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ABSTRACT
Decoy routing is an emerging approach for censorship circum-
vention in which circumvention is implemented with help from a
number of volunteer Internet autonomous systems, called decoy
ASes. Recent studies on decoy routing consider all decoy routing
systems to be susceptible to a fundamental attack —regardless of
their specific designs—in which the censors re-route traffic around
decoy ASes, thereby preventing censored users from using such
systems. In this paper, we propose a new architecture for decoy
routing that, by design, is significantly stronger to rerouting attacks
compared to all previous designs. Unlike previous designs, our new
architecture operates decoy routers only on the downstream traffic
of the censored users; therefore we call it downstream-only decoy
routing. As we demonstrate through Internet-scale BGP simula-
tions, downstream-only decoy routing offers significantly stronger
resistance to rerouting attacks, which is intuitively because a (cen-
soring) ISP has much less control on the downstream BGP routes
of its traffic.

Designing a downstream-only decoy routing system is a challeng-
ing engineering problem since decoy routers do not intercept the
upstream traffic of censored users. We design the first downstream-
only decoy routing system, called Waterfall, by devising unique
covert communication mechanisms. We also use various techniques
to make our Waterfall implementation resistant to traffic analysis
attacks.

We believe that downstream-only decoy routing is a significant
step towards making decoy routing systems practical. This is be-
cause a downstream-only decoy routing system can be deployed
using a significantly smaller number of volunteer ASes, given a
target resistance to rerouting attacks. For instance, we show that a
Waterfall implementation with only a single decoy AS is as resistant
to routing attacks (against China) as a traditional decoy system
(e.g., Telex) with 53 decoy ASes.
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1 INTRODUCTION
Internet censorship continues to remain a global threat to the free-
dom of speech, ideas, and information. An increasing number of
repressive regimes and totalitarian governments implement In-
ternet censorship [11, 32, 33, 46] using various techniques such
as IP address filtering, DNS interference, and deep-packet inspec-
tion [31, 50]. To help the impacted Internet users bypass such cen-
sorship, various circumvention systems have been designed and
deployed by academics and practitioners [5, 13, 17, 24, 30, 42].

Decoy routing [21, 25, 59] is an emerging approach for censor-
ship circumvention. Unlike traditional circumvention systems (e.g.,
Tor [13], VPNs [42, 43], and Psiphon [24]) where circumvention
software is implemented on computer servers, in decoy routing
the circumvention software is mounted on the Internet routers of
some volunteer Internet autonomous systems called decoy ASes.
That is, decoy routing takes an end-to-middle proxying approach
in contrast to the traditional end-to-end proxies. This, by design,
makes decoy routing resistant to IP address blocking, which is one
of the most effective, most widely practiced censorship mechanisms
for disabling traditional end-to-end circumvention systems like Tor
and VPNs.

Existing decoy routing systems are known to be susceptible to
particular routing attacks by the censors, known as the routing
around decoys (RAD) attacks [48]. In RAD, the censoring ISPs ma-
nipulate the upstream Internet (BGP) routes of their Internet users
such that the censored users’ traffic does not transit through any of
the (identified) decoy ASes, therefore preventing the users from uti-
lizing decoy routing systems for circumvention. Recent studies on
decoy routing [22, 41, 48] consider RAD to be a fundamental weak-
ness of the decoy routing approach —regardless of the technical
specifications of decoy routing systems. In this paper, we debunk
this common belief by proposing a new decoy routing architecture
that—by design—provides significantly stronger resistance to RAD
and similar rerouting attacks compared to traditional decoy routing
systems. The core idea of our new decoy routing architecture is to
operate decoy routers only on the downstream traffic of the cen-
sored users, with no need for intercepting the upstream traffic of the
censored users; therefore, we name our new approach downstream-
only decoy routing. This is in contrast to the architecture used by
—all—previous decoy routing systems [4, 15, 21, 25, 58, 59] where
they all need to intercept the upstream traffic of the censored users
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(some previous designs need to intercept both upstream and down-
stream [21, 25, 59], while others need to intercept only the up-
stream [4, 15, 58] traffic). Figure 1 illustrates the difference between
various architectures.

