermarking schemes. Watermarking schemes of the first class embed the 
mark discarding Human Visual System (HVS) characteristics and without using any 
visual model. In other words, watermark insertion algorithm performs the same for 
every host image without considering its special characteristics. Cox watermarking 
scheme [1] is a well-known scheme, which belongs to this category and is based on 
the spread spectrum communications. In this scheme, a DCT (Discrete Cosine 
Transform) transform is performed on the whole image and then the watermarking 
sequence is embedded in the predetermined perceptually significant DCT coefficients 
(low frequency components except DC coefficient). On the other hand, Image-
Adaptive watermarking schemes exploit visual models to adapt the mark sequence to 
the local properties of the host image providing an optimal transparency and 
robustness. Podilchuk et al proposed two watermarking algorithms, which are 
classified in this category of image watermarking scheme [2]. Their IA-DCT scheme 
is the modified version of the Cox scheme using Watson visual model [3], in which 
DCT transform is performed on non-overlapping 8*8 blocks of the host image and 
then the mark sequence is inserted in each block considering its visual characteristics 
according to Watson’s visual model. Figure 1 shows the watermarked images of Lena 
using Cox algorithm and IA-DCT algorithm in addition to their corresponding 
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watermarks. As shown in the figure, the second class of image watermarking schemes 
allocates watermark positions according to local characteristics of the host image with 
respect to a visual model. As a result, for images with fairly uniform perceptual 
characteristics, image-adaptive watermarks provide a watermark power close to what 
the non-image-adaptive algorithms insert, while for more complex host images, 
taking advantage of local properties of the images leads to insertion of higher power 
and more watermark bits.  

In this paper, we will use a rarely used masking effect to improve watermark 
power in Image-Adaptive watermarking schemes. In section 2, the concept of entropy 
masking is described, following a general introduction to visual models. In section 3, 
the mentioned masking effect is exploited in the watermark insertion process. Some 
simulation results are given in section 4 and the paper is concluded in section 5.  

2   Visual Models and Entropy Masking 

Over recent years, there has been tremendous effort in order to understand and model 
the Human Visual System and applying it to different image processing applications 
[2]. Such effort has been examined for solving various problems and has resulted in 
different levels of success. Recently, visual models have been developed as a result of 
the efforts taken place in the field of image and video compression, which desire to 
improve the quality of the compression exploiting HVS characteristics. Basically, 
both image watermarking and image compression are concerned of the image 
redundancy, which is to be reduced in the case of compression, while is employed to 
insert the mark in the case of watermarking. As a result, visual models devised in the 
area of image compression can also be suited to the watermarking problem.  

In compression applications, a common approach to perceptual coding is to derive 
an image dependent mask containing the JND‘s (Just Noticeable Difference) to gain 
perceptual based quantizers and to perceptually allocate the bit positions. The same 
approach can be utilized in the case of watermarking problem to find upper bounds of 
the watermark intensity levels in different regions of the image to assure the 
watermark’s transparency, while providing the maximum affordable robustness of the 
mark.  Also, JND’s can be used to determine an upper bound of the number of 
watermarks that can be inserted in a particular image with a low error probability, 
which can be referred to as the watermark capacity.  

In contrast with compression applications, watermarking algorithms can fully 
utilize the local information extracted from the visual models since the original image 
is available at the receiver [2].  As an example of visual models, we consider two 
perceptual models which have been applied to the baseline of the JPEG coder. Watson 
model [3] and Safranek-Johnston model [4] are based on the same image independent 
component, utilizing frequency sensitivity, which is the human’s eye sensitivity to 
sine wave grating at various frequencies. This component is based on the work done 
in [5] with a minimum viewing distance of four picture heights and a D65 monitor 
white point. As a result, a frequency threshold value is obtained for each DCT basis 
function that we mention it by tu,v

