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ABSTRACT
There is significant enthusiasm for the employment of Deep Neural
Networks (DNNs) for important tasks in major wireless commu-
nication systems: channel estimation and decoding in orthogonal
frequency division multiplexing (OFDM) systems, end-to-end au-
toencoder system design, radio signal classification, and signal
authentication. Unfortunately, DNNs can be susceptible to adver-
sarial examples, potentially making such wireless systems fragile
and vulnerable to attack. In this work, by designing robust adver-
sarial examples that meet key criteria, we perform a comprehensive
study of the threats facing DNN-based wireless systems.

Wemodel the problem of adversarial wireless perturbations as an
optimization problem that incorporates domain constraints specific
to different wireless systems. This allows us to generate wireless
adversarial perturbations that can be applied to wireless signals
on-the-fly (i.e., with no need to know the target signals a priori),
are undetectable from natural wireless noise, and are robust against
removal. We show that even in the presence of significant defense
mechanisms deployed by the communicating parties, our attack
performs significantly better compared to existing attacks against
DNN-based wireless systems. In particular, the results demonstrate
that even when employing well-considered defenses, DNN-based
wireless communication systems are vulnerable to adversarial at-
tacks and call into question the employment of DNNs for a number
of tasks in robust wireless communication.
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1 INTRODUCTION
Deep Neural Networks (DNNs) are becoming central to various
key wireless communication systems, thanks to their promising

performances, and their computational efficiency. In particular,
the wireless community has leveraged DNNs in state-of-the-art
autoencoder wireless communication systems [18, 21, 29, 33, 34,
37], modulation recognition (radio signal classification) [31, 38, 39,
41, 48], and OFDM channel estimation and signal detection [49,
50]. Such wireless systems are crucial to various applications; for
example, OFDM is a popular modulation scheme that has been
widely used in many existing standards, such as 4G LTE and the
IEEE 802.11 family [20, 22], and new standards such as 5G [9].

Unfortunately, whereas there is significant enthusiasm for the
employment of DNNs [6], such emerging DNN-based wireless sys-
tems face a security threat: DNNs are known to be susceptible to
adversarial examples [11, 17, 32], i.e., small perturbations added to
the inputs of a DNN causing it to misclassify the perturbed inputs;
consequently, DNN-based wireless communication systems are also
susceptible to such attacks, which may impact the security (e.g., cor-
rectness, availability) of such systems. And, due to the penetration
of these techniques in both contemporary military and commercial
systems, the cost could be devastating. For example, robust attacks
on modulation classification could compromise the performance
of commercial software-defined radios or the ability of a military
system to detect, intercept, and/or jam an enemy [10]. Importantly,
particularly if the attack on the modulation classifier is undetectable
as for our scheme proposed here, such a compromise can impact
important tactical decisions based on enemy status. In the multitude
of systems where OFDM plays a key role, an unexpected high bit-
error-rate at the receiver due to adversarial perturbations can cause
significant disruption; for example, the impact on the performance
of the 4G Internet, which is tuned carefully at multiple levels to
anticipate users’ performance based on system state measurements,
would be significant.
Our work: In this paper, by first identifying key criteria of an
effective adversarial attack and then designing based on such, we
perform the first comprehensive study of the effect of adversarial
examples against DNN-based wireless systems. In this setting, the
goal of an attacker is to transmit a well-crafted perturbation signal
over a channel so that the underlying DNN-based wireless system
(e.g., a radio signal classifier) fails and misclassifies the perturbed
signals. Note that while there exists a large body of work on adver-
sarial examples against image classification tasks, e.g., FGSM [17],
such works cannot be trivially applied to the setting of wireless
systems where the input signals to be perturbed are unknown to the
adversary. Recent work [1, 12, 23, 24, 42–44] has aimed at imple-
menting adversarial examples on wireless systems; however, none
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of them are practical as they ignore domain constraints of wireless
systems.