As we demonstrate through Internet-scale BGP path simulations,
downstream-only decoy routing offers significantly stronger resis-
tance to routing attacks by the censors compared to the traditional
(upstream) decoy routing approach. Intuitively, this is because a
typical (censoring) ISP has significantly more leverage on shap-
ing the BGP routes of its upstream traffic than its downstream
traffic. Particularly, a censoring ISP can re-route its upstream traf-
fic by applying per-destination routing rules (e.g., re-route only
the traffic towards specific Internet destinations), however, it can
not re-route downstream traffic by applying per-source rules (e.g.,
the censoring ISP has to re-route either all or none of its down-
stream traffic through each of its Internet provider ASes). The RAD
attack, as studied in the literature [22, 41, 48], only modifies the
upstream BGP routes, therefore does not trivially work against
our downstream-only architecture. We therefore introduce and
investigate two variants of the RAD attack that are specifically
tailored to downstream-only decoy routing systems. We demon-
strate through Internet-scale path simulations that applying such
routing attacks on downstream-only decoy routing is extremely
costlier than routing attacks on traditional (upstream) decoy rout-
ing systems. For instance, we show that a downstream-only decoy
routing system implemented on only a single decoy AS is as re-
sistant to routing attacks (by the Chinese censors) as a traditional
decoy routing system (e.g., Telex) with 53 decoy ASes. We argue
that downstream-only decoy routing is a major step forward
in making decoy routing systems practical, as they need to be
deployed on a significantly smaller number of volunteer ASes for a
target resistance to routing attacks.

Note that designing a downstream-only decoy routing system
is an extremely challenging engineering problem. All previous (up-
stream) decoy routing designs [4, 15, 21, 25, 58, 59] use the upstream
traffic of the censored users to communicate essential covert mes-
sages to the decoy routers, such as registration requests, HTTP
GET requests for blocked destinations, etc. This is not possible in
a downstream-only decoy routing system since the upstream traf-
fic of the censored users is not supposed to be intercepted by the
decoy routers. We design the first downstream-only decoy routing
system, called Waterfall.1 We use a set of complementary mecha-
nisms to enable low-latency upstream covert communications in
Waterfall despite its downstream-only architecture. Particularly,
we use HTTP redirection and several other techniques to enable
real-time upstream covert communications in Waterfall. We also
use various techniques to make Waterfall resistant to various traffic
analysis attacks. We have built a fully functional prototype of
Waterfall, which is publicly available online [55].

In summary, we make the followingmain contributions:
(1) We propose a novel decoy routing architecture, called downstream-

only decoy routing, that by-design provides much stronger
resistance to the infamous routing attacks by the censors,
compared to previous (upstream) decoy routing systems. We

1It is hard to deflect a waterfall’s falling water stream!

demonstrate the superior resistance of downstream-only de-
coy routing against routing attacks trough extensive Internet-
scale simulation of BGP routes.

(2) Designing a downstream-only decoy routing system is a chal-
lenging engineering problem. In this paper, we design the
first downstream-only decoy routing system, called Water-
fall, by using several novel covert communication techniques.
While resisting routing attacks is the main focus of this pa-
per, we also use novel techniques to makeWaterfall resistant
to traffic analysis attacks.

(3) We have built a fully functional prototype ofWaterfall, which
is publicly available online [55].

2 BACKGROUND
2.1 Major Censorship Circumvention Systems
Traditional censorship circumvention systems like Tor [12, 13, 28],
VPNs [42, 43], Psiphon [24], and many other systems [5, 14, 30]
work by setting up circumvention proxy servers outside the censor-
ship territories. Such proxies are used by censored users to bypass
censorship by relaying the traffic of the censored users to their
intended blocked Internet destinations. For instance, Tor [13] is
comprised of several thousands of volunteer proxies, and every
censored user will select a number of such proxies (usually three)
to relay her traffic to censored destinations. Unfortunately, proxy-
based circumvention systems are trivially blockable as soon as the
censors identify the IP addresses of their proxies. For instance, Tor
bridges [12] are discovered and blocked in-the-wild through vari-
ous mechanisms [6, 16, 35, 56, 57] such as insider attacks, zig-zag
attacks, and active probing.

