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ABSTRACT
There is significant enthusiasm for the employment of Deep Neural
Networks (DNNs) for important tasks in major wireless commu-
nication systems: channel estimation and decoding in orthogonal
frequency division multiplexing (OFDM) systems, end-to-end au-
toencoder system design, radio signal classification, and signal
authentication. Unfortunately, DNNs can be susceptible to adver-
sarial examples, potentially making such wireless systems fragile
and vulnerable to attack. In this work, by designing robust adver-
sarial examples that meet key criteria, we perform a comprehensive
study of the threats facing DNN-based wireless systems.

Wemodel the problem of adversarial wireless perturbations as an
optimization problem that incorporates domain constraints specific
to different wireless systems. This allows us to generate wireless
adversarial perturbations that can be applied to wireless signals
on-the-fly (i.e., with no need to know the target signals a priori),
are undetectable from natural wireless noise, and are robust against
removal. We show that even in the presence of significant defense
mechanisms deployed by the communicating parties, our attack
performs significantly better compared to existing attacks against
DNN-based wireless systems. In particular, the results demonstrate
that even when employing well-considered defenses, DNN-based
wireless communication systems are vulnerable to adversarial at-
tacks and call into question the employment of DNNs for a number
of tasks in robust wireless communication.
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1 INTRODUCTION
Deep Neural Networks (DNNs) are becoming central to various
key wireless communication systems, thanks to their promising

performances, and their computational efficiency. In particular,
the wireless community has leveraged DNNs in state-of-the-art
autoencoder wireless communication systems [18, 21, 29, 33, 34,
37], modulation recognition (radio signal classification) [31, 38, 39,
41, 48], and OFDM channel estimation and signal detection [49,
50]. Such wireless systems are crucial to various applications; for
example, OFDM is a popular modulation scheme that has been
widely used in many existing standards, such as 4G LTE and the
IEEE 802.11 family [20, 22], and new standards such as 5G [9].

Unfortunately, whereas there is significant enthusiasm for the
employment of DNNs [6], such emerging DNN-based wireless sys-
tems face a security threat: DNNs are known to be susceptible to
adversarial examples [11, 17, 32], i.e., small perturbations added to
the inputs of a DNN causing it to misclassify the perturbed inputs;
consequently, DNN-based wireless communication systems are also
susceptible to such attacks, which may impact the security (e.g., cor-
rectness, availability) of such systems. And, due to the penetration
of these techniques in both contemporary military and commercial
systems, the cost could be devastating. For example, robust attacks
on modulation classification could compromise the performance
of commercial software-defined radios or the ability of a military
system to detect, intercept, and/or jam an enemy [10]. Importantly,
particularly if the attack on the modulation classifier is undetectable
as for our scheme proposed here, such a compromise can impact
important tactical decisions based on enemy status. In the multitude
of systems where OFDM plays a key role, an unexpected high bit-
error-rate at the receiver due to adversarial perturbations can cause
significant disruption; for example, the impact on the performance
of the 4G Internet, which is tuned carefully at multiple levels to
anticipate users’ performance based on system state measurements,
would be significant.
Our work: In this paper, by first identifying key criteria of an
effective adversarial attack and then designing based on such, we
perform the first comprehensive study of the effect of adversarial
examples against DNN-based wireless systems. In this setting, the
goal of an attacker is to transmit a well-crafted perturbation signal
over a channel so that the underlying DNN-based wireless system
(e.g., a radio signal classifier) fails and misclassifies the perturbed
signals. Note that while there exists a large body of work on adver-
sarial examples against image classification tasks, e.g., FGSM [17],
such works cannot be trivially applied to the setting of wireless
systems where the input signals to be perturbed are unknown to the
adversary. Recent work [1, 12, 23, 24, 42–44] has aimed at imple-
menting adversarial examples on wireless systems; however, none
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of them are practical as they ignore domain constraints of wireless
systems.

Therefore, in this work we present a systematic and genericmech-
anism for generating adversarial examples against DNN-based wire-
less systems, with the goal of generating adversarial perturbations
that satisfy the domain constraints of wireless systems. Specifically,
we present a generic framework that models the problem as an
optimization problem and incorporates domain constraints spe-
cific to target wireless systems. We particularly enforce three key
constraints in generating wireless adversarial examples: first, they
should be input-agnostic meaning that the attacker generates the
perturbation signal without any knowledge about the incoming
(unknown) input wireless signals. This is essential as, unlike tra-
ditional targets of adversarial examples (e.g., image classification
tasks), in DNN-based wireless systems the signal to be perturbed
is not known a priori to the adversary. We particularly build on
Universal Adversarial Perturbations (UAPs) [32], a recent adver-
sarial perturbation approach that is input-agnostic. Second, the
perturbation should be undetectable in that one should not be
able to distinguish between a generated adversarial perturbation
and natural noise expected from the wireless channel; otherwise,
a defender can design a classifier to identify (then, remove) the
adversarial perturbations based on the perturbation’s power or
statistical behavior. Finally, the wireless perturbations need to be
robust against countermeasures meaning that the defender (e.g.,
a wireless decoder) should not be able to remove the perturbation
from the received signal. Our framework is generic and can be
used to enforce other domain constraints needed for a target wire-
less application, e.g., we also need to design in the presence of an
unknown phase rotation between the attacker and the receiver.

Below, we describe howwe enforce each of the three key wireless
domain constraints through our generic optimization problem.
Generating input-agnostic perturbations. We model the prob-
lem of adversarial wireless perturbations as an optimization prob-
lem, and solve it to produce a perturbation generator model (PGM)
able to generate an extremely large number of input-agnostic ad-
versarial examples vectors (i.e., UAPs) for the target wireless appli-
cation. Therefore, instead of applying a single UAP vector (that can
be easily identified and removed as we show through experiments),
in our setting the attacker picks and applies a random UAP adver-
sarial example from a very large set of available UAPs produced by
our PGM. We also show that our PGM is effective in a black-box
scenario where the attacker generates adversarial perturbations
based on a DNN substitute model and uses them to attack the orig-
inal wireless DNN model. Our experiments demonstrate that our
techniques outperform state-of-the-art adversarial attack works - es-
pecially in the presence of defense mechanisms. Note that recent
works [12, 42] also use a DNN model to generate perturbations;
however, they do not provide undetectability and robustness for
perturbations, and they only consider a white-box scenario where
the adversary is aware of the target wireless DNN model.
Undetectability. We tailor our PGM to each target wireless com-
munication system by enforcing constraints specific to such sys-
tems, with the goal of making the attack undetectable. In particu-
lar, we use generative adversarial networks (GAN) to enforce an
undetectability constraint on the UAPs generated by our PGM,

and constrain them to follow a Gaussian distribution, which is
the expected noise distribution for additive white Gaussian noise
(AWGN) wireless channels. We show that by using such an unde-
tectability constraint, the PGM can completely fool a discriminator
function, i.e., a DNN classifier that tries to distinguish between
adversarial perturbations and natural Gaussian noise. Based on
our experiments, enforcing our undetectability constraint can de-
crease the 𝑓 1_𝑠𝑐𝑜𝑟𝑒 of the discriminator from 0.99 to 0.6 (where an
𝑓 1_𝑠𝑐𝑜𝑟𝑒 = 0.5 is the best undetectability as it represents random
guessing) with only a slight degradation in the performance of our
attack. The score can be further decreased at the cost of further
attack performance degradation.
Robustness. We also enforce a robustness constraint on the UAPs
generated by our PGM. This constraint aims at maximizing the
distances between different UAPs generated by our PGM; this is
because if the UAPs are similar, as we show, an adversary can
remove their effect with the knowledge of as little as a single pilot
UAP vector. We analyze the robustness of our attack in different
scenarios (Adversarial Training and Perturbation Subtraction) based
on different amounts of knowledge available to the defender, and
show that it provides high robustness against defense techniques;
by contrast, we show that a single vector UAP, as proposed in
previous work [43, 44], can be trivially detected and removed. Our
analysis suggests that even if a defender has knowledge about the
structure of our PGM, she will not able to mitigate the effects of
the attack.
Evaluation on major wireless systems. We have implemented
and evaluated our attacks on three classes of DNN-based wireless
systems, specifically, autoencoder communication systems [18, 21,
29, 33, 34, 37], radio signal classification [31, 38, 39, 41, 48], and
OFDM channel estimation and signal detection [49, 50]. We show
that for all three applications, our attack is highly effective in corrupt-
ing the functionality of the underlying wireless systems, and at the
same time offers strong undetectability and robustness.