F where u and v are the indexes of the block and in 
the case of the work done for JPEG compression, this results in an 8*8 matrix of 
threshold values. Frequency sensitivity provides a static JND, which only depends on 
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the viewing conditions and is independent from the image. Generally speaking, HVS 
decreases its sensitivity to very low and very high frequencies. Furthermore, Watson 
refined his model by adding a luminance sensitivity and contrast masking component 
[3]. Luminance sensitivity states the detecting threshold of noise on a constant 
background. This is a nonlinear parameter, which depends on the local characteristics 
of the image. Watson estimated luminance sensitivity in [3] by the formula 
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where X0,0,b is the DC coefficient of the DCT transform over the b’s block, X0,0 is 
the DC coefficient of the DCT transform over the whole image and a is a parameter 
for controlling the degree of luminance sensitivity which was set to 0.649 by the 
authors in [5]. Contrast masking is the third component that Watson used in his 
model, which states that a signal can be masked in the presence of another signal 
especially when the both signals have the same spatial frequency, orientation and 
location. This allows for a more dynamic JND threshold allocation. Considering 
Xu,v,b  as the DCT coefficients of block b and tu,v

L as the threshold values derived 
from the viewing conditions and also the luminance masking, a contrast masking 
threshold is derived as 
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where ωu,v assumes a different value for each DCT basis function, where a value of 
0.7 was derived for it in [3].  

Here, we address another masking effect that was first introduced by Watson et al 
[6]. Watson classified all the previous studies on visual masking into two classes: 
contrast masking and noise masking depending primarily on whether the mask is 
deterministic or random. Generally, contrast masking refers to a decrease in the 
effective gain of the early visual system. On the other hand, noise masking is 
explained by an increased variance in some internal decision variable [6]. Clearly, 
contrast masking is the one which plays the role in image quality models. Watson et 
al. introduced a third type masking effect, which is deterministic but unfamiliar and 
called it entropy masking. Watson performed a number of experiments to determine 
the detectability threshold of an especial Gabor function added to various 
backgrounds by some observers. Each trial of the experiment consists of two 
intervals, which in one of them the single background is shown to the observer and in 
the other the background containing the target (Gabor function) is shown to the 
observer, from which he/she must detect the background containing the target. The 
mean results of the Watson’s experiments are shown in table 1, where none represents 
the condition without any background, cos represents the situation with a cosine 
background having the same frequency and orientation as the Gabor function, random 
represents the situation that a new sample of a bandpass noise (with a bandwidth 
equal to Gabor function’s frequency) was used in each interval of each trial, twin is a 
especial case of random experiment, in which the same background is used in two 
intervals of each trial and the fixed experiment is the case where the bandpass noise 
background is fixed for all the trials.    
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Table 1. Mean threshold and threshold elevation for different experimental conditions. 
Elevations are relative to no mask condition. (Table from [6]). 

 None Cos Random Twin Fixed 
Threshold(dB) -27.59 -24.92 -14.08 -12.80 -19.34 
Elevation(dB) 0 2.67 13.51 14.79 8.24 

The small threshold elevation in the cos case is as a result of contrast masking. As 
stated, all the experiments are under the same contrast masking effect, so the 10.84 dB 
threshold elevation of random experiment in comparison to cos experiment must be 
due to noise masking. Surprisingly, threshold elevation in the twin condition is 
approximately the same as that in the random condition while we have no more noise 
masking because of utilizing the same background for the both intervals of every trial. 
Watson et al stated that this threshold elevation is due to unfamiliarity of the observer 
to background which they called it entropy masking to reflect the notion that the 
masking is a function of the degree to which the mask is unknown. Entropy is a 
measure of information in a signal which is by definition that which we do not know.  

An interesting phenomenon was observed dealing with entropy masking. In the 
fixed condition of the experiments (where the bandpass noise is fixed for all the 
trials), as we raise the number of observations, the detectability threshold decreases 
(see Table 1). This is called learning characteristic upon it entropy masking decreases 
if the complexity of the background is learned by the observers. Other experiments 
utilizing white noise, fixed white noise and fixed image as a background showed that 
learning ability and speed of learning of the background is a function of its simplicity 
[6]. In other words, an image is learned very rapidly while a fixed white noise either 
not learned or learned very slowly.  

In the next sections of this paper, we consider the entropy masking effect in the 
Watson’s visual model in order to improve watermarking power of the IA-DCT 
scheme [2] (which is an Image-Adaptive watermarking scheme), and then implement 
this power enhancement on video streams with respect to learning characteristic of the 
entropy masking effect.   

3   Watermark Insertion and Detection 

As mentioned earlier, Watson in [6] introduced a new masking effect and called it 
entropy masking. The goal of this paper is to exploit this masking effect to increase 
watermark power in content based (image adaptive) watermarking schemes, hence to 
improve their resilience against various intentional and unintentional attacks. 