Domain fronting [17] is a new approach to set up circumvention
proxies that resist IP address filtering. In this mechanism, circum-
vention proxies, e.g., Tor meek bridges [38], are run as web services
that share IP addresses with other, non-circumvention services,
therefore blocking them will impose collateral damage to the cen-
sors. Domain fronting, however, is an expensive circumvention
solution due to the bandwidth and CPU costs charged by the host-
ing web services [39]. CDNBrowsing [19, 61] is a similar circum-
vention solution in which censored users directly fetch censored
content from the public content-delivery networks like Akamai
that are hosting them. CDNBrowsing is much cheaper than domain
fronting as it does not run any proxies, however, it can unblock
only a limited class of censored websites [61].

2.2 Decoy Routing Circumvention Approach
Decoy routing is a recent approach for censorship circumven-
tion [21, 25, 59] whose design is motivated by the ease of IP address
blocking of traditional proxy-based circumvention systems, as dis-
cussed above. In decoy routing, censorship circumvention is imple-
mented with help from a number of friendly Internet autonomous
systems, called decoy ASes. Each decoy AS modifies some of its
routers (e.g., its border routers) such that they deflect the Inter-
net traffic of censored users to the blocked Internet destinations
requested by the users; the routers implementing the deflection
functionality are called decoy routers. By design, decoy routing
defeats IP address blocking, which is the most effective mechanism
used in-the-wild to disable traditional proxy-based circumvention



(a) Upstream (Type I)
[21, 25, 59]

(b) Upstream (Type II)
[4, 15, 58]

(c) Downstream-Only

Figure 1: Decoy routing architectures: In our downstream-only architecture shown in (c), decoy routers do not need to intercept
upstream overt traffic, but just downstream overt traffic (note that the downstream traffic may or may not be intercepted by
the decoy routers). By contrast, previous designs (shown in (a) and (b)) need to intercept upstream overt traffic to be able to
operate (some previous work shown in (a) need to intercept both upstream and downstream).

systems like Tor and VPNs. Figure 1 illustrates the decoy routing
approach.

To use a decoy routing system, a censored user will first need to
establish an encrypted connection (e.g., a TLS connection) with a
non-censored overt destination. The client selects the overt desti-
nation such that his network communications with that destination
transit through at least one decoy router. A decoy routing system is
composed of an upstream and a downstream covert communica-
tion channel through which the censored users communicate with
the decoy routers intercepting their overt traffic. Particularly, the up-
stream covert channel is used by the censored users to send covert
messages to decoy routers, e.g., HTTP GET requests for blocked
Internet destinations. On the other hand, the downstream covert
channel is used by the decoy routers to send covert messages to the
censored users, e.g., the HTTP responses obtained from blocked In-
ternet destinations. Each decoy routing system also has a signaling
(or registration) channel through which a censored user informs
the decoy routers intercepting her traffic of her willingness to use
the decoy routing system (the upstream and downstream covert
communications will establish only after a successful registration).

2.3 Existing Decoy Routing Designs
Table 1 compares the design of major decoy routing systems pro-
posed in the literature, along with our system Waterfall. As can be
seen, all previous designs use TLS records as their upstream and
downstream covert communication channels in different fashions.
Early decoy routing systems like Telex [59], Cirripede [21], and
Curveball [25] simply embed upstream and downstream covert
messages into the overt TLS connections man-in-the-middled by
decoy routers. They encrypt the covert content with keys previ-
ously exchanged between decoy routers and censored clients during
the signaling stage to foil deep-packet inspection by the censors.
More recent designs perform a more sophisticated replacement of

TLS records to provide stronger unobservability guarantees. For in-
stance, Slitheen [4] embeds upstream covert content as a particular
HTTP header in the upstream HTTP traffic towards an overt TLS
website, and embeds downstream covert messages by replacing the
leaf HTTP responses (e.g., images) from the overt website.

Previous designs use a variety of mechanism for the signaling
channel. For instance, Cirripede uses steganography in TCP Initial
Sequence Numbers (ISN) to register clients with the decoy routing
system, and Telex and Slitheen use the TLS ClientHello random
nonce field to signal decoy routers. Due to space constraints, we
refer the reader to each of the design papers for further details.