Therefore, in this work we present asystematic and genericmech-
anism for generating adversarial examples against DNN-based wire-
less systems, with the goal of generating adversarial perturbations
that satisfy the domain constraints of wireless systems. Speci�cally,
we present a generic framework that models the problem as an
optimization problem and incorporates domain constraints spe-
ci�c to target wireless systems. We particularly enforce three key
constraints in generating wireless adversarial examples: �rst, they
should beinput-agnostic meaning that the attacker generates the
perturbation signal without any knowledge about the incoming
(unknown) input wireless signals. This is essential as, unlike tra-
ditional targets of adversarial examples (e.g., image classi�cation
tasks), in DNN-based wireless systems the signal to be perturbed
is not known a priori to the adversary. We particularly build on
Universal Adversarial Perturbations (UAPs) [32], a recent adver-
sarial perturbation approach that is input-agnostic. Second, the
perturbation should beundetectable in that one should not be
able to distinguish between a generated adversarial perturbation
and natural noise expected from the wireless channel; otherwise,
a defender can design a classi�er to identify (then, remove) the
adversarial perturbations based on the perturbation's power or
statistical behavior. Finally, the wireless perturbations need to be
robust against countermeasures meaning that the defender (e.g.,
a wireless decoder) should not be able to remove the perturbation
from the received signal. Our framework is generic and can be
used to enforce other domain constraints needed for a target wire-
less application, e.g., we also need to design in the presence of an
unknown phase rotation between the attacker and the receiver.

Below, we describe how we enforce each of the three key wireless
domain constraints through our generic optimization problem.

Generating input-agnostic perturbations. We model the prob-
lem of adversarial wireless perturbations as an optimization prob-
lem, and solve it to produce aperturbation generator model (PGM)
able to generate an extremely large number of input-agnostic ad-
versarial examples vectors (i.e., UAPs) for the target wireless appli-
cation. Therefore, instead of applying a single UAP vector (that can
be easily identi�ed and removed as we show through experiments),
in our setting the attacker picks and applies a random UAP adver-
sarial example from a very large set of available UAPs produced by
our PGM. We also show that our PGM is e�ective in a black-box
scenario where the attacker generates adversarial perturbations
based on a DNN substitute model and uses them to attack the orig-
inal wireless DNN model. Our experiments demonstrate thatour
techniques outperform state-of-the-art adversarial attack works- es-
pecially in the presence of defense mechanisms. Note that recent
works [12, 42] also use a DNN model to generate perturbations;
however, they do not provide undetectability and robustness for
perturbations, and they only consider a white-box scenario where
the adversary is aware of the target wireless DNN model.

Undetectability. We tailor our PGM to each target wireless com-
munication system by enforcing constraints speci�c to such sys-
tems, with the goal of making the attack undetectable. In particu-
lar, we use generative adversarial networks (GAN) to enforce an
undetectability constraint on the UAPs generated by our PGM,

and constrain them to follow a Gaussian distribution, which is
the expected noise distribution for additive white Gaussian noise
(AWGN) wireless channels. We show that by using such an unde-
tectability constraint, the PGM can completely fool a discriminator
function, i.e., a DNN classi�er that tries to distinguish between
adversarial perturbations and natural Gaussian noise. Based on
our experiments, enforcing our undetectability constraint can de-
crease the51_B2>A4of the discriminator from0”99to 0”6 (where an
51_B2>A4= 0”5 is the best undetectability as it represents random
guessing) with only a slight degradation in the performance of our
attack. The score can be further decreased at the cost of further
attack performance degradation.

Robustness. We also enforce a robustness constraint on the UAPs
generated by our PGM. This constraint aims at maximizing the
distances between di�erent UAPs generated by our PGM; this is
because if the UAPs are similar, as we show, an adversary can
remove their e�ect with the knowledge of as little as a single pilot
UAP vector. We analyze the robustness of our attack in di�erent
scenarios (Adversarial Training and Perturbation Subtraction) based
on di�erent amounts of knowledge available to the defender, and
show that it provides high robustness against defense techniques;
by contrast, we show that a single vector UAP, as proposed in
previous work [43, 44], can be trivially detected and removed. Our
analysis suggests that even if a defender has knowledge about the
structure of our PGM, she will not able to mitigate the e�ects of
the attack.