For the aim of representing and measuring the amount of complexity, we define a 
spatial complexity parameter. To avoid massive computational complexity (especially 
when dealing with video host signals) we define this parameter for n*n blocks of 
pixels (rather than for each pixel). On the other hand, spatial complexity for each 
pixel of an n*n block b is defined as the entropy of the block 
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(3) 
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where p(x) is the ratio of the number of x’th symbol occurrence in block b over the 
block size. Before computing the spatial complexity as above, pixel values must be 
quantized. Figure 2 shows the complexity parameter for pixels of an 8bit image for 
different number of quantization levels (block size is set to 4). With no quantization 
(256 levels of quantization), the complexity parameter is uniform (high) for almost all 
the pixels (figure2b). On the other hand, a 2-level quantization yields the complexity 
function representing the edges in the image (figure 2d). Our simulation results show 
that for an 8bit image, 32 levels of quantization make the defined complexity 
parameter to represent high entropy regions of the image, which is affected by the 
entropy masking effect (figure 2b). 

 

 

Fig. 2. Sketching the defined complexity function for different number of quantizing levels: (a) 
top-left: original image, (b) top-right: no quantization, (c) bottom-left: 32 levels of quantization 
and (d) bottom-right: 2 levels of quantization.  

Figure 3 shows our complexity function on Lena image for different values of size 
of the block n. It can be seen that for large n (figure 3a) our complexity parameter 
returns a high value for some non-complex pixels in the neighborhood of the edges 
and this will lead some impairment in this regions after applying watermark utilizing 
entropy masking effect. On the other hand, figure 3c returns a more realistic value for 
all the pixels but leading to more computational complexity. Our simulations showed 
that choosing n equal to 4, will make an acceptable tradeoff between precision and 
complexity (figure 3b). An alternative approach in defining a complexity parameter 
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will be similar to what Kim et al [7] done in the DCT domain. In this manner, the 
entropy of eight neighbors of a pixel is defined as a measurement for its complexity. 
Figure 3d shows this measure for the same image. Clearly, here we have a more 
precise measure of complexity for all the pixels but this will impose about 8 times 
more complexity to our watermarking algorithm than our simple complexity 
parameter. We do not need such accuracy, so we do not suffer such a high 
computational complexity. 

 

    

Fig. 3. Sketching the defined complexity parameter for different values of block size: (a) top-
left: original image, (b) top-middle: block size equals 8, (c) top-right: block size equals 4, (d) 
bottom-left: block size equals 3 and (e) bottom-middle: a different complexity parameter  

As an example of content based watermarking schemes, we first introduce IA-DCT 
watermarking scheme [2] and then apply our power improvement idea on it using 
complexity function which we defined above. In IA-DCT method, the host image is 
first divided into 8*8 non-overlapping blocks and 8*8 DCT transforms are performed 
on these blocks. Then watermark will be inserted into each DCT coefficient as below 

 bvubvubvubvu jndXX ,,,,,,
'

,, *ω+=    if bvubvu jndX ,,,, ≥    

bvubvu XX ,,
'

,, =  ,                                if bvubvu jndX ,,,, <  
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where Xu,v,b is the (u,v)-th coefficient of DCT transform over b’th block, jnd is the 
corresponding Just Noticeable Difference, ωu,v,b is the corresponding watermark bit 
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and X/
u,v,b is the resulted watermarked DCT coefficient. jnd is the contrast masking 

that was defined by Watson and mentioned in the previous section. Considering Enb 
as the complexity parameter of block b, we modify this JND considering entropy 
masking effect as below 
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where jnd*
u,v,b is the modified JND, f is a function of defined complexity parameter 

and k is a threshold discussed in the following. We keep the JND of the three low-
frequency components of each block unchanged to avoid changes to image 
luminance.  

Through a meticulous inspection of a set of images of various degrees of 
complexity, we found out that choosing the threshold, k, equal to 2 would lead our 
complexity function revealing complex regions affected by the entropy masking 
phenomenon. Figure 4 illustrates regions of Lena image whose entropy (as defined by 
the complexity parameter) is greater than k, for different values for k. It is observed 
that regions having entropy more than 1 covers a vast area of the image (fig 4b). On 
the other hand, regions with entropy more than 3 are restricted to neighborhoods of 
the edges (fig 4d), while a reasonable result is obtained with k=2 (figure 4c).  