2.4 Routing Around Decoys (RAD)
The routing around decoy (RAD) attackwas presented by Schuchard
et al. [48] as a generic attack on decoy routing systems. The main
intuition behind the attack is that, for any given Internet destination,
a censoring ISP is likely to know multiple upstream BGP routes.
Therefore, the censoring ISP can discard the upstream BGP routes
that transit through known decoy ASes, and instead re-route traffic
through decoy-free routes, even if those routes are not the “best”
BGP paths based on the BGP route selection criteria. The objective
of the RAD attack is to prevent censored users from using decoy
routing systems by preventing their traffic from transiting through
decoy routers, i.e., by routing their traffic around decoys.

The RAD attack imposes various costs to the censoring ISPs. If a
censoring ISP does not know any decoy-free routes to a particular
destination, it will need to drop all traffic to that destination, making
that destination unreachable. To reduce the fraction of unreachable
destinations due to RAD, Schuchard et al. argue that the censoring
ISPs controlled by the same government (e.g., all Chinese ASes) can
share their decoy-free BGP routes among themselves; therefore, a
censoring (say, Chinese) ISP with no decoy-free routes to a partic-
ular destination will tunnel its traffic to that destination through
another censoring (Chinese) ISP who knows a decoy-free route



Table 1: Major decoy routing designs

System Signaling Upstream Channel Downstream Channel Architecture

Telex [59] TLS ClientHello random
nonce

TLS records for content TLS records Upstream (Type I)

Cirripede [21] TCP ISN TLS records TLS records Upstream (Type I)
Curveball [25] Out-of-band TLS records TLS records Upstream (Type I)
TapDance [58] TLS ciphertext TLS records TLS records Upstream (Type II)

Rebound [15] Similar to Telex TLS records using HTTP
404 error

TLS records using HTTP
404 error

Upstream (Type II)

Slitheen [4] Similar to Telex TLS records (HTTP header
only)

TLS records (only image
objects) Upstream (Type II)

Waterfall Registration TLS records using HTTP
3xx redirection

TLS records Downstream-Only

to the target destination. Schuchard et al. [48] show that doing so
will keep the fraction of unreachable destinations reasonably low
for specific decoy deployments, and therefore argue RAD to be
practical. Houmansadr et al. [22], however, show that re-routing of
upstream traffic due to RAD is significantly costly to the censors,
even if the ratio of unreachable destinations is kept small. This
is intuitively because the re-routed traffic will discard the “best”
BGP routes that are meant to optimize performance and monetary
expenses for the ISPs. Particularly, Houmansadr et al. [22] show
that re-routed traffic due to RAD imposes the following classes of
costs to the censoring ISPs:

• QoS degradation due to increased traffic latencies;
• QoS degradation due to increased route lengths;
• monetary expenses due to non-Valley-Free routing;
• monetary expenses due to switching traffic to less-preferred
(more expensive) routes;

• monetary costs due to setting up new transit ASes;
• monetary and QoS costs due to massive changes in transit
loads.

We refer the reader to Houmansadr et al. [22] for further discussion
of the costs of RAD. More recently, Nasr et al. [41] performed a
game theoretic analysis to optimize the placement of decoy routers
against RAD censors. Earlier, others studied the problem of decoy
deployment under non-adversarial threat models [10, 21, 29].

3 THREAT MODEL
Our threat model is the standard threat model considered in previ-
ous studies of decoy routing systems. We assume that the censoring
ISPs use common censorship techniques including IP filtering, DNS
interference, and deep-packet inspection to monitor and censor the
Internet communications of their Internet users. The censors can
also use various passive and active censorship techniques proposed
in the literature (though not all of them have been witnessed in
practice), such as statistical traffic analysis, active probing, and
packet insertion/modification [18, 20, 54, 56, 57].

Like other decoy routing studies, we assume that the censors
do not block encrypted communications (e.g., TLS) entirely. Doing
so will impose significant collateral damage as encryption is es-
sential to important business and entertainment Internet services.
The censors, however, may selectively manipulate or disconnect

encrypted connections. We also assume that the censors are not
able to break the underlying foundations of TLS in order to man-in-
the-middle arbitrary TLS connections (e.g., by compromising root
certificate authorities or breaking cryptographic algorithms), as
this will defeat not just decoy routing, but any privacy-enhancing
technology.