Evaluation on major wireless systems. We have implemented
and evaluated our attacks on three classes of DNN-based wireless
systems, speci�cally, autoencoder communication systems [18, 21,
29, 33, 34, 37], radio signal classi�cation [31, 38, 39, 41, 48], and
OFDM channel estimation and signal detection [49, 50]. We show
that for all three applications, our attack is highly e�ective in corrupt-
ing the functionality of the underlying wireless systems, and at the
same time o�ers strong undetectability and robustness.

We also propose twocountermeasures, Adversarial Training
and Perturbation Subtraction, based on the knowledge of a defender
about the attack. We evaluate the performance of our attack and
the single vector UAP attack against our own countermeasures as
well as an existing countermeasure from the literature [23] called
randomized smoothing. Our results show that our attack provides
higher robustness against these countermeasures than previous ad-
versarial attacks such as the single vector UAP attack. For instance,
for the autoencoder communication system, in the presence of an
adversarial training defense, our attack can increase the block-error
rate (BLER) byfour orders of magnitudewith a perturbation-to-
signal ratio (PSR) of� 63� . However, with a similar PSR, the single
vector UAP attack [43, 44] is ine�ective in the presence of the same
defense mechanism. Similarly, in the OFDM application, our at-
tack results in a9X increasein bit error rate while the impact of a
single vector UAP is negligible. Furthermore, our attack is robust
to the presence of a perturbation subtraction defense (as will be
introduced), e.g., in the modulation recognition task, our attack
reduces classi�cation accuracy from0”69to 0”23despite the defense
mechanism (by contrast, the single UAP attack is not e�ective as it
reduces accuracy from0”69to only 0”67).

In summary, we make the following major contributions:



� We propose an input-agnostic, undetectable, and robust
adversarial attack against DNN-based wireless communi-
cation systems. We show that our attack is more e�ective
than previous attacks; in particular, our results indicate
that our PGM attack is more robust than using a single
vector UAP attack against di�erent countermeasures.

� We evaluate our attack against three classes of wireless sys-
tems by performing extensive experiments, hence showing
that our PGM attack is not speci�c to a DNN-based wire-
less application and can be generalized to any DNN-based
wireless application system.

� To our knowledge, we are the �rst to apply adversarial
attacks against DNN-based OFDM channel estimation and
signal detection systems, which comprise the physical layer
in contemporary WiFi and cellular systems.

� We propose di�erent countermeasure techniques and eval-
uate the robustness of the target wireless systems against
adversarial attacks. We also compare the robustness of our
attack to previous adversarial attacks in wireless systems
and show that our attack is more robust against di�erent
countermeasures than previous attacks that are based on a
single vector UAP.

2 BACKGROUND ON DNN-BASED
COMMUNICATION SYSTEMS

Historically, the prosperity of wireless communications has relied
on its own model-based design paradigms, where accurate mathe-
matical models and expert knowledge are required. However, the
traditional model-based wireless techniques cannot address the new
challenges of emerging applications, such as communicating under
excessively complex scenarios with unknown channel models, low-
latency requirement in large-scale super-dense networks [3], etc.
To tackle these challenges, DNNs have recently begun to play an
important role in wireless communication applications due to their
promising performance [6]. In this work, we focus on three major
DNN-based wireless communication systemsintroduced below:

End-to-End Autoencoder Communication Systems: Despite
the widespread use of provably optimal statistical models for the
wireless physical layer, such models exhibit many imperfections
and non-linearities in practical scenarios that can only be captured
approximately. On the other hand, a DNN-based communication
system such as an end-to-end autoencoder, that does not require a
mathematically tractable model and can be optimized for a speci�c
hardware con�guration and channel, might better be able to handle
such imperfections. Autoencoders are increasingly used for end-to-
end learning of communication systems [33, 34, 37], and they can
outperform contemporary modularized designs of these systems.
Such systems implement their encoders and decoders using DNNs
that are able to learn the construction and reconstruction process
of the information as well as the noisy environment of the physical
channel. For instance, Oshea et al. [37] consider a communication
system design as an end-to-end reconstruction task that tries to
jointly optimize transmitter and receiver components in a single
process. As another example, Nachmani et al. [34] use Recurrent
Neural Networks (RNNs) to decode linear block codes.