 

 

Fig. 4. Regions having entropy more than k threshold: (a) top-left: original image, (b) top-right: 
k=1, (c) bottom-left: k=2 and (d) bottom-right: k=3 
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According to our subjective experiments on images with various degrees of 
complexity, it is concluded that a simple linear function, constructed by a line 
connecting highest affordable entropy (which is six) and the minimum entropy 
masking capability (which is two), yields a reliable imperceptibility margin in the 
entropy space. This is expressed as: 

8.0*2.0)( += xxf  . (6) 

This means that making the mark’s intensity twice in regions having the maximum 
entropy keeps the mark still imperceptible due to the entropy masking effect, where 
we can have just a 20% intensity increment for regions of minimum entropy, as two 
extremes over the margin. Selection of a linear function for f(x) minimizes the 
computational complexity, as compared to possibly more accurate non-linear 
alternatives. 

The detection process is the same as that introduced in [2] for a typical IA-DCT 
scheme. The original image is subtracted from the received possibly distorted image 
that results in a difference image. The correlation between this difference and the 
watermark sequence is then evaluated, based on a certain threshold, to check if the 
image contains a watermark. The detection scheme based on normalized correlation 
can be expressed as [1]: 
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where ω*.ω denotes the dot product, JNDu,v,b is the corresponding JND threshold, 
ωu,v,b

* is the received possibly distorted watermark, Eω represents the ω.ω and ρωω* is 
the normalized correlation coefficient between the two signals ω* and ω. If ω is 
normally distributed and identical to ω*, the correlation coefficient approaches to one. 
Independence of ω* and ω leads a normally distributed correlation coefficient with 
zero mean. A blind detection also can be performed by estimating the JND thresholds 
from the received image. The estimated JND form the watermarked image highly 
resembles the JND used for the mark insertion; however, the blind detection scheme 
is less robust to various watermarking attacks.  

At this point, we want to perform our power enhancement method to video frames. 
Because of the learning effect mentioned in section 2, we should act a little 
conservatively when applying entropy masking JND elevation to still images. 
Similarly, for video frames, we consider that the JND elevation of a complex scene 
resulted from entropy masking will vanish if the scene is being repeated on 
consecutive frames. So, we have to define a motion parameter to reflect how much the 
components of a video frame have been changed in respect to another frame. This 
parameter could be defined as the absolute difference or square difference of the 
frame components and could be performed pixel-wise or block-wise. By spending the 
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price of more complexity, a BMA block search yields to more accurate results. For 
convenience, we defined the motion parameter to be the pixel-wise square difference 
between the selected video frames. Figure 5 shows the result of our motion parameter 
on two video frames. Our simulations on various video sequences showed that regions 
having motion parameter lower than 0.1 represent the static regions.  Regions which 
remain static over a number of frames will be learned and its increased JND due to 
entropy masking will be retreated.  

 

Fig. 5. Our motion parameter on two video frames. (Left): first video frame, (Middle): seventh 
video frame of the momdaughter sequence and (Right): the corresponding motion parameter.  

Motion parameter can be used to repair the JND thresholds in different manners. 
One can evaluate the motion parameter between the interested frame and a number of 
its followers to determine the static regions of that frame. But, this will yield a huge 
computational complexity in the watermark insertion and detection processes of a 
video sequence. Our experiments showed that a motion parameter evaluation between 
the interested frame and only two frames located 6 and 12 frames later will give a 
similar measurement. So, in the case of video watermarking, after evaluating entropy 
of the pixels (as defined earlier) the following algorithm refines them before being 
performed on the JND threshold of the frame pixels: 

For every pixel p of the i’th frame 

If motionp(i,i+6)<0.1 then Enp=Enp-Th 

If motionp(i,i+12)<0.1 then Enp=Enp-Th 

where motionp(i,j) is our motion parameter for pixel p between i’th and j’th frames 
and Enp is the defined complexity parameter for pixel p. Th  is the amount of entropy 
decrement which we set it to be 0.3 after a number of experiments.  

