
TOWARDS IMPROVING NETWORK FLOW WATERMARKS USING THE
REPEAT-ACCUMULATE CODES

Amir Houmansadr and Nikita Borisov

University of Illinois at Urbana-Champaign
Electrical and Computer Engineering Department

Urbana, IL, USA

ABSTRACT

Network intruders try to hide their identity by relaying their
traffic through a number of intermediate hosts, called stepping
stones. Network flow watermarks have been used to detect
such attacks by inserting a special timing pattern into one flow
by means of artificial delays and detecting relayed flows by
searching for the same pattern.

We study the application of coding schemes to improve
the efficiency of network flow watermarks. In particular, we
use the Repeat-Accumulate codes, a class of low complex-
ity, high performance error-correcting codes, to improve the
detection performance of a recent flow watermark, the RAIN-
BOW. We show the effectiveness of the improved scheme, C-
RAINBOW, through simulation and discuss design tradeoffs.

Index Terms— Repeat-Accumulate codes, network flow
watermarking, stepping stone attack, traffic analysis

1. INTRODUCTION

Internet attackers commonly relay their traffic through a num-
ber of (usually compromised) hosts in order to hide their iden-
tity. Detecting such hosts, called stepping stones, is there-
fore an important problem in computer security. The detec-
tion proceeds by finding correlated flows entering and leaving
the network. Traditional approaches have used patterns inher-
ent in traffic flows, such as packet timings, sizes, and counts,
to link an incoming flow to an outgoing one [1]. More re-
cently, an active approach calledwatermarking has been con-
sidered [2, 3]. In this approach, traffic characteristics ofan
incoming flow are actively perturbed as they traverse some
router to create a distinct pattern, which can later be recog-
nized in outgoing flows. These techniques also have relevance
to anonymous communication, as linking two flows can be
used to break anonymity.

The existing flow watermarking schemes are based on
using a randomly generated watermark sequence, being
shared amongst different entities of the watermarking sys-
tem, and being looked for in the suspected network flows.
Previous work has used some simple coding schemes, such

as spread-spectrum [2] and repetition codes [4, 5], to im-
prove detection performance; however, we believe the space
of coding techniques that can be applied to this work has
been largely underexplored. To address this, we investi-
gate the use of Repeat-Accumulate (RA) codes to improve
the detection performance of a recent flow watermarking
scheme, RAINBOW [3]. We show through simulations that
the coding-empowered version of the RAINBOW, namely
C-RAINBOW, provides better detection performance. We
also explore different design tradeoffs for the C-RAINBOW
scheme. We believe that this new framework can also be used
to design efficient covert channels over the timing domain of
network flows; we leave this as a future research.

The rest of this paper is organized as follows: in Sec-
tion 2 we design a new flow watermarking scheme, called
C-RAINBOW, which uses Repeat-Accumulate codes in or-
der to improve the detection performance. In order to show
the effectiveness of coding in improving the detection perfor-
mance, in Section 3 we simulate and compare the detection
performance of C-RAINBOW with its ancestor the RAIN-
BOW scheme. The paper is concluded in Section 4.

2. C-RAINBOW FLOW WATERMARKING SCHEME

2.1. Repeat-Accumulate codes

Repeat-Accumulate (RA) codes are a class of error-correcting
codes that despite being simple and low complexity they pro-
vide an outstanding good performance [6]. An RA code
works as follows: an information block of sizenA is repeated
q times and then scrambled by a permutation function of size
q × nA, and then encoded by a rate 1 accumulator. The RA
codes are fast, as their encoding time is linear. Also, the rate
of an RA code is1/q. The RA decoding is performed using
the sum-product algorithm through a number ofiterations
[7]. We will discuss the effect of the iteration numbers on the
detection performance in the consecutive sections.



2.2. C-RAINBOW scheme

In this section, we describe the design of the C-RAINBOW
flow watermarking scheme, which is an improved version of
the RAINBOW scheme by using the RA coding. The C-
RAINBOW watermark insertion scheme is the same as that
of RAINBOW [3], except for the generation of the water-
mark sequence. In order to generate the watermark sequence,
the C-RAINBOW watermarker first generates annA bits ac-
tual watermark, wA, which is a drawn randomly from{0, 1}.
The actual watermark is, then, coded using an RA encoder
CRA(·), resulting in annI = q×nA bits inserted watermark:

wI = CRA(wA) (1)

whereq is the redundancy parameter of the coding algorithm.
As mentioned before, the RA encoderCRA(·) uses a random
permutation functionp(·) which is shared with the watermark
detector. The generatedwI watermark is then used to water-
mark a candidate flow using the watermarking scheme de-
scribed in [3]. Note that in the original RAINBOW scheme
all of the nI inserted watermark bits are generated at ran-
dom. In both of the schemes, prior to the watermark inser-
tion the watermark bits are converted from the binary format
into {−a,+a}, e.g.,0 gets converted to−a, wherea is the
watermark amplitude.