We also assume that the censors are aware of the identities of the
ASes deploying decoy routers and the locations of decoy routers.
The censors can also use various BGP path inference tools to infer
the BGP routes between any two points on the Internet.

We assume that the censors can re-route traffic inside their own
ASes, advertise strategic BGP routes to their own ASes, and discard
BGP routes to external ASes that contain decoy ASes. Similar to
previous works on decoy routing, we assume that the censors are
not willing and/or able to perform BGP poisoning attacks at large
scale for a long time; we have elaborated on this in Section 4.3.

Finally, we assume that decoy ASes do not cooperate with the
censors. ASes with strong business relationship with the censors,
e.g., the ring (neighbor) ASes of China, will simply not run any
decoy routers.

4 DOWNSTREAM-ONLY DECOY ROUTING
In this section, we introduce downstream-only decoy routing, which,
as discussed above, offers significantly stronger resistance to RAD [22,
41, 48]. The core idea of our new architecture is to operate decoy
routers only on the downstream traffic of the censored users, which
is in contrast to previous designs. Intuitively, this makes our new
approach stronger to routing attacks since a (censoring) ISP has
significantly more control on the BGP routes of its upstream traffic,
as opposed to its downstream traffic. Specifically, a censoring ISP
can re-route its upstream traffic by applying per-destination rules
(e.g., re-route only the traffic towards specific Internet destinations),
however, it can not re-route downstream traffic by applying per-
source rules (e.g., the censoring ISP has to either re-route all or
none of its downstream traffic through each of its Internet provider
ASes).

In the following, we will thoroughly evaluate the impact of
rerouting attacks on downstream-only decoy routing through Internet-
scale BGP path simulations. Our analysis demonstrates that our
downstream-only decoy routing proposal offers significantly stronger



resistance to the routing attacks by the censors compared to the
traditional (upstream) decoy routing approach. Supported by our
analysis, we conclude that downstream-only decoy routing is a major
step forward in making decoy routing systems practical, as they need
to be deployed on a significantly smaller number of volunteer ASes
for a target resistance to routing attacks. For instance, we show that
a downstream-only decoy routing system implemented on only a
single decoy AS is as resistant to routing attacks (by the Chinese
censors) as a traditional decoy routing system (e.g., Telex) with 53
decoy ASes.
Studied Routing Attacks. The original RAD attack studied in
the literature [22, 41, 48] works by modifying upstream BGP routes,
but not downstream routes. Therefore, it works against all previous
decoy routing designs [4, 15, 21, 25, 58, 59] as all of them require
their decoy routers to intercept upstream traffic of censored users.
The original RAD attack, however, does not work on downstream-
only decoys, as such decoy routers are oblivious to the upstream
routes of the censored users (also note that the BGP protocol de-
cides upstream and downstream routes between two end-points
independently). We therefore introduce two variants of the RAD
attack that are tailored to downstream-only decoy routing systems.
We show that such attacks are extremely costlier to the censors
compared to the original RAD attack on traditional systems, there-
fore concluding that downstream-only decoy routing systems offer
superior resistance to re-routing attacks.
Simulation Setup. We use C-BGP [45], also used in prior stud-
ies [22, 41], to simulate Internet-scale BGP routing and evaluate the
impact of different routing attacks using our Python code. We use
the CAIDA’s latest AS-relationship dataset [8], CAIDA’s AS Rank
dataset [9], and the MaxMind GeoIP dataset [37] to identify ASes
of different countries and their relationships.

4.1 Source-Block Attack
In the original RAD attack, if the censoring ISP does not know any
decoy-free upstream routes to a specific destination, she will block
all upstream traffic to that particular destination. This makes the
blocked destination “unreachable” to all censored users, but will
prevent all censored users from using that route for (upstream)
decoy routing. Our source-block attack works in a similar fashion
on downstream traffic, as shown in Figure 2. More specifically,
the censoring ISP entirely blocks traffic (e.g., by dropping packets)
from an Internet AS if the BGP route from that Internet AS to the
censoring ISP contains a decoy AS. Note that inferring downstream
BGP paths [26] is not as accurate as inferring upstream BGP paths,
however, we even assume that the censors can accurately infer
downstream routes, which makes our analysis in the censor’s favor.