4   Results 

As described in the previous section, we exploit entropy masking effect to improve 
the watermark power in IA-DCT scheme [2] which is one paradigm of Image-
Adaptive watermarking schemes. We used different host images with various degrees 
of complexity to simulate the proposed power-improved watermarking scheme. 
Figure 6 comprises our power improved watermarking method with the normal IA-
DCT scheme for two types of host images (a high-entropy image and a medium-
entropy image). As shown in the figure, we have strengthened the watermark power 
in high entropy regions of the host image by relying on the entropy masking effect.  
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As mentioned in the previous section, we have an extra power of the mark in 
regions that are being masked by the entropy masking effect. Expectedly we expect 
an improved resilience against various intentional and unintentional watermarking 
attacks due to this power enhancement. Table 2 shows the amount of improved mark 
power for two kinds of the images. Clearly, more power enhancement can be done for 
high-entropy host images.  

Table 2. Power enhancement percentage for medium-entropy and high-entropy images 

Image Type Lena 
(a medium-entropy image) 

Baboon 
(a high-entropy image) 

Power Enhancement  35% 84% 

 

 

Fig. 6. Comparison between the typical IA-DCT method and its power improved version using 
our method for a medium-entropy (Lena) and a high-entropy image (Baboon). (left): original 
image, (middle): IA-DCT watermark and (right): the corresponding power improved 
watermark. (Watermarks are scaled to be visible.) 

There are three kinds of attacks to the IA-DCT scheme considered in [2]: JPEG 
Compression, Cropping, and Scaling. We investigated the robustness of the improved 
IA-DCT scheme to the same attacks to compare the proposed method to the typical 
IA-DCT scheme.  

JPEG Compression acts as a low-pass filtering, which zeros out frequency 
components. We marked different images using the typical IA-DCT scheme and its 
improved version, and then performed JPEG compression with various quality factors 
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(Q) on the marked images. Subsequently, we verified the existence of the watermark 
in the compressed images, evaluating the correlation coefficient as in (9). In the 
power-improved method, the correlation coefficient showed different amounts of 
elevation depending on the complexity of the host image, while the false correlation 
value (correlation by a non-relevant watermark) remained the same. Table 3 depicts 
the ratio of the correlation coefficient of the improved IA-DCT scheme over the 
typical IA-DCT scheme’s correlation coefficient. As shown, there is not a significant 
elevation in the correlation coefficient, especially for low-entropy images. This is due 
to the fact that the improved-power mark has been inserted in high-frequency 
(complex) regions of the image, which are highly degraded by the JPEG compression.  

Table 3. Enhancement in the detection value of the power-improved method to JPEG 
compression 

Q factor 80 60 40 20 10 5 
Baboon 1.22 1.22 1.22 1.20 1.37 1.15 
Lena 1.06 1.05 1.08 1.09 1.03 1.10 

Cropping can be taken as the dual of the JPEG Compression, which zeros out 
spatial components of the image. Because of its structure, the typical IA-DCT scheme 
is quite robust to only-cropping attack. We cropped several images to one-sixteenth of 
their original size (keeping the central part of the image) and performed JPEG 
compression with various quality factors. Table 4 shows the ratio of the correlation 
coefficient of the improved method to the typical IA-DCT’s correlation coefficient, 
stating higher robustness of the power-improved method to the cropping attack.  

Table 4. Enhancement in the detection value of the power-improved method to Cropping (one-
sixteenth) followed by the JPEG compression 

Q factor 80 60 40 20 10 5 
Baboon 1.49 1.43 1.34 1.48 1.09 1.29 
Lena 1.97 1.46 1.55 1.18 1.13 0.98 

Table 5. Enhancement in the detection value of the power-improved method to Scaling 

Scaling factor 2 4 
Baboon 2.38 1.41 
Lena 1.53 1.42 

Pudlichuk et al. also investigated the robustness of the IA-DCT method to the 
Scaling of a watermarked image. Similar to the procedure given in [2], we lowpass 
filtered the watermarked image using four-tap filter prior to downsampling by 2 in 
each direction. The resulting image is upsampled prior to calculation of the 
correlation coefficient. Table 5 shows the ratio of the correlation coefficient of the 
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improved method to the typical IA-DCT’s correlation coefficient. A high amount of 
improvement in the correlation coefficient is achieved, while the false correlation 
exhibits no elevation.  

To prove the watermarking imperceptibility, we performed a number of subjective 
tests employing three independent observers. Each trial was composed of a typical 
IA-DCT watermarked image and its power-improved version in a random order. In 
every trial, each observer had to distinguish the image with more impairment (due to 
the watermark insertion) or remark his ambiguity. By changing the time each observer 
has to make his decision, three different kinds of experiments conducted: fast-
decision experiment, medium-decision experiment and slow-decision experiment with 
two, five and ten seconds permitted for each trial respectively. Table 6 shows the 
success percentage of different kinds of experiments for two kinds of high-entropy 
and medium entropy images. By definition, an experiment is done successfully if the 
observer chooses the typical IA-DCT watermarked image as the image with more 
impairment or reveals his ambiguity.  