We also propose two countermeasures, Adversarial Training
and Perturbation Subtraction, based on the knowledge of a defender
about the attack. We evaluate the performance of our attack and
the single vector UAP attack against our own countermeasures as
well as an existing countermeasure from the literature [23] called
randomized smoothing. Our results show that our attack provides
higher robustness against these countermeasures than previous ad-
versarial attacks such as the single vector UAP attack. For instance,
for the autoencoder communication system, in the presence of an
adversarial training defense, our attack can increase the block-error
rate (BLER) by four orders of magnitude with a perturbation-to-
signal ratio (PSR) of −6𝑑𝐵. However, with a similar PSR, the single
vector UAP attack [43, 44] is ineffective in the presence of the same
defense mechanism. Similarly, in the OFDM application, our at-
tack results in a 9X increase in bit error rate while the impact of a
single vector UAP is negligible. Furthermore, our attack is robust
to the presence of a perturbation subtraction defense (as will be
introduced), e.g., in the modulation recognition task, our attack
reduces classification accuracy from 0.69 to 0.23 despite the defense
mechanism (by contrast, the single UAP attack is not effective as it
reduces accuracy from 0.69 to only 0.67).

In summary, we make the following major contributions:



• We propose an input-agnostic, undetectable, and robust
adversarial attack against DNN-based wireless communi-
cation systems. We show that our attack is more effective
than previous attacks; in particular, our results indicate
that our PGM attack is more robust than using a single
vector UAP attack against different countermeasures.

• We evaluate our attack against three classes of wireless sys-
tems by performing extensive experiments, hence showing
that our PGM attack is not specific to a DNN-based wire-
less application and can be generalized to any DNN-based
wireless application system.
• To our knowledge, we are the first to apply adversarial

attacks against DNN-based OFDM channel estimation and
signal detection systems, which comprise the physical layer
in contemporary WiFi and cellular systems.

• We propose different countermeasure techniques and eval-
uate the robustness of the target wireless systems against
adversarial attacks. We also compare the robustness of our
attack to previous adversarial attacks in wireless systems
and show that our attack is more robust against different
countermeasures than previous attacks that are based on a
single vector UAP.

2 BACKGROUND ON DNN-BASED
COMMUNICATION SYSTEMS

Historically, the prosperity of wireless communications has relied
on its own model-based design paradigms, where accurate mathe-
matical models and expert knowledge are required. However, the
traditional model-based wireless techniques cannot address the new
challenges of emerging applications, such as communicating under
excessively complex scenarios with unknown channel models, low-
latency requirement in large-scale super-dense networks [3], etc.
To tackle these challenges, DNNs have recently begun to play an
important role in wireless communication applications due to their
promising performance [6]. In this work, we focus on three major
DNN-based wireless communication systems introduced below:
End-to-End Autoencoder Communication Systems: Despite
the widespread use of provably optimal statistical models for the
wireless physical layer, such models exhibit many imperfections
and non-linearities in practical scenarios that can only be captured
approximately. On the other hand, a DNN-based communication
system such as an end-to-end autoencoder, that does not require a
mathematically tractable model and can be optimized for a specific
hardware configuration and channel, might better be able to handle
such imperfections. Autoencoders are increasingly used for end-to-
end learning of communication systems [33, 34, 37], and they can
outperform contemporary modularized designs of these systems.
Such systems implement their encoders and decoders using DNNs
that are able to learn the construction and reconstruction process
of the information as well as the noisy environment of the physical
channel. For instance, Oshea et al. [37] consider a communication
system design as an end-to-end reconstruction task that tries to
jointly optimize transmitter and receiver components in a single
process. As another example, Nachmani et al. [34] use Recurrent
Neural Networks (RNNs) to decode linear block codes.

Modulation Recognition: Radio signal classification or modu-
lation recognition is the task of classifying the modulation of a
received radio signal to understand the type of communication
scheme used in a wireless system. This can be considered as an
𝑁 -class decision problem where the input is a complex baseband
time series representation of the received signal. Modulation recog-
nition is a key enabler for spectrum interference monitoring, radio
fault detection, dynamic spectrum access, and many other wireless
applications. Prior to using DNNs, modulation recognition has been
achieved by carefully handcrafting specialized feature extractors
for specific signal types and properties. Then, compact decision
boundaries or statistically learned boundaries are derived from
them with low-dimensional feature spaces.

Recently, conventional methods have been replaced with DNNs
in modulation recognition [38, 39, 48], i.e., [38] applies Convolu-
tional Neural Networks (CNNs) to the complex-valued temporal ra-
dio signal domain. They use expert feature basedmethods instead of
naively learned features to improve classification performance. Fur-
thermore, West et al. in [39] survey the latest advances in machine
learning with DNNs by applying them to the task of modulation
recognition. Their results show that the performance of modulation
recognition system can be improved by novel architectures and
training methods.
Signal Detection in OFDM Systems: Orthogonal frequency di-
vision multiplexing (OFDM) is a popular modulation scheme that
has been widely used in wireless systems. OFDM is currently being
deployed in many standards such as the downlink of 4G LTE and
IEEE 802.11 family [20, 22]. Furthermore, OFDM is an important
candidate for emerging standards such as 5G [9]. A key component
of OFDM is channel state information (CSI), which refers to known
channel properties of a communication link. CSI can be estimated
using pilot signals that are known to the wireless system prior to
the detection of the transmitted data. With the estimated CSI, trans-
mitted symbols can be recovered at the receiver. Traditionally, least
square (LS) and minimum mean-square error (MMSE) estimation
methods are used for channel estimation in OFDM systems and
have been thoroughly studied in the literature [28].

Recently, DNNs have been introduced in OFDM systems to esti-
mate CSI and recover transmitted symbols at the receiver. [49] and
[50] deploy DNNs for channel estimation and signal detection in
OFDM systems in an end-to-end manner. In [50], Zhao et al. use
CNNs to design an OFDM receiver that outperforms conventional
OFDM receivers based on Linear Minimum Mean Square Error
channel estimators. Ye et al. [49] use DNNs to estimate the CSI
implicitly and recover the transmitted symbols directly instead of
estimating CSI explicitly and detecting the transmitted symbols
using the estimated CSI.

3 BACKGROUND ON ADVERSARIAL
EXAMPLES

An adversarial example is a crafted input that fools a target classifier
or regression model into making incorrect classifications or predic-
tions. The adversary’s goal is to generate adversarial examples by
adding minimal perturbations to the input data attributes. Previ-
ous works [11, 17, 32, 35] have suggested several ways to generate



adversarial examples. Most adversarial example techniques gener-
ate perturbations specific to the input meaning that the adversary
needs to be aware of the input to generate its corresponding adver-
sarial perturbation, e.g., the Fast Gradient Sign Method (FGSM) [17]
algorithm generates adversarial perturbations based on the input
and the sign of the model’s gradient. Recently, Moosavi-Dezfooli et
al. [32] introduced universal adversarial perturbations (UAP) where
the adversary generates adversarial examples that are independent
of the inputs.