Modulation Recognition: Radio signal classi�cation or modu-
lation recognition is the task of classifying the modulation of a
received radio signal to understand the type of communication
scheme used in a wireless system. This can be considered as an
# -class decision problem where the input is a complex baseband
time series representation of the received signal. Modulation recog-
nition is a key enabler for spectrum interference monitoring, radio
fault detection, dynamic spectrum access, and many other wireless
applications. Prior to using DNNs, modulation recognition has been
achieved by carefully handcrafting specialized feature extractors
for speci�c signal types and properties. Then, compact decision
boundaries or statistically learned boundaries are derived from
them with low-dimensional feature spaces.

Recently, conventional methods have been replaced with DNNs
in modulation recognition [38, 39, 48], i.e., [38] applies Convolu-
tional Neural Networks (CNNs) to the complex-valued temporal ra-
dio signal domain. They use expert feature based methods instead of
naively learned features to improve classi�cation performance. Fur-
thermore, West et al. in [39] survey the latest advances in machine
learning with DNNs by applying them to the task of modulation
recognition. Their results show that the performance of modulation
recognition system can be improved by novel architectures and
training methods.

Signal Detection in OFDM Systems: Orthogonal frequency di-
vision multiplexing (OFDM) is a popular modulation scheme that
has been widely used in wireless systems. OFDM is currently being
deployed in many standards such as the downlink of 4G LTE and
IEEE 802.11 family [20, 22]. Furthermore, OFDM is an important
candidate for emerging standards such as 5G [9]. A key component
of OFDM is channel state information (CSI), which refers to known
channel properties of a communication link. CSI can be estimated
using pilot signals that are known to the wireless system prior to
the detection of the transmitted data. With the estimated CSI, trans-
mitted symbols can be recovered at the receiver. Traditionally, least
square (LS) and minimum mean-square error (MMSE) estimation
methods are used for channel estimation in OFDM systems and
have been thoroughly studied in the literature [28].

Recently, DNNs have been introduced in OFDM systems to esti-
mate CSI and recover transmitted symbols at the receiver. [49] and
[50] deploy DNNs for channel estimation and signal detection in
OFDM systems in an end-to-end manner. In [50], Zhao et al. use
CNNs to design an OFDM receiver that outperforms conventional
OFDM receivers based on Linear Minimum Mean Square Error
channel estimators. Ye et al. [49] use DNNs to estimate the CSI
implicitly and recover the transmitted symbols directly instead of
estimating CSI explicitly and detecting the transmitted symbols
using the estimated CSI.

3 BACKGROUND ON ADVERSARIAL
EXAMPLES

An adversarial example is a crafted input that fools a target classi�er
or regression model into making incorrect classi�cations or predic-
tions. The adversary's goal is to generate adversarial examples by
adding minimal perturbations to the input data attributes. Previ-
ous works [11, 17, 32, 35] have suggested several ways to generate



adversarial examples. Most adversarial example techniques gener-
ate perturbations speci�c to the input meaning that the adversary
needs to be aware of the input to generate its corresponding adver-
sarial perturbation, e.g., the Fast Gradient Sign Method (FGSM) [17]
algorithm generates adversarial perturbations based on the input
and the sign of the model's gradient. Recently, Moosavi-Dezfooli et
al. [32] introduced universal adversarial perturbations (UAP) where
the adversary generates adversarial examples that are independent
of the inputs.

3.1 Adversarial Examples Against DNN-based
Wireless Systems

Similar to other DNN-based applications, DNN-based wireless sys-
tems are susceptible to adversarial attacks [1, 2, 7, 8, 12, 13, 19,
23, 24, 42� 45, 47]. Flowers et al. [13] use the FGSM method to
evaluate vulnerabilities of the raw in-phase and quadrant (IQ)
based automatic modulation classi�cation task. There is a body
of work [1, 12, 23, 24, 42� 44] concentrated on using the adversarial
input-agnostic technique proposed in [43] to attack DNN-based
wireless applications, e.g., in [43], Sadeghi and Larsson design a
single UAP vector that, when added to the received signal in a
DNN-based modulation recognition system, causes the receiver
to misclassify the modulation used by the transmitter. [44] uses
the same approach in an end-to-end autoencoder communication
system where an attacker can craft e�ective physical black-box
adversarial attacks to increase error rates.