The RAINBOW watermark detection works in a non-
blind manner: upon receiving a flow detector subtracts its
inter-packet delays (IPD) from that of another flow from a
database, and then calculates the normalized correlation be-
tween the subtraction result,d, and the inserted watermark
sequence [3]. It, then, declares the candidate flow to be wa-
termarked if the calculated correlation metric exceeds some
detection threshold. The C-RAINBOW detection scheme
differs from that of RAINBOW scheme in two ways: first,
the subtracted IPDs,d, passes through a soft-limiter block in
order to remove the outlier noise components added because
of the noisy communications network. Second, instead of
correlating the subtracted IPDs with the inserted watermark,
wI , the subtracted IPDs sequence is first passed through an
RA decoding algorithmDRA(·) (using the sameq andp(·) as
in CRA(·)), and the resulted sequence is then correlated with
the actual watermark,wA. Similar to the RAINBOW detec-
tor, the resulted correlation metric is, then, compared with a
detection threshold in order to decide whether the candidate
flow is watermarked.

3. SIMULATIONS AND DISCUSSIONS

We simulated the RAINBOW and C-RAINBOW schemes in
Matlab and compared their detection performances. In order
to observe the performance improvement only caused by us-
ing the RA coding, we apply the soft-limiter noise reducer
block over the RAINBOW detector as well. In our experi-
ments, the network flows are simulated by modeling them as

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

150

200

250

300

Coding Redundancy (q)

It
er

at
io

n
s

 

 

Average
Maximum

Fig. 1. The average and maximum number of iterations re-
quired by the C-RAINBOW detector to detect all of the in-
serted bits.

Poisson processes, and the network jitters are picked up at
random from a database of network jitters measured over the
Internet. Each experiment is run for 10000 times. In the fol-
lowing, we discuss the effect of different parameters in the
detection performance.

3.1. Effect of the redundancy parameter (q)

As mentioned before, the RA decoder works by going through
a number of iterations until its output converges to the ac-
tual watermarkwA. Since more number of iterations requires
more processing and time resources a system designer looks
for a detector that converges in fewer number of iterations.
Figure 1 illustrates the average and maximum number of iter-
ations required to detect the total number of actual watermark
bits for different values ofq (a maximum of 300 iterations
tried, a = 10msec, andnA = 100). As we can see, the
number of iterations exponentially decreases with theq pa-
rameter, such that forq ≥ 5 the decoder is able to construct
all the actual bits within at most 2 iterations.

Figure 2(a) sketches the empirical mean and standard de-
viation of the C-RAINBOW detection metric for different val-
ues ofq, along with those of the RAINBOW detector (10000
runs). As can be seen, the mean of C-RAINBOW detection
metric exponentially converges to 1 by increasingq, and for
q > 2 it outperforms that of the RAINBOW detector. Also,
by increasingq the empirical standard deviation of the C-
RAINBOW decreases exponentially, such that it equals to0
for q > 6.

We also run similar experiments to evaluate the effect of
the q parameter on the false positive rate. In order to make
the detection faster, a detector may limit the number of iter-
ations to the maximum numbers required for true detection
(Figure 1). Figure 2(b) shows the empirical mean and stan-
dard deviation of the detection metrics for the C-RAINBOW
and RAINBOW schemes for different values ofq. Again, q
has no effect on the RAINBOW metric, however, increasing
q increases the mean and variance of the C-RAINBOW met-
ric. This, in fact, is because increasingq for a fixed value



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

150

200

250

300

Watermark amplitude (a) in millisecond

It
er

at
io

n
s

 

 

Average
Maximum

Fig. 3. The average and maximum number of iterations re-
quired by the C-RAINBOW detector to detect all of the in-
serted bits.

of nI decreases the number of actual watermark bits for the
C-RAINBOW scheme, e.g.,nA = nI/q. We can show that
the false positive rate has reverse relation with the numberof
actual watermark bits, e.g.,

(

nA

k

)

(0.5)nA is the probability of
k false positive bits.

3.2. Effect of the watermark amplitude (a)

We performed similar experiments to evaluate the effect of the
watermark amplitudea. Figure 3 shows the average and max-
imum number of iterations needed for the decoder in order to
extract all of the watermark bits (q = 10, andnA = 100).

Figure 4(a) illustrate the empirical mean and standard de-
viation of the watermarking schemes for different values ofa.
As can be seen, increasinga increases the mean value of the
both detectors exponentially, however for the C-RAINBOW
scheme the standard deviation decreases much faster. This
shows that increasinga better improves the C-RAINBOW’s
performance. Also, for smaller values ofa, coding helps in
detecting at least some of the bits while the RAINBOW per-
forms very poorly. We also run the same experiments for the
false detection. As can be seen from Figure 4(b), the false
detection behaviour of the both of the schemes is independent
of the watermark amplitudea.