As the results show, while enhancing a significant amount of watermark power, the 
mark remains truly imperceptible for fast-decision and medium-decision experiments 
as a result of entropy masking phenomenon. Logically, awarding a habit-time to 
observers gives them more chance to distinguish the power-improved mark because 
of learning property. On the other words, learning the complex background leads its 
entropy masking effect to decline as stated in section 2. As a result, we have to do our 
treatment more conservatively when exploiting the entropy masking effect for still 
images in respect to their functionalities.  

We also implemented our method to improve the watermark power in video 
sequences. As explained in section 3, we have considered the Learning property of 
entropy masking in the process of mark insertion in video frames. Figure 7 shows the 
mark’s power enhancement for a medium-entropy video frame. Obviously, our 
method strengthens the mark power in regions having a large amount of spatial 
entropy and/or motion entropy with respect to the temporal activity.  

Table 6. Success percentage for three kinds of experiments performed on medium-entropy and 
high-entropy images 

Image Type Lena 
(a medium-entropy image) 

Baboon 
(a high-entropy image) 

Fast-decision Experiment 100% 100% 
Medium-decision Exper. 95% 97% 
Slow-decision Experiment 87% 91% 

Table 7. Power enhancement percentage for medium-entropy and high-entropy video 
sequences 

Video Sequence Momdaughter 
(medium-entropy) 

Coastguard 
(high-entropy) 

Power Enhancement  28% 57% 
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Table 7 shows the average power enhancement per frame for two kinds of the 
video streams. Again, more power enhancement can be achieved for high-entropy 
sequences.  

 

 

Fig. 7. Comparison between the typical IA-DCT watermarking scheme on video sequences and 
its power improved version using our method for a medium-entropy video sequence 
(Momdaughter). (left): video frame watermarked with the IA-DCT method and its 
corresponding watermark and (right): our power improved version. (Watermarks are scaled to 
be visible)  

Similar to what was done for still images a number of subjective experiments were 
done to assure the imperceptibility of the power increased mark. Again, each trial of 
the experiments consisted of an IA-DCT frame by frame marked video sequence and 
its power improved twin (according to our method) in an unknown ordering, and the 
observers had to distinguish the sequence having more impairment or claim their 
ambiguity. Table 8 shows the success percentage of the experiments for two kinds of 
the sequences (high-entropy and medium-entropy sequences). Results promise a high 
assurance of imperceptibility while achieving the valuable mark’s power 
improvement. Because of considering the learning property, there is no more need to 
perform conservatively similar to what concluded for the still images.  

Table 8. Success percentage of our experiments performed on medium-entropy and high-
entropy video sequences. 

Video Sequence Momdaughter 
(medium-entropy) 

Coastguard 
(high-entropy) 

Experiment’s Success 
Percentage 

94% 97% 
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5   Conclusions 

In this paper, we have discussed the entropy masking effect, which was initially 
introduced by Watson et al. [3], and utilized it to improve the watermark power in 
content-based watermarking schemes. The proposed method leads to enhancement of 
the watermark’s robustness against various intentional and unintentional attacks. As 
an example of IA watermarking scheme, we have implemented our method on the IA-
DCT scheme [2] and have shown that a significant amount of power enhancement can 
be achieved exploiting the mentioned masking effect. In fact, we have increased the 
power of the mark in the regions that are being masked by the entropy masking effect. 
Because of the learning effect of the entropy masking effect, we must act a little 
conservatively (not using all the power enhancement of the method) when applying 
our method on still images, depending on how the marked image is used. However, 
exploiting this masking effect will result in a more assurance of the mark’s 
imperceptibility with the same watermark power, if there is an upper bound limitation 
on the mark’s power.  

We also applied our method to video sequences. The same power enhancement 
achieved while keeping the marked sequence imperceptible. As cited, we considered 
the learning property in the watermark embedding process of the video frames, so 
there is no more need for working conservatively. We tried our method to be as 
simple as possible, because of the computational constraints in video watermarking. 
So, different approaches can be implemented with varying degrees of complexity. 
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