As opposed to using a single vector UAP, [12, 42] use a DNN
to generate perturbations, e.g., Flowers et al. [12] encapsulate the
learned model for perturbation creation in an Adversarial Resid-
ual Network (ARN) in a white-box scenario to evade DNN-based
modulation classi�cation systems. In [42], Restuccia et al. formu-
late a Generalized Wireless Adversarial Machine Learning Problem
(GWAP) against modulation recognition systems where they ana-
lyze the combined e�ect of the wireless channel and adversarial
waveform on the e�cacy of the adversarial attacks. Instead of
computing the optimal perturbation for each input, they generate
adversarial perturbations in a white-box scenario over a set of con-
secutive input samples. However, as opposed to our work, their
perturbations are not input-agnostic since they are generated based
on the knowledge of a set of consecutive inputs, which renders the
attack impractical. Note that both works only consider a white-box
scenario where the attacker is fully aware of the target DNN model.
Moreover, these works only apply their attacks to the modulation
recognition task while in this work we consider three types of
wireless communication tasks.

Furthermore, Kokalj-Filipovic et al. [26] propose two counter-
measure mechanisms to detect adversarial examples in modula-
tion classi�cation systems based on statistical tests. One test uses
Peak-to-Average-Power-Ratio (PAPR) of received signals, while an-
other statistical test uses the Softmax outputs of the DNN classi�er.
Furthermore, [23] uses a certi�ed defense based on randomized
smoothing against the modulation recognition task. They augment
the training dataset using Gaussian noise, and then use a hypothesis
test to make predictions in the test phase.

4 SYSTEM MODEL
We begin by presenting the system models of the three DNN-based
wireless applications targeted in this paper. A general DNN-based
wireless communication system consists of a transmitter, a channel,
and a receiver. The input of the system is a messageB 2 M =
f 1•2• ”””• "g where " = 2: is the dimension ofM and : is the
number of encoded bits per message. The transmitter employs a
modulation scheme and sends the modulated symbols through
the channel. The receiver receives the transmitted symbols and
demodulates them to reconstruct the original symbols with the
least error. Depending on the wireless application, each part of the
system behaves di�erently, as overviewed in the following.

4.1 Autoencoder Communication Systems
In an autoencoder communication system, the transmitter and
receiver are calledencoderanddecoder, respectively, and are imple-
mented using DNNs. The transmitter generates a transmitted signal
G = 4¹Bº 2 R2# by applying the transformation4 : M ! R2#

to the messageB. Note that the output of the transmitter is an#
dimensional complex vector, which can be treated as a2 � # di-
mensional real vector. Then, the generated signalGis added to the
channel noise, which we consider to be AWGN. Hence, the receiver
receives a noisy signal~ = G¸ = and applies the transformation
3 : R2# ! M to createB̂ = 3¹~º, the reconstructed version of
the messageB. To enable a benchmark for comparison with the
single vector UAP attack proposed in [44], we set# = 7 and: = 4;
therefore, the input size of the DNN-based decoder is2 � 7 where
the �rst 7 elements are the in-phase components and the second
7 elements are the quadrature components of the received signal.
For the training and test datasets, we randomly generate input
messages.

4.2 Modulation Recognition Systems
DNN-based modulation recognition can be treated as a classi�ca-
tion problem where the input is a complex base-band time series
representation of the received signal and the goal of the model
is to identify the modulation type of the transmitter. Similar to
autoencoder systems, the modulated (transformed) input message
Gis added to the channel AWGN noise=, and the receiver receives
a noisy complex base-band signal~ = G¸ =. In this work, we will
use the GNU radio ML dataset RML2016.10a [36] and its associated
DNN [38]. This dataset is publicly available and also enables us to
compare our attack with the single vector UAP attack proposed
by [43].

The GNU radio ML dataset RML2016.10a contains 220000 input
samples, where each sample is associated with one speci�c mod-
ulation scheme at a speci�c signal-to-noise ratio (SNR = 10 dB).
It contains 11 di�erent modulations: BPSK, QPSK, 8PSK, QAM16,
QAM64, CPFSK, GFSK, PAM4, WBFM, AM-SSB, and AM-DSB. The
samples are generated for 20 di�erent SNR levels from -20 dB to
18 dB with a step size of 2 dB. The size of each input vector is 256,
which corresponds to 128 in-phase and 128 quadrature components.
Half of the samples are considered as the training set and the other
half as the test set.