3.1 Adversarial Examples Against DNN-based
Wireless Systems

Similar to other DNN-based applications, DNN-based wireless sys-
tems are susceptible to adversarial attacks [1, 2, 7, 8, 12, 13, 19,
23, 24, 42–45, 47]. Flowers et al. [13] use the FGSM method to
evaluate vulnerabilities of the raw in-phase and quadrant (IQ)
based automatic modulation classification task. There is a body
of work [1, 12, 23, 24, 42–44] concentrated on using the adversarial
input-agnostic technique proposed in [43] to attack DNN-based
wireless applications, e.g., in [43], Sadeghi and Larsson design a
single UAP vector that, when added to the received signal in a
DNN-based modulation recognition system, causes the receiver
to misclassify the modulation used by the transmitter. [44] uses
the same approach in an end-to-end autoencoder communication
system where an attacker can craft effective physical black-box
adversarial attacks to increase error rates.

As opposed to using a single vector UAP, [12, 42] use a DNN
to generate perturbations, e.g., Flowers et al. [12] encapsulate the
learned model for perturbation creation in an Adversarial Resid-
ual Network (ARN) in a white-box scenario to evade DNN-based
modulation classification systems. In [42], Restuccia et al. formu-
late a Generalized Wireless Adversarial Machine Learning Problem
(GWAP) against modulation recognition systems where they ana-
lyze the combined effect of the wireless channel and adversarial
waveform on the efficacy of the adversarial attacks. Instead of
computing the optimal perturbation for each input, they generate
adversarial perturbations in a white-box scenario over a set of con-
secutive input samples. However, as opposed to our work, their
perturbations are not input-agnostic since they are generated based
on the knowledge of a set of consecutive inputs, which renders the
attack impractical. Note that both works only consider a white-box
scenario where the attacker is fully aware of the target DNN model.
Moreover, these works only apply their attacks to the modulation
recognition task while in this work we consider three types of
wireless communication tasks.

Furthermore, Kokalj-Filipovic et al. [26] propose two counter-
measure mechanisms to detect adversarial examples in modula-
tion classification systems based on statistical tests. One test uses
Peak-to-Average-Power-Ratio (PAPR) of received signals, while an-
other statistical test uses the Softmax outputs of the DNN classifier.
Furthermore, [23] uses a certified defense based on randomized
smoothing against the modulation recognition task. They augment
the training dataset using Gaussian noise, and then use a hypothesis
test to make predictions in the test phase.

4 SYSTEM MODEL
We begin by presenting the system models of the three DNN-based
wireless applications targeted in this paper. A general DNN-based
wireless communication system consists of a transmitter, a channel,
and a receiver. The input of the system is a message 𝑠 ∈ M =

{1, 2, ..., 𝑀} where 𝑀 = 2𝑘 is the dimension of M and 𝑘 is the
number of encoded bits per message. The transmitter employs a
modulation scheme and sends the modulated symbols through
the channel. The receiver receives the transmitted symbols and
demodulates them to reconstruct the original symbols with the
least error. Depending on the wireless application, each part of the
system behaves differently, as overviewed in the following.

4.1 Autoencoder Communication Systems
In an autoencoder communication system, the transmitter and
receiver are called encoder and decoder, respectively, and are imple-
mented using DNNs. The transmitter generates a transmitted signal
𝑥 = 𝑒 (𝑠) ∈ R2𝑁 by applying the transformation 𝑒 : M → R2𝑁
to the message 𝑠 . Note that the output of the transmitter is an 𝑁

dimensional complex vector, which can be treated as a 2 × 𝑁 di-
mensional real vector. Then, the generated signal 𝑥 is added to the
channel noise, which we consider to be AWGN. Hence, the receiver
receives a noisy signal 𝑦 = 𝑥 + 𝑛 and applies the transformation
𝑑 : R2𝑁 → M to create 𝑠 = 𝑑 (𝑦), the reconstructed version of
the message 𝑠 . To enable a benchmark for comparison with the
single vector UAP attack proposed in [44], we set 𝑁 = 7 and 𝑘 = 4;
therefore, the input size of the DNN-based decoder is 2 × 7 where
the first 7 elements are the in-phase components and the second
7 elements are the quadrature components of the received signal.
For the training and test datasets, we randomly generate input
messages.

4.2 Modulation Recognition Systems
DNN-based modulation recognition can be treated as a classifica-
tion problem where the input is a complex base-band time series
representation of the received signal and the goal of the model
is to identify the modulation type of the transmitter. Similar to
autoencoder systems, the modulated (transformed) input message
𝑥 is added to the channel AWGN noise 𝑛, and the receiver receives
a noisy complex base-band signal 𝑦 = 𝑥 + 𝑛. In this work, we will
use the GNU radio ML dataset RML2016.10a [36] and its associated
DNN [38]. This dataset is publicly available and also enables us to
compare our attack with the single vector UAP attack proposed
by [43].

The GNU radio ML dataset RML2016.10a contains 220000 input
samples, where each sample is associated with one specific mod-
ulation scheme at a specific signal-to-noise ratio (SNR = 10 dB).
It contains 11 different modulations: BPSK, QPSK, 8PSK, QAM16,
QAM64, CPFSK, GFSK, PAM4, WBFM, AM-SSB, and AM-DSB. The
samples are generated for 20 different SNR levels from -20 dB to
18 dB with a step size of 2 dB. The size of each input vector is 256,
which corresponds to 128 in-phase and 128 quadrature components.
Half of the samples are considered as the training set and the other
half as the test set.



4.3 OFDM Channel Estimation and Signal
Detection Systems

In an OFDM system, at the transmitter side, the transmitted symbols
and pilot signals are converted into parallel data streams. Then, the
inverse discrete cosine transform (IDFT) converts the data streams
from the frequency domain to the time domain with a cyclic prefix
(CP) inserted to mitigate the inter-symbol interference (ISI). The
length of the CP should be no shorter than the maximum delay
spread of the channel. Based on Ye et al. [49], we consider a sample-
spaced multi-path channel described by the complex random vector
ℎ. On the receiver side, the received signal can be expressed as
𝑦 = 𝑥 ⊛ ℎ + 𝑛, where ⊛ denotes circular convolution while 𝑥 and
𝑛 represent the transmitted signal and the AWGN noise of the
channel, respectively. At the receiver of the OFDM system, the
frequency domain received signal is obtained after removing the
CP and performing a discrete cosine transform (DFT).

We assume that the DNN model takes as input the received data
consisting of one pilot block and one data block, and reconstructs
the transmitted data in an end-to-end manner. To be consistent
with [49], we consider 64 sub-carriers and a CP of length 16. Also,
we use 64 pilots in each frame for channel estimation. Hence, the
size of the input vector is 256, where the first 128 samples are the
in-phase and quadrature components of the pilot block, and the
second 128 samples are the in-phase and quadrature components
of the following data block. We use [49]’s fully connected DNN
model. For the training and test datasets, we randomly generate
input messages.