4.1.1 Analysis. We simulate and evaluate the source-block at-
tack on downstream-only decoy routing systems and compare its
performance with RAD on upstream decoy routing designs. We con-
sider China to be the censoring adversary, which is shown [22, 41,
48] to be the strongest routing adversary due to its well-connected
Internet. We evaluate the attack for various numbers of decoy
ASes. We choose decoy ASes based on an algorithm similar to what
suggested in previous work [22, 41]: we simulate all routes from

non-Chinese ASes to Chinese ASes, and pick transit ASes that ap-
pear more often on the routes to the censoring ISPs as the decoy
ASes. We exclude Chinese ASes as well as the ring (i.e., neighboring)
ASes of China from being decoys (since they have strong business
relationships with China), as in previous work [22, 41, 48].

Figure 3 shows the unreachability costs imposed to Chinese
censors due to the routing attacks. As can be seen, applying the
source-block attack imposes a significantly larger damage to the
Chinese censors compared to applying RAD on previous (upstream)
designs. For instance, evading 100 upstream decoy ASes (e.g., in
Telex) by the censors will disconnect Chinese users from only 8%
of Internet destinations, however, evading 100 downstream-only
decoy ASes will disconnect Chinese users from 23% of Internet des-
tinations, therefore, imposing significantly larger collateral damage.
In other words, a single downstream-only decoy AS causes the
same unreachability damage to the censors as 53 upstream decoy
ASes (therefore, for the same protection against routing attacks,
downstream-only decoy routers needs to be implemented on a
much smaller number of volunteer ASes).

4.2 Rewiring Attack
We also introduce and evaluate a more impactful (yet more costly)
routing attack on downstream-only decoy routing systems, which
we call rewiring attack. In this attack, a censoring ISP modifies the
way it is connected to the Internet by disconnecting itself from
some of its provider ASes and/or connecting to new ones, in order
to reduce the number of decoyed routes available to its (censored)
Internet users. More specifically, the censoring ISP will disconnect
itself from an Internet provider AS that contains many decoyed
downstream routes. The censoring ISP can even compensate the
lost connectivity by connecting to new transit ASes whose down-
stream traffic contains fewer decoyed routes. An example rewiring
attack is illustrated in Figure 4. As can be seen, the censoring ISP,
AS1, has two links to the Internet through ring ASes (A) and (B).
Suppose that the ring AS (A) is on a decoyed downstream route
from some overt destination, however, assume that the ring AS
(B) does not deliver any decoyed downstream routes. Therefore,
the censoring AS disconnects herself from (A), e.g., by terminating
their Internet transit contract, and will only use the AS (B) to con-
nect to the Internet. In this case, the downstream traffic from the
overt destination to AS1 will switch to a decoy-free route through
ring (B). Note that this will re-route all downstream traffic previ-
ously received through (A) to (B), including the majority decoy-free
routes.

The rewiring attack is practically unreasonable to the censors
as changing Internet connectivity at large scale is not trivial. We
yet evaluate this attack on downstream-only decoy routing to com-
pare its impact with RAD on upstream decoy systems. Our analy-
sis shows that even if the censoring ISPs undertake the irrational
rewiring attack, it will cost them much more damage than what
RAD does on upstream systems. The main intuition for such a
higher cost is that a censoring ISP can not selectively re-route spe-
cific decoyed downstream flows, but she has to re-route all or none
of the traffic through each of her ring ASes. On the other hand, the
RAD attack can selectively re-route only upstream connections that
transit trough decoy ASes. Additionally, even switching to another



Figure 2: The Source-Block attack on a downstream-only decoy routing system. The censoring AS selectively blocks traffic
from its neighbor AS A, by blocking downstream traffic that transits through at least one decoy AS (solid line) and allowing
other traffic (dotted line).

Table 2: Comparing the impact of rewiring and RAD attacks on China for various numbers of decoy ASes. % Reroute and %
Unreach are the fraction of rerouted and unreachable routes, respectively, and Impacted Routes is the sum of them.