3.3. Effect of the watermark bit count (nI )

We run similar experiments to measure the effect of the num-
ber of inserted watermark bits,nI . Our simulations show that
for N ≥ 50 the detector is able to extract all of the watermark
bits in at most 2 iterations (fora = 10msec, andq = 10).
Figure 5(a) shows the empirical mean and standard deviation
of the detection metrics for both of the schemes for different
values ofnI . FornI as small asnI = 50 the C-RAINBOW
scheme detects all of the watermark bits in all of the 10000
runs, which performs far better than the RAINBOW scheme.
Figure 5(b) shows the mean and standard deviation of the wa-
termarking schemes for the case of false detection. For both
of the schemes increasingnI improves the variance of the

false detections, however RAINBOW always outperforms the
C-RAINBOW in terms of the false positives, as RAINBOW
hasq times more actual bits than the C-RAINBOW scheme.

4. CONCLUSIONS

In this paper, we take the first steps towards improving the
detection performance of network flow watermarks by us-
ing coding algorithms. Specifically, we use the Repeat-
Accumulate codes to enhance the detection performance of
the recent RAINBOW watermarking scheme. Our simula-
tions confirm that for similar set of watermarking parameters,
e.g., the watermark amplitude and the number of inserted
bits, the new scheme, C-RAINBOW, performs better detec-
tion. We believe that this framework can also be used to
design efficient covert timing channels for network flows,
that we leave for the future research.

5. REFERENCES

[1] Y. Zhang and V. Paxson, “Detecting stepping stones,” in
USENIX Security Symposium, Steven Bellovin and Greg
Rose, Eds., Berkeley, CA, USA, Aug. 2000, pp. 171–184,
USENIX Association.

[2] W. Yu, X. Fu, S. Graham, D.Xuan, and W. Zhao, “DSSS-
based flow marking technique for invisible traceback,” In
Pfitzmann and McDaniel [8], pp. 18–32.

[3] Amir Houmansadr, Negar Kiyavash, and Nikita Borisov,
“RAINBOW: A robust and invisible non-blind watermark
for network flows,” inNDSS. 2009, The Internet Society.

[4] Y. Pyun, Y. Park, X. Wang, D. S. Reeves, and P. Ning,
“Tracing traffic through intermediate hosts that repacke-
tize flows,” in IEEE Conference on Computer Commu-
nications (INFOCOM), George Kesidis, Eytan Modiano,
and R. Srikant, Eds., May 2007, pp. 634–642.

[5] X. Wang, S. Chen, and S. Jajodia, “Network flow water-
marking attack on low-latency anonymous communica-
tion systems,” In Pfitzmann and McDaniel [8], pp. 116–
130.

[6] Dariush Divsalar, Hui Jin, and Robert J. McEliece, “Cod-
ing theorems for “turbo–like” codes,” inProceedings
36th Annual Allerton Conference on Communication,
Control, and Computing, Monticello, IL, USA, Sept.
1998, pp. 201–210.

[7] Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea
Loeliger, “Factor graphs and the sum-product algorithm,”
IEEE Transactions on Information Theory, vol. 47, no. 2,
pp. 498–519, 2001.

[8] Birgit Pfitzmann and Patrick McDaniel, Eds.,IEEE Sym-
posium on Security and Privacy, May 2007.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.5

0.6

0.7

0.8

0.9

1

1.1

Redundancy (q)

D
et

ec
ti

o
n

m
et

ri
c

 

 

C−RAINBOW

RAINBOW

(a) True detection

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Redundancy (q)

D
et

ec
ti

o
n

m
et

ri
c

 

 
C−RAINBOW

RAINBOW

(b) False detection

Fig. 2. Empirical mean and standard deviation of the detection metrics for differentq (a = 10msec, nI = 100).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Watermark amplitude (a) msec

D
et

ec
ti

o
n

m
et

ri
c

 

 

C−RAINBOW
RAINBOW

(a) True detection

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Watermark amplitude (a) msec

D
et

ec
ti

o
n

m
et

ri
c

 

 

C−RAINBOW
RAINBOW

(b) False detection

Fig. 4. Empirical mean and standard deviation of the detection metrics for differenta (q = 10, nI = 100).

0 50 100 150 200 250 300 350 400 450 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Inserted bits (nI)

D
et

ec
ti

o
n

m
et

ri
c

 

 

C−RAINBOW
RAINBOW

(a) True detection

0 50 100 150 200 250 300 350 400 450 500

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Inserted bits (nI)

D
et

ec
ti

o
n

m
et

ri
c

 

 

C−RAINBOW
RAINBOW

(b) False detection

Fig. 5. Empirical mean and standard deviation of the detection metrics for differentnI (q = 10, a = 10msec).