5 ATTACK MODEL
In all of the aforementioned wireless applications, the goal of the
attacker1 is to transmit a well-designed perturbation signal over
the channel such that the underlying DNN-based model fails to
perform adequately. The generated perturbation is added to the
transmitted signal and AWGN noise. The receiver receives the per-
turbed signal and applies the target DNN-based model to it. Note
that in the OFDM system, the attacker adds the generated perturba-
tion to each frame containing a pilot block and a data block. In the
white-box scenario, we consider a strong attacker who is aware of
the underlying DNN-based model, while in the black-box setting
the adversary has no or limited knowledge of the underlying DNN-
based model. Due to the challenges for the attacker to obtain robust
phase synchronization with the transmitter at the receiver, which
would likely require tight coordination with the communicating
nodes, we assume that the perturbation generated by the attacker
is subject to a random phase shift on the channel relative to the
transmitter’s signal.

As mentioned in Section 3, in the underlying wireless applica-
tions, the perturbation signal needs to be transmitted over-the-air,
and therefore the perturbation signal should be input-agnostic i.e.,
universal (UAP). This allows the attacker to generate perturbation
signals with no need to know the upcoming wireless signals. While
some works [43, 44] have investigated such UAPs, they are easily
detectable as the attacker uses a single perturbation vector. Such a
perturbation vector can be inferred by the defender (e.g., through

1We use “attacker” and “adversary” interchangeably.
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Figure 1: Performance of the single vector UAP attack in the
presence of defense mechanisms for an autoencoder com-
munication system. The single vector UAP attack [44] can
be easily defeated using our two defense mechanisms.

pilot signals) and consequently subtracted from the jammed signals.
We demonstrate this through two defense mechanisms (namely, ad-
versarial training and perturbation subtraction defenses presented
in Section 9). For instance in an autoencoder communication sys-
tem as shown in Figure 1, both of our defense mechanisms can
easily defeat a single vector UAP attack as proposed by [43, 44].

Therefore, instead of designing a single UAP, our attacker learns
the parameters of a PGM that generates separate perturbation vec-
tors without any knowledge of the input. Using a PGM instead
of a single noise vector provides the attacker with a large set of
perturbations, and we can use existing optimization techniques
such as Adam [25] to find the perturbations.

6 OUR PERTURBATION GENERATOR MODEL
(PGM)

In this section, we provide details on how our attack is performed
using a Perturbation Generator Model (PGM). Figure 2 illustrates
the process.

6.1 General Formulation
We formulate the universal adversarial perturbation problem in a
wireless communication system as:

argmin
𝛿
| |𝛿 | |2

s.t. ∀𝑦 ∈ 𝐷 : 𝑓 (𝑦 + 𝛿) ≠ 𝑓 (𝑦) (1)

where 𝑦 is the transmitted signal plus the AWGN noise (𝑦 = 𝑥 + 𝑛),
𝑓 is the underlying DNN-based function in the wireless system, and
𝐷 is the input domain of the wireless DNN model. The objective is
to find a minimal (perturbation with minimum power) universal
perturbation vector, 𝛿 , such that when added to an arbitrary input
from a target input domain 𝐷 , it will cause the underlying DNN-
based model 𝑓 (.) to misclassify and therefore increase the DNN-
based model loss function. Note that one cannot find a closed-form
solution for this optimization problem since the DNN-based model
𝑓 (.) is a non-convex function, i.e., a deep neural network. Therefore,
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(1) can be formulated as follows to numerically solve the problem
using empirical approximation techniques:

argmax
𝛿

∑
𝑦∈D

l(𝑓 (𝑦 + 𝛿), 𝑓 (𝑦)) (2)

where l is the DNN-based model loss function and D ⊂ 𝐷 is the
attacker’s network training dataset.

As mentioned above, instead of learning a single UAP as sug-
gested by [43, 44], we aim at learning the parameters of a PGM 𝐺

to be able to generate UAPs without any knowledge of the system
input. This generator model 𝐺 will generate UAP vectors when
provided with a random trigger parameter 𝑧 (we denote the cor-
responding adversarial perturbation as 𝛿𝑧 = 𝐺 (𝑧)), i.e., we can
generate different perturbations for different values of 𝑧. Therefore,
the goal of our optimization problem is to optimize the parameters
of the PGM 𝐺 (as opposed to optimizing a UAP 𝛿 in [44]). Hence,
we formulate our optimization problem as:

argmax
𝐺

E
𝑧∼𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 (0,1)

[
∑
𝑦∈D

l(𝑓 (𝑦 +𝐺 (𝑧)), 𝑓 (𝑦))] (3)

We can use existing optimization techniques (e.g., Adam [25]) to
solve this problem. In each iteration of the training, our algorithm
selects a batch from the training dataset and a random trigger 𝑧,
then computes the objective function.

Algorithm 1 summarizes our approach to generate UAPs. In
each iteration, Algorithm 1 computes the gradient of the objective
function w.r.t. the perturbation for given inputs, and optimizes it
by moving in the direction of the gradient. The algorithm enforces
the underlying constraints of the wireless system using various
remapping and regularization functions that will be discussed in
the following sections. We use the iterative mini-batch stochastic
gradient ascent [15] technique.

6.2 Incorporating Power Undetectability
Constraint

As our first constraint on UAPs, we introduce a constraint on the
attacker’s perturbation power. We enforce this constraint to make
the perturbations unnoticeable by the receiver. This constraint
defines an upper bound on the generated perturbation’s power.

Algorithm 1 Generating UAPs using PGM
D ← adversary training data
𝑓 ← DNN-based model
𝑦 ← training input
l𝑓 ← DNN-based loss function
M ← domain remapping function
R ← domain regularization function
𝐺 (𝑧) ← initialize the blind adversarial perturbation model pa-
rameters (𝜃𝐺 )
𝑝 ← the upper bound of the generated perturbations
𝑇 ← number of epochs
for epoch 𝑡 ∈ {1 · · ·𝑇 } do
for all mini-batch 𝑏𝑖 in D do
𝑧 ∼ Uniform (0,1)
RotateM(𝑦,𝐺 (𝑧)) based on the channel phase shift
𝐽 = −( 1

|𝑏𝑖 |
∑
𝒙∈𝑏𝑖 , l(𝑓 (M(𝑦,𝐺 (𝑧), 𝑝)), 𝑓 (𝑥))) + R(𝐺 (𝑧))

Update 𝐺 to minimize 𝐽
end for

end for
return 𝐺

To enforce this power constraint, we use a remapping functionM
while creating the UAP. HereM adjusts the perturbed signal to
comply with the power constraint. Therefore, we reformulate our
optimization problem by including the remapping functionM:

argmax
𝐺

E
𝑧∼𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 (0,1)

[
∑
𝑦∈D

l(𝑓 (M(𝑦,𝐺 (𝑧), 𝑝)), 𝑓 (𝑦))] (4)

where 𝑝 is the upper bound on the power of the generated perturba-
tions. Each time we want to create the perturbation signal, we check
its power and, if it violates the constraint, we normalize it to satisfy
the power constraint. The following shows the remapping function
we used to preserve the power constraint of the perturbations in
the target wireless applications.

M(𝑦,𝐺 (𝑧), 𝑝) = 𝑦 +
{√

𝑝
𝐺 (𝑧)
| |𝐺 (𝑧) | |2 , | |𝐺 (𝑧) | |22 > 𝑝,

𝐺 (𝑧), | |𝐺 (𝑧) | |22 ≤ 𝑝.