Rewiring attack on downstream-only systems RAD attack on previous systems
Rewiring-I Rewiring-II

# Decoys % Reroute % Unreach % Reroute % Unreach %Impacted
Routes

% Reroute % Unreach %Impacted
Routes

1 9% 13.0% 21% 0.6% 22% 0.3% 0.2% 0.5%
2 27% 13.1% 39% 1.3% 40% 0.9% 0.5% 1.4%
5 63% 14.6% 76% 1.6% 78% 2.5% 1.2% 3.7%
10 68% 15.6% 79% 3.4% 83% 5.4% 2.1% 7.5%
50 70% 22.4% 83% 10.3% 93% 12.6% 5.6% 18.2%
100 69% 26.6% 80% 16.9% 97% 17.1% 8% 25.1%

Table 3: Comparing the impact of rewiring and RAD attacks on Syrian censors for various numbers of decoy ASes. % Reroute
and % Unreach are the fraction of rerouted and unreachable routes, respectively, and Impacted Routes is the sum of them.

Rewiring-II attack on downstream-only systems RAD attack on previous systems
# Decoys % Reroute % Unreachability % Impacted Routes % Reroute % Unreachability % Impacted Routes

1 80% 1.1% 81% 0.9% 0.4% 1.5%
5 42% 42.9% 85% 18.9% 8.8% 27.7%
10 29% 58.4% 87% 26.1% 15.1% 41%

ring AS does not necessarily switch all downstream decoyed traffic
to decoy-free routes depending on the placement of decoy routers,
e.g., for overt destinations close to decoy ASes.

4.2.1 Analysis. We consider two types of rewiring attacks. In
the first type, rewiring-I, a censoring ISP disconnects herself from
some of its provider (ring) ASes without connecting to new AS
providers. This will re-route traffic that the censoring AS received
from its disconnected provider ASes to its other provider ASes. In
the second type of the attack, rewiring-II, the censoring AS can even
switch its re-routed traffic through other censoring ASes under the
control of the censor (i.e., connect to new transit ASes).

Table 2 compares the impact of the rewiring attack on downstream-
only decoy routing with the impact of the RAD attack on previous
upstream decoy routing systems (China is the censoring adversary).
As can be seen, for the same number of decoy routing ASes, the
impact of the rewiring attack is significantly larger than RAD. For
instance, with 50 ASes deploying decoy routing, the RAD attack will
impact only 18.2% of the traffic of Chinese users (with 5.6% becoming

unreachable and 12.6% re-routed), however, with the same number
of decoys the rewiring attack will impact 93% of China’s routes, i.e.,
22.4% of routes become unreachable, and 70% get re-routed in the
case of rewiring-I attack.

We also perform similar analysis for Syria to show the impact of
the attack on a less-connected censoring country. As Table 3 shows,
similar to China the rewiring attack imposes a significantly larger
damage to the Syrian censors than RAD. For instance, with only
1 decoy router, the rewiring attack will impact 80% of the routes as
opposed to only 1.5% routes in the case of RAD.
Importance of the costs As can be seen from our analysis, the
rewiring attack has two types of consequences on the censors. First,
it makes a large fraction of Internet destinations unreachable to the
censors. Second, it enforces a large fraction of Internet routes to
get re-routed to other Internet paths. Both of these are extremely
unfavorable to the censors since they will impose significant mon-
etary costs as well collateral damage to the censors, as shown in
previous studies [22, 41, 48]. Particularly, Houmansadr et al. [22]
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Figure 3: Comparing source-block attack on downstream-
only decoy routing with RAD on previous designs.

have shown that the traffic re-routed by the censors is significantly
more expensive and offer lower quality compared to the default
(best) BGP routes, as also listed in Section 2.4.