4.3 OFDM Channel Estimation and Signal
Detection Systems

In an OFDM system, at the transmitter side, the transmitted symbols
and pilot signals are converted into parallel data streams. Then, the
inverse discrete cosine transform (IDFT) converts the data streams
from the frequency domain to the time domain with a cyclic pre�x
(CP) inserted to mitigate the inter-symbol interference (ISI). The
length of the CP should be no shorter than the maximum delay
spread of the channel. Based on Ye et al. [49], we consider a sample-
spaced multi-path channel described by the complex random vector
� . On the receiver side, the received signal can be expressed as
~ = G~ � ¸ =, where~ denotes circular convolution whileGand
= represent the transmitted signal and the AWGN noise of the
channel, respectively. At the receiver of the OFDM system, the
frequency domain received signal is obtained after removing the
CP and performing a discrete cosine transform (DFT).

We assume that the DNN model takes as input the received data
consisting of one pilot block and one data block, and reconstructs
the transmitted data in an end-to-end manner. To be consistent
with [ 49], we consider 64 sub-carriers and a CP of length 16. Also,
we use 64 pilots in each frame for channel estimation. Hence, the
size of the input vector is 256, where the �rst 128 samples are the
in-phase and quadrature components of the pilot block, and the
second 128 samples are the in-phase and quadrature components
of the following data block. We use [49]'s fully connected DNN
model. For the training and test datasets, we randomly generate
input messages.

5 ATTACK MODEL
In all of the aforementioned wireless applications, the goal of the
attacker 1 is to transmit a well-designed perturbation signal over
the channel such that the underlying DNN-based model fails to
perform adequately. The generated perturbation is added to the
transmitted signal and AWGN noise. The receiver receives the per-
turbed signal and applies the target DNN-based model to it. Note
that in the OFDM system, the attacker adds the generated perturba-
tion to each frame containing a pilot block and a data block. In the
white-box scenario, we consider a strong attacker who is aware of
the underlying DNN-based model, while in the black-box setting
the adversary has no or limited knowledge of the underlying DNN-
based model. Due to the challenges for the attacker to obtain robust
phase synchronization with the transmitter at the receiver, which
would likely require tight coordination with the communicating
nodes, we assume that the perturbation generated by the attacker
is subject to a random phase shift on the channel relative to the
transmitter's signal.

As mentioned in Section 3, in the underlying wireless applica-
tions, the perturbation signal needs to be transmitted over-the-air,
and therefore the perturbation signal should be input-agnostic i.e.,
universal (UAP). This allows the attacker to generate perturbation
signals with no need to know the upcoming wireless signals. While
some works [43, 44] have investigated such UAPs, they are easily
detectable as the attacker uses a single perturbation vector. Such a
perturbation vector can be inferred by the defender (e.g., through

1We use �attacker� and �adversary� interchangeably.

Figure 1: Performance of the single vector UAP attack in the
presence of defense mechanisms for an autoencoder com-
munication system. The single vector UAP attack [44] can
be easily defeated using our two defense mechanisms.

pilot signals) and consequently subtracted from the jammed signals.
We demonstrate this through two defense mechanisms (namely, ad-
versarial training and perturbation subtraction defenses presented
in Section 9). For instance in an autoencoder communication sys-
tem as shown in Figure 1, both of our defense mechanisms can
easily defeat a single vector UAP attack as proposed by [43, 44].

Therefore, instead of designing a single UAP, our attacker learns
the parameters of a PGM that generates separate perturbation vec-
tors without any knowledge of the input. Using a PGM instead
of a single noise vector provides the attacker with a large set of
perturbations, and we can use existing optimization techniques
such as Adam [25] to �nd the perturbations.

6 OUR PERTURBATION GENERATOR MODEL
(PGM)

In this section, we provide details on how our attack is performed
using a Perturbation Generator Model (PGM). Figure 2 illustrates
the process.