Algorithm 2 GAN-based noise regularizer
D ← training data
𝑓 ← DNN-based model
𝐺 ← PGM
𝐷 ← discriminator model
𝜇, 𝜎2 ← target desired Gaussian distribution parameters
for 𝑡 ∈ {1, 2, · · · ,𝑇 } do
𝑧′ ∼ Gaussian(𝜇, 𝜎2)
𝑧 ∼ Uniform
train 𝐷 on 𝐺 (𝑧) with label 1 and 𝑧′ with label 0
train 𝐺 on D using regularizer R

end for
return 𝐺

6.3 Incorporating Statistical Undetectability
Constraint

As mentioned earlier, the adversarial perturbation is not noise but
a deliberately optimized vector in the feature space of the input
domain, and hence is easily distinguishable from the expected be-
havior of the noise in the communication system environment. To
make our adversarial perturbation undetectable to statistical infer-
ence, we enforce a statistical behavior (such as Gaussian behavior)
that is expected from the physical channel of a communication
system on our adversarial perturbations. We use a regularizer R in
the training process of our PGM to enforce a Gaussian distribution
for the perturbation. To do this, we use a generative adversarial
network (GAN) [16]: we design a discriminator model 𝐷 (𝐺 (𝑧))
that tries to distinguish the generated perturbations from a Gauss-
ian distribution. Then we use this discriminator as our regularizer
function to enforce the distribution of the crafted perturbations to
be similar to a Gaussian distribution. We simultaneously train the
blind perturbation model and the discriminator model. Hence, we
rewrite (4) as follows:

argmax
𝐺

E
𝑧∼𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 (0,1)

[(
∑
𝑦∈D

l(𝑓 (M(𝑦,𝐺 (𝑧), 𝑝)), 𝑓 (𝑦)))

+𝛼R(𝐺 (𝑧))] (5)

where 𝛼 is the weight of the regularizer relative to the main objec-
tive function. Algorithm 2 shows the details of our technique to
generate perturbations that follow a Gaussian distribution with an
average 𝜇 and standard deviation 𝜎 . Note that we use the Gauss-
ian distribution as the desired distribution for our noise since it
is expected from the environment where a wireless communica-
tion system operates, and thus it cannot be distinguished from the
normal AWGN noise of the channel.

6.4 Incorporating Robustness Constraint
As mentioned earlier, using a PGM instead of a single UAP to per-
form the adversarial attack provides the adversary an extremely
large set of perturbations. Thismakes the attackmore robust against
countermeasures compared to the single vector UAP attack. How-
ever, if the generated perturbations are similar to each other, an
ad hoc defender (as discussed in Section 9) can use pilot signals
to accurately estimate (and remove) the perturbations. To prevent
this, we force Algorithm 1 to generate non-similar perturbations.

To this aim, we add the 𝑙2 distance between consecutively gener-
ated perturbations as a regularizer to the objective function. Hence,
in the training process, our model tries to maximize the distance
between perturbations. In Section 9, we see that incorporating this
constraint prevents an ad hoc defender from accurately estimating
the generated perturbations.

6.5 Incorporating Channel Phase Rotation
As mentioned in Section 5, in order to model the lack of phase
synchronization between the attacker and the transmitter, we add a
relative random phase to the perturbation generated by the pertur-
bation model and rotate its signal. For each adversarial perturbation,
we generate a random phase 𝜃 and rotate the perturbation based
on it. Note that the channel effect is applied on the perturbation
after applying all of the mentioned constraints on the perturbation.
Assume 𝛿 =M(𝑥,𝐺 (𝑧)) is a perturbation generated by the PGM
after applying the power constraint, and 𝛿𝑅 and 𝛿𝐼 are the real and
imaginary parts of the perturbation, respectively. Using the random
phase shift caused by the channel the rotated perturbation can be
derived as follows:

For all 𝑖 = 1, 2, · · · , 𝑁 :{
𝛿 ′
𝑖,𝑅

= 𝛿𝑖,𝑅 cos(𝜃 ) − 𝛿𝑖,𝐼 sin(𝜃 )
𝛿 ′
𝑖,𝐼

= 𝛿𝑖,𝐼 cos(𝜃 ) + 𝛿𝑖,𝑅 sin(𝜃 )
(6)

where 𝑁 is the length of the perturbation, and 𝛿 ′
𝑅
and 𝛿 ′

𝐼
are the

real and imaginary parts of the rotated perturbation.

7 EXPERIMENTAL SETUP
For the three target wireless applications, we use the same setup as
their original papers [37, 38, 49]. The target models for each appli-
cation are the same as the ones proposed in their original papers.
Table 4 in Appendix A illustrates the input size and parameters of
each target DNNmodel. To enable a benchmark for comparison, we
obtain the code of the UAP adversarial attack proposed by [43, 44]
and transform it from TensorFlow to Pytorch. We then compare the
results of our adversarial attack using a PGM with the single vector
UAP adversarial attack. On the other hand, we are the first to apply
adversarial attacks on the OFDM channel estimation and signal
detection task; hence, we implement both the PGM attack and the
single vector UAP attack against the OFDM system for comparison.

We use fully connected layers for the PGM with different num-
bers of hidden layers and different numbers of neurons in each
layer based on the wireless application. Table 1 contains the details
of the structure used for each PGM.

For the discriminator model mentioned in Section 6, we use a
fully connected DNN model with one hidden layer of size 50 and
a ReLU activation function. The discriminator generates a single
output that can be interpreted as the probability of following a
Gaussian distribution for a signal. In the training process of our
discriminator, we set 𝜇 and 𝜎 to the average of the means and
standard deviations of the generated perturbations. To train the
discriminator we use the Adam [25] optimizer with a learning rate
of 10−5.



Table 1: Details of the perturbation generation model in each wireless application

Autoencoder End-to-End Communication Modulation Recognition OFDM Channel Estimation
input size 2 × 7 2 × 128 256

hidden layers sizes 100 5000, 1000 5000, 1000
hidden layers activations ReLU Leaky ReLU, Leaky ReLU Leaky ReLU, Leaky ReLU

loss function Cross Entropy Cross Entropy MSE
metric Block-Error Rate (BLER) Accuracy Bit Error Rate (BER)

optimizer Adam Adam Adam
learning rate 10−4 10−3 10−2

8 EVALUATION OF ATTACK PERFORMANCE
In this section, we first evaluate our attack against three target
wireless applications without any undetectability constraint. We
also compare our attack with the single vector UAP attack. As
mentioned in Section 5, to consider the channel effect, we add
a relative random phase shift to our perturbations. Second, we
evaluate our attack while enforcing the undetectability constraint
mentioned in Section 6 on the autoencoder communication system.
Figure 3 highlights the performance of our attack compared to
the single vector UAP attack for the three target applications. We
discuss the results in detail as follows.

8.1 Performance Without Statistical
Undetectability

First, we evaluate the performance of our attack without the sta-
tistical undetectability constraint, but only with the basic, power
undetectability constraint (the robustness and phase rotation con-
straints are always enforced).

Note that, in the figures of the modulation recognition applica-
tion, we use the PSR of the perturbation for the x-axis while for
the other two applications, the SNR is used for the x-axis. This is
because the GNU radio ML dataset that we use in our modulation
recognition experiments only contains samples at the specific SNR
of 10 dB.
Autoencoder Communication System: Figure 3a shows the
block-error rate (BLER) performance of the autoencoder commu-
nication system under adversarial attack while using a PGM and
the single vector UAP attack proposed in [44]. To be consistent
with [44], we set 𝑁 = 7 and 𝑘 = 4. We sweep SNR from 0𝑑𝐵 to
14𝑑𝐵 with steps of 1𝑑𝐵, and for each value, we calculate the BLER
of the autoencoder system. Similar to [44], to compare the power
of the adversarial perturbation at the receiver with the received
signal, we introduce a parameter, the perturbation-to-signal ratio
(PSR), which equals the ratio of the received perturbation power to
the received signal power.