4.3 BGP Poisoning Attacks
It is possible for a censoring ISP to use BGP poisoning attacks
to modify the downstream routes of its users in order to avoid
certain decoy ASes. One class of such attacks is the well-known
BGP hijacking attack [3, 7] in which an adversary takes over the
traffic to a victim AS by advertising fake shorter BGP routes or
more-specific BGP routes for that AS. If a censoring ISP succeeds
in BGP hijacking a decoy AS, she will be able to prevent censored
decoy routing users (also non-decoy users) from reaching that AS
for decoy routing. There are other known BGP poisoning attacks
that may be leveraged by a censoring ISP. For instance, previous
work [27] shows how carefully crafted BGP messages can route
traffic away from a certain AS for the purpose of fast connectivity-
failure recovery. Such tricks can be used by the censors to steer
traffic away from decoy ASes. Consider a censoring ISP ASC and a
decoy ASASD . The censoring ISP can advertise the poisoning route
ASC -ASD -ASC to its neighbors. The neighbor ASes of ASD will
not advertise this route to ASD if they have loop avoidance check
enabled. In that case, ASD will not know any paths to ASC , and
therefore, any traffic towards ASC that would normally go through
ASD will then be re-routed through alternative routes (if there are
any) or get dropped.

Note that such attacks are not specific to the decoy routing
systems presented in this paper (downstream-only), but rather are
relevant to any decoy routing system. Similar to previous studies,
we do not consider such attacks in our threat model for the following
reasons. First, to defeat decoy routing, a nation-state will need to
deploy such BGP poisoning attacks continuously and at large scale.
A rational nation-state is unlikely to do so due to the significant

harm to its reputation. In fact, such attacks can be used for nation-
state espionage and business competition, however, no nation-state
is openly known to be performing them at large scale. Second,
even if such poisoning attacks are implemented at large scale by a
nation-state like China, Internet ASes can defeat it trivially as such
attacks are easy to detect [7, 53, 60]. For instance, if a censoring ISP
is known to hijack prefixes it does not own, other Internet ASes
can implement additional inspection on the BGP messages from
that ISP. Particularly, they can easily ignore any BGP advertisement
that contains a loop to that censoring ISP [27] (i.e., a ASC -ASD -
ASC route). Note that it is in the best interest of all Internet ASes
to detect and defeat such BGP poisoning attacks; continuous, large-
scale BGP poisoning attacks severely harm the business interests
of Internet ASes, e.g., by causing them to lose transit traffic routes
due to poisoning attack, or by degrading the QoS of Internet traffic
due to longer, less-stable routes. Some ASes (e.g., Cogent [27]) are
already implementing mechanisms to defeat such attacks, e.g., by
rejecting BGP advertisements from customer ASes if the advertised
path contains one of their network peers or providers. Finally,
note that unlike RAD and its alternatives presented in this paper,
the BGP poisoning attacks are not inherent to decoy routing, but
instead are due to weaknesses in the BGP protocol. Therefore, they
may not apply to future, more-secure alternatives of the BGP like
BGPSEC [34].

5 WATERFALL: THE FIRST
DOWNSTREAM-ONLY DECOY DESIGN

As we demonstrated above in Section 4, the downstream-only de-
coy routing architecture offers a significantly stronger resistance
to routing attacks compared to traditional decoy routing. This is
enabled by running decoy routers only on the downstream traf-
fic of the censored users, with no need to intercept the upstream
traffic of the censored users. This, however, makes the design of
downstream-only decoy routing systems significantly more chal-
lenging than traditional decoy routing systems. Particularly, all
previous (upstream) decoy routing designs [4, 15, 21, 25, 58, 59] use
the upstream traffic of the censored users for upstream covert com-
munications, i.e., to communicate essential covert messages to the
decoy routers, such as registration requests, HTTP GET requests for
blocked destinations, etc. This is not possible in a downstream-only
decoy routing system since the upstream traffic of the censored
user is not supposed to be intercepted by the decoy routers.

In this paper, we demonstrate the feasibility of downstream-only
decoy routing by designing the first downstream-only decoy rout-
ing system, which we callWaterfall. We use a set of complementary
mechanisms to enable low-latency upstream covert communica-
tions in Waterfall despite its downstream-only architecture. Par-
ticularly, we use various HTTP redirection techniques to enable
real-time upstream covert communications in Waterfall. We also
use various techniques to makeWaterfall resistant to traffic analysis
attacks, as discussed in Section 9. We have built a fully functional
prototype of Waterfall, which is available online [55].

5.1 Waterfall’s Main Entities
The following are the key players in Waterfall, which is similar to
any other decoy routing system.



Figure 4: Rewiring attack on downstream-only