6.1 General Formulation
We formulate the universal adversarial perturbation problem in a
wireless communication system as:

arg min
X

j jXjj2

s.t. 8~ 2 � : 5¹~ ¸ Xº < 5¹~º (1)

where~ is the transmitted signal plus the AWGN noise (~ = G¸ =),
5 is the underlying DNN-based function in the wireless system, and
� is the input domain of the wireless DNN model. The objective is
to �nd a minimal (perturbation with minimum power) universal
perturbation vector,X, such that when added toan arbitrary input
from a target input domain� , it will cause the underlying DNN-
based model5¹”º to misclassify and therefore increase the DNN-
based model loss function. Note that one cannot �nd a closed-form
solution for this optimization problem since the DNN-based model
5¹”º is a non-convex function, i.e., a deep neural network. Therefore,



Figure 2: Our attack setting

(1)can be formulated as follows to numerically solve the problem
using empirical approximation techniques:

arg max
X

Õ

~2D

l ¹5¹~ ¸ Xº• 5¹~ºº (2)

wherel is the DNN-based model loss function andD � � is the
attacker's network training dataset.

As mentioned above, instead of learning a single UAP as sug-
gested by [43, 44], we aim at learning the parameters of a PGM�
to be able to generate UAPs without any knowledge of the system
input. This generator model� will generate UAP vectors when
provided with a randomtrigger parameterI (we denote the cor-
responding adversarial perturbation asXI = � ¹I º), i.e., we can
generate di�erent perturbations for di�erent values ofI . Therefore,
the goal of our optimization problem is to optimize the parameters
of the PGM� (as opposed to optimizing a UAPXin [44]). Hence,
we formulate our optimization problem as:

arg max
�

E
I � D=85 >A<¹0•1º

»
Õ

~2D

l ¹5¹~ ¸ � ¹I ºº• 5¹~ºº¼ (3)

We can use existing optimization techniques (e.g., Adam [25]) to
solve this problem. In each iteration of the training, our algorithm
selects a batch from the training dataset and a random triggerI ,
then computes the objective function.

Algorithm 1 summarizes our approach to generate UAPs. In
each iteration, Algorithm 1 computes the gradient of the objective
function w.r.t. the perturbation for given inputs, and optimizes it
by moving in the direction of the gradient. The algorithm enforces
the underlying constraints of the wireless system using various
remapping and regularization functions that will be discussed in
the following sections. We use the iterative mini-batch stochastic
gradient ascent [15] technique.

6.2 Incorporating Power Undetectability
Constraint

As our �rst constraint on UAPs, we introduce a constraint on the
attacker's perturbation power. We enforce this constraint to make
the perturbations unnoticeable by the receiver. This constraint
de�nes an upper bound on the generated perturbation's power.

Algorithm 1 Generating UAPs using PGM

D  adversary training data
5  DNN-based model
~  training input
l5  DNN-based loss function
M  domain remapping function
R  domain regularization function
� ¹I º  initialize the blind adversarial perturbation model pa-
rameters (\ � )
?  the upper bound of the generated perturbations
)  number of epochs
for epochC2 f1� � � ) g do

for all mini-batch18 in D do
I � Uniform (0,1)
RotateM¹ ~• � ¹I ºº based on the channel phase shift
� = �¹ 1

j18 j
Í

x 218• l ¹5¹M¹ ~• � ¹I º• ?ºº• 5¹Gººº ¸ R¹� ¹I ºº
Update� to minimize �

end for
end for
return �

To enforce this power constraint, we use aremapping functionM
while creating the UAP. HereM adjusts the perturbed signal to
comply with the power constraint. Therefore, we reformulate our
optimization problem by including the remapping functionM :

arg max
�

E
I � D=85 >A<¹0•1º

»
Õ

~2D

l ¹5¹M¹ ~• � ¹I º• ?ºº• 5¹~ºº¼ (4)

where? is the upper bound on the power of the generated perturba-
tions. Each time we want to create the perturbation signal, we check
its power and, if it violates the constraint, we normalize it to satisfy
the power constraint. The following shows the remapping function
we used to preserve the power constraint of the perturbations in
the target wireless applications.

M¹ ~• � ¹I º• ?º = ~ ¸

( p
? � ¹I º

j j� ¹I º j j2
• j j� ¹I º j j22 ¡ ?•

� ¹I º• j j� ¹I º j j22 � ?”
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