We see that for different PSR ratios, using a PGM to generate the
UAPs increases the performance of the adversarial attack in compari-
son to learning a single UAP. As mentioned in Section 6, the reason
is that by learning the parameters of a generator model instead
of learning a single perturbation vector, we can leverage existing
learning techniques (such as momentum-based ones) to ease the
process of learning and prevent common learning problems such
as getting stuck in local minima.

Modulation Recognition: Figure 3b shows the performance of
our adversarial attack using a PGM against the modulation recogni-
tion application over different values of PSR. The GNU [36] dataset
contains samples for different values of SNR; however, we apply
our attack using samples with SNR of 10 dB. Figure 3b also com-
pares our attack with the single vector UAP attack proposed by [43]
against the modulation recognition task. We see that using a PGM
does not provide a significant improvement over the single vector
UAP method in terms of attack performance when the wireless
system does not employ defenses. In Section 9, we will demonstrate
that the PGM is significantly more robust in the presence of defense
mechanisms compared to the single vector UAP technique.
OFDM Channel Estimation and Signal Detection: Similar to
the above two applications, we apply each of the single vector UAP
and adversarial PGM attacks on the DNN-based OFDM system
proposed by [49]. Because there is no reported prior adversarial
attack on the DNN-based OFDM system, we do not have a baseline
for comparison. Figure 3c shows the Bit Error Rate (BER) of the
OFDM system against the two mentioned adversarial attacks. The
SNR is varied from 5𝑑𝐵 to 25𝑑𝐵 and we evaluate our attack for
two values of PSR, −10𝑑𝐵 and −20𝑑𝐵. We see that using a PGM im-
proves the adversarial attack slightly compared to the single vector
UAP attack if the wireless system does not employ any defenses.
However, in Section 9, we will see that using our PGM makes the
attack significantly more robust against possible defenses.

8.2 Performance With Statistical
Undetectability

In this section, we evaluate our attack while enforcing a statistical
undetectability constraint using a GAN in the autoencoder com-
munication system. Note that this technique is easily applicable to
other systems since it uses a discriminator network independent of
the underlying DNN model in the wireless application. To investi-
gate the undetectability of the generated perturbations, we train
our discriminator in two scenarios: first, we train our discriminator
to be able to distinguish between adversarial noise and natural
Gaussian noise without enforcing an undetectability constraint on
the adversarial generator model. In the second scenario, we train
the discriminator while enforcing a Gaussian distribution on our
adversarial noise in the PGM. The evaluation metric for the dis-
criminator is the 𝑓 1_𝑠𝑐𝑜𝑟𝑒 which can be interpreted as a weighted
average of the precision and recall metrics.

Figure 4 shows the performance of the discriminator as well
as the generator in these two scenarios for different values of 𝛼
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Figure 3: Performance of our attack and the single vector UAP attack for the three target wireless systems in the absence
of defenses. The case where the receiver employs significant defenses, which is the case of most interest, is considered in
Section 9, where the significant advantages of our attack will be demonstrated.

(denoting the strength of the undetectability constraint used in (5))
while the PSR of the generated perturbations is −6𝑑𝐵. For each
scenario and each value of 𝛼 , we have evaluated the discrimina-
tor for different values of SNR and reported the average 𝑓 1_𝑠𝑐𝑜𝑟𝑒 .
We see that without enforcing the undetectability constraint in
the PGM (𝛼 = 0), the discriminator is able to distinguish between
generated adversarial noise and Gaussian noise: the 𝑓 1_𝑠𝑐𝑜𝑟𝑒 is
nearly 1. On the other hand, when we enforce an undetectabil-
ity constraint in the PGM with 𝛼 = 50, the average 𝑓 1_𝑠𝑐𝑜𝑟𝑒 is
0.61, which means that the discriminator misclassifies the gen-
erated perturbations as Gaussian noise to some extent while the
performance of our attack slightly decreases compared to a sce-
nario where there is no undetectability constraint. By increasing 𝛼
to 500, the average 𝑓 1_𝑠𝑐𝑜𝑟𝑒 becomes 0.53 making our generated
noise more undetectable since the discriminator cannot distinguish
between Gaussian noise and adversarial noise. On the other hand
with 𝛼 = 500, our attack performs much worse than the case with
𝛼 = 50; however, it still degrades the performance of the autoen-
coder significantly. Therefore, by enforcing an undetectability
constraint, we can achieve high undetectability with only a
small degradation in the performance of our attack.

8.3 Performance In the Black-box Setting
All the previous evaluations were made assuming a (strong) white-
box adversary (see Section 5), i.e., an adversary who is aware of
the underlying DNN-based model including its structure and pa-
rameters. In this section, we evaluate our PGM in the black-box
setting where the attacker does not have any knowledge about the
underlying DNNmodel. Instead, the attacker uses its own substitute
model and then designs a white-box attack for it, as it has the per-
fect knowledge of the substitute model. The attacker then uses the
crafted perturbations to attack the original unknown underlying
DNN model. This is called a black-box adversarial attack [40]. Note
that in this setting, we assume that the attacker has access to a
training dataset from the same distribution of training data used
by the underlying target model.
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Figure 4: Performance of the autoencoder communication
system against PGM attack with and without the unde-
tectability constraint and the corresponding 𝑓 1_𝑠𝑐𝑜𝑟𝑒 of the
discriminator.

Using this approach, for each target application, we use a substi-
tute model to design our PGM. We then use the PGM learned on
the substitute model to generate perturbations and apply them on
the original wireless DNN model. Note that this approach is gen-
eral such that the attacker can use any other DNN-based wireless
model to generate perturbations and attack the original underly-
ing DNN model. Table 5 in Appendix A shows the structure and
parameters of the substitute models. Figure 5 compares the perfor-
mance of our PGM attack in white-box and black-box scenarios
for three target wireless applications. Although our PGM attack
performs slightly worse in the black-box setting than in the
white-box setting, we observe that the attack is still effective
and degrades the performance of the three underlying DNN
models.
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Figure 5: Performance of our attack with white-box and black-box scenarios for the three target wireless systems. Although
our PGM attack performs slightly worse in the black-box setting than in the white-box setting, we observe that the attack is
still effective and degrades the performance of the three underlying DNN models.

8.4 Attack’s Computational Complexity
We compare the complexity of our PGM attack algorithm with the
single vector UAP attack. Table 2 shows the average time required
to train a PGM compared to the average time a single vector UAP
attack needs to be trained for each target wireless application. Note
that the training time is calculated for a single PSR. Table 2 also
shows the average runtime of generating a single perturbation us-
ing the PGM attack during testing. We do not define this runtime
in the single vector UAP attack since the single perturbation is gen-
erated once and applied across all the inputs. Furthermore, We see
that although there are more parameters to learn for a PGM attack,
the times to perform the PGM and single vector UAP attacks
are comparable. The reason is that by learning the parameters
of a PGM instead of learning a single perturbation vector, we can
leverage existing learning techniques (such as momentum-based
ones) to speed up the process and prevent common learning prob-
lems such as getting stuck in local minima. Moreover, the attacker
needs to train the PGM only once for each wireless application
and he can use it for any input sample to attack the wireless system.

9 COUNTERMEASURES AND ROBUSTNESS
ANALYSIS

In this section, we propose two countermeasures as defense mech-
anisms against adversarial attacks in wireless communication sys-
tems. We apply these defenses to both the single vector UAP and
our PGM attacks and evaluate the performance of these attacks. The
performance of the defenses depends on what the defender knows
about the attack algorithms. In the following, we make assumptions
regarding what the adversary knows about both attacks.
Single Vector UAP Attack: We mentioned earlier that a single
UAP vector can be identified using pilot signals. A defender can
transmit known pilot signals and receive the perturbed signal. Since
the transmitted signal is known, the defender can subtract it from
the received signal and produce an estimate of the perturbation.
Therefore, in the single vector UAP attack, we assume that the

defender has knowledge about the perturbation generated by the
attacker.
Perturbation Generator Model: When the attacker uses a PGM,
the defender cannot identify the perturbations since the PGM gen-
erates a different perturbation vector for each input sample. Hence,
in this case, the defender can only obtain knowledge about the
PGM or an estimate of the generated perturbations. Based on this
knowledge, we assume three scenarios for the defender:

• Ad hoc defender: In this scenario, the defender is not aware
of the PGM, and similar to the defense mechanism pro-
posed for the single vector UAP attack, the defender uses
pilot signals to estimate the generated perturbations, e.g.,
the defender transmits pilot signals and subtracts them
from their corresponding received signals, then she takes
an average of the results to obtain an estimate of the per-
turbations generated by the PGM.

• Structure-aware defender: In this scenario, we assume that
the defender is aware of the structure of the PGM but not its
parameters. Hence, the defender needs to train the PGM on
her own training data and obtain the learned parameters.
We also assume that the defender has the same training
dataset as the adversary.

• Model-aware defender: In this scenario, we assume that the
defender is aware of both the structure of the adversary’s
PGM and its learned parameters. This is an impractical
assumption as the defender cannot obtain the learned pa-
rameters of the PGM using pilot signals or any other tech-
niques; we still evaluate our attacks against this impractical
adversary.

Note that, in the above mentioned scenarios, we assume that the
defender is aware of the power constraint (𝑝) of the adversary. We
also evaluate our system against random smoothing defense in the
modulation recognition task; however, it is not as effective as other
proposed defenses.



Table 2: Comparing the complexity of the PGM attack and the single vector UAP attack

PGM Attack Single Vector UAP Attack
Training Time Test Time Number of Parameters Training Time Test Time Number of Parameters

Autoencoder Encoder 53s 1.69 × 10−8s 2914 67s – 14
Modulation Recognition 5s 2.34 × 10−7s 6542256 20s – 256

OFDM Channel Estimation 46s 8.78 × 10−8 6542256 45s – 256

Algorithm 3 Adversarial Training against adversarial attacks in
wireless communication systems

Randomly initialize underlying DNN-based network 𝑁

D𝑡𝑟 ← training data
L𝑓 ← DNN-based loss function
M ← domain remapping function
R ← domain regularizations function
𝑇 ← epochs
𝑍 ← [] // List of adversarial perturbations
for epoch 𝑡 ∈ {1 · · ·𝑇 } do
Train the model 𝑁 for one epoch on training dataset D𝑡𝑟

𝑍 ← generate crafted adversarial samples using generated
perturbations by Algorithm 1 (or the single vector UAP)

end for
D𝑡𝑟 .extend(D𝑡𝑟 + 𝑍 )
return 𝑁

9.1 The Adversarial Training Defense
Many defenses have been designed for adversarial examples in
image classification applications, particularly, adversarial training,
gradient masking, and region-based classification. In adversarial
training [27, 30, 46], in each iteration of training, the defender gen-
erates a set of adversarial examples and uses them in the training
phase by expanding the training dataset. In our work, we use adver-
sarial training where the defender uses UAPs crafted by our attack
to make the target DNN-based wireless model robust against the at-
tacks. The defender trains the DNN-based model for one epoch and
then generates input-agnostic adversarial perturbations from all
possible settings using Algorithm 1. Then, she extends the training
dataset by including all of the adversarial samples generated by the
adversary and trains the DNN-based model on the augmented train-
ing dataset. Algorithm 3 is a high level description of our defense
algorithm.

In the case of a single vector UAP attack, the defender uses a
single perturbation vector to generate adversarial samples and train
the target model. For the perturbation generator attack, we assume
that the defender is structure-aware and uses her trained PGM to
generate adversarial samples and train the target model.

9.2 The Perturbation Subtraction Defense
This is a defense specialized to our domain. In this defense, at the
receiver side, the defender performs operations on the perturbed
received signal based on her knowledge of the adversary to remove
the effect of the perturbation and reconstruct the originally trans-
mitted signal. For the single vector UAP attack, since we assume
that the defender has identified an estimate of the perturbation, she
can easily subtract her estimate of perturbation from the received

signal and obtain the originally transmitted signal. If the adver-
sary uses a PGM, as mentioned above, we consider three scenarios
based on the knowledge of the defender: ad hoc defender, structure-
aware, and model-aware defenders. In all of the scenarios, once
the defender receives the received perturbed signal, she generates
a perturbation using her PGM and subtracts it from the received
signal.

9.3 Randomized Smoothing Defense
We evaluate our attack against a defense mechanism called certified
defense [4, 5, 14] that relies on randomized smoothing. Random-
ized smoothing is a certified defense approach against adversarial
examples, which augments the training set with Gaussian noise
to increase the robustness of the classifier to multiple gradient di-
rections. The standard deviation of the Gaussian noise 𝜎 and the
number of the noisy samples added to each training sample 𝑘 are
the two parameters the defender can control in randomized smooth-
ing. In the prediction phase, for each perturbed test sample, we
draw 𝑘 Gaussian noise samples with the same standard deviation
and label them with the DNN model. The defense results can be
certified with a desired confidence using a two-sided hypothesis
test. If the test is satisfied, the DNN model is very confident in its
prediction, and if not, the DNN model abstains and does not make a
prediction. Recently, Kim et al. [23] utilize randomized smoothing
as a defense mechanism against single vector UAP attack in the
modulation recognition application. We use the same approach to
evaluate randomized smoothing against our attack.

9.4 Results
First, we evaluate the performance of our PGM attack against the
perturbation subtraction defense for the three defender types. Fig-
ure 6 shows the performance of each target wireless communication
system against the PGM adversarial attack in the presence of the
ad hoc, structure-aware, and model-aware defenders. In the experi-
ments involving the ad hoc defender, we use 10000 pilot signals and
take the average of the obtained noise to estimate the perturbation.
We see that a model-aware defender can completely degrade the per-
formance of the adversarial attack; however, as mentioned earlier,
a model-aware defender is not practical. Although our adversarial
attack provides the attacker a large set of adversarial perturbations,
using the same PGM removes the effect of the adversarial attack.
However, a structure-aware defender that trains her PGM and ob-
tains its parameters that are different from the PGM parameters
used by the attacker not only degrades the effect of the attack but
improves its performance as well.

Furthermore, we see that the ad hoc defender also degrades the
performance of the adversarial attack using pilot signals, which
shows that the generated perturbations are too similar to each other
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Figure 6: Performance of the three target communication systems against the PGM attack with the presence of a perturbation
subtraction defense for the structure-aware, model-aware, and ad hoc defenders. Enforcing the distance constraint in the
training process of the PGM removes the effect of the ad hoc defender.

such that the defender cancels them by just subtracting out a simple
estimate of the perturbations. To prevent this, the attacker enforces
a distance constraint as discussed in Section 6 to maximize the 𝑙2
distance between the generated perturbations. Figure 6 shows that
by enforcing the distance constraint in the training process of the
PGM, the attacker removes the effect of the ad hoc defender. In
such a case, the ad hoc defender cannot generate a precise estimate
of the perturbations. We believe that even if a defender takes the
distance constraint into account by performing adversarial training,
the attack remains robust as we will show in this Section that the
PGM attack is robust against adversarial training defense.

We also compare the performance of our attack and the single
vector UAP attack against different defense algorithms. Figure 7
shows the performance of our adversarial attack and the single
vector UAP attack against the mentioned defense methods. Note
that with both defense methods, we only consider a structure-aware
defender that only knows the structure of the PGM model used
by the attacker and not its parameters. Furthermore, as mentioned
above, in the single vector UAP attack, we assume that the defender
can use pilot signals to estimate the single perturbation. In our
experiments, we obtain this estimate by sending 10000 pilot signals
and averaging their resulted perturbation. Hence, in the adversarial
training defense, we only use the estimated perturbation to generate
adversarial samples and train the target DNN-based model.

In the single vector UAP attack, as Figure 7 illustrates, subtracting
the estimated noise from the received signal at the receiver side
destroys the effect of the attack completely; However, the same
defense mechanism is not effective against the PGM attack which
implies that the PGM attack shows more robustness against the
perturbation subtraction defense compared to the single vector
UAP attack.

Furthermore, while using the adversarial training defense by the
defender, our PGM attack is still more robust than the single vector
UAP attack. The reason is that the underlying DNN-based model
can learn the single perturbation generated by the attacker for all of
the inputs. Using a PGM enables the attacker to access an extremely
large set of perturbations which makes it infeasible for the defender

to learn the DNN-based model based on all of them. Based on our
results, we conclude that using a PGM to perform adversar-
ial attacks against wireless communication systems is more
robust against various defense mechanisms in comparison
to using only a single perturbation vector.

We also evaluate the performance of our PGM attack on mod-
ulation recognition while deploying the randomized smoothing
defense. Table 3 shows the performance of the modulation recogni-
tion system for different values of 𝑘 and 𝑠𝑖𝑔𝑚𝑎 and a 95% confidence
threshold. We see that for some values of 𝑘 and 𝜎 using this defense
alleviates the effect of the PGM attack and increases the accuracy
of the DNN-based classifier in the modulation recognition task.
However, these high accuracies are just for the samples satisfying
the confidence threshold, while as Table 3 illustrates the classifier
has confidence to make predictions for only less than half of the
test samples, thus showing that this defense is not practical against
our attack. Moreover, for real-time applications such as autoencoder
communication systems and OFDM systems, not having enough
confidence for half of the received signals would be unacceptable.

10 DISCUSSIONS
Our work demonstrates a major vulnerability of the rapidly emerg-
ing DNN-based wireless communication systems. We show that
an adversary can leverage well-crafted universal adversarial per-
turbations that are tailored to specific domain constraints of these
systems to degrade their functionality. We see that wireless domain
constraints bring up major challenges (synchronizing the attacker
and the receiver) for the succession of the attack. However, im-
portant features of adversarial attacks such as transferability and
learnability enable us to overcome these challenges by designing
a input-agnostic, undetectable, and robust adversarial attack. Fur-
thermore, our experiments show that existing defense mechanisms
against adversarial examples cannot mitigate the performance of
our attack urging that more sophisticated defense mechanisms
should be deployed to alleviate this vulnerability.
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Figure 7: Performance of the single vector UAP attack and PGM attack against adversarial training and perturbation sub-
traction defenses. The adversarial training defense is less effective than perturbation subtraction; however, even with the
adversarial training defense, our attack is still robust compared to the single vector UAP attack.

Table 3: Performance of the modulation recognition system against PGM attack while deploying randomized smoothing de-
fense.

Randomized smoothing parameters Modulation recognition accuracy Fraction of samples satisfying confidence threshold
𝑘 = 10, 𝜎 = 0.01 25.76% 0.2576
𝑘 = 20, 𝜎 = 0.01 16.04% 0.5315
𝑘 = 10, 𝜎 = 0.001 87.97% 0.2984
𝑘 = 20, 𝜎 = 0.001 81.91% 0.4712
𝑘 = 10, 𝜎 = 0.0001 87.68% 0.3239
𝑘 = 20, 𝜎 = 0.0001 89.99% 0.4976

Similar to the previous works on this (emerging) topic [1, 12, 23,
24, 42–44], our evaluations mainly rely on simulations based on ra-
dio datasets. Future work can validate our results by experimenting
on actual wireless systems.

Another direction of future work can focus on investigatingmore
sophisticated defenses against adversarial perturbations. As we
have shown in this work, our PGM attack is robust against various
defense mechanisms even the ones that are specific to the target
wireless system’s domain (i.e., ad hoc defenders). Nevertheless, a
defense mechanism specifically designed for universal adversarial
perturbations may offer greater success in defending against the
presented attacks.

11 CONCLUSION
In this paper, we propose an adversarial attack using a perturbation
generator model (PGM) against DNN-based wireless communica-
tion systems. In the absence of countermeasures deployed by the
communicating parties, our attacks perform slightly better than
existing adversarial attacks. More importantly, against communi-
cating parties employing significant defenses, our techniques are
robust and show significant gains over previous approaches. We
also show that our attack is effective in a black-box scenario where
the attacker generates the adversarial perturbations using a substi-
tute DNN wireless model and uses the perturbation to attack the
original DNN wireless model. We use remapping and regularizer

functions to enforce an undetectability constraint for the pertur-
bations, which makes the perturbations indistinguishable from
random Gaussian noise. Furthermore, we use a regularizer function
to enforce a distance constraint to degrade the performance of an ad
hoc defender who tries to obtain an estimation of the perturbations
using pilot signals. Our work shows that even in the presence of sub-
stantial defense mechanisms deployed by communication parties,
DNN-based wireless systems are highly vulnerable to adversarial at-
tacks. Hence, whereas there has been significant enthusiasm about
such DNN-based approaches, our work suggests that there are also
significant challenges to obtaining robust performance with such
schemes.
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A MODELS PARAMETERS
Table 4 illustrates the input size and parameters of each target
wireless DNN model. Table 5 shows the structure and parameters
of the substitute models in the black-box setting.



Table 4: Details of the target models for each wireless application

Autoencoder Encoder Autoencoder Decoder Modulation Recognition OFDM Channel Estimation
input size 16 2 × 7 1 × 1 × 256 256

hidden layers sizes 16 16 10560, 256 500, 250, 120
hidden layers activations eLU ReLU Leaky ReLU, Softmax ReLU, ReLU, ReLU

kernels _ _ 256, 80 _
kernel size _ _ (1, 3), (2, 3) _

stride _ _ (1, 1), (1, 1) _
padding _ _ (0, 2), (0, 2) _

convolutional activations _ _ Leaky ReLU, Leaky ReLU _
output size 2 × 7 16 11 16

Table 5: Details of the substitute models in the black-box setting for each wireless application

Autoencoder Encoder Autoencoder Decoder Modulation Recognition OFDM Channel Estimation
input size 16 1 × 2 × 7 256 1 × 4 × 64

hidden layers sizes 16, 272 112, 32 1024, 1024, 512, 128 3456, 500, 250, 120
hidden layers activations eLU, _ ReLU, _ ReLU, ReLU, ReLU, ReLU, Softmax ReLU, ReLU, ReLU, Sigmoid

kernels 16 16, 8 _ 32, 64
kernel size 6 (2, 3), (2, 3) _ (2, 8), (2, 8)

stride 1 (1, 1), (1, 1) _ (2, 1), (1, 1)
padding 3 (1, 1), (1, 0) _ (0, 1), (0, 1)

convolutional activations ReLU ReLU, ReLU _ ReLU, ReLU
output size 2 × 7 16 11 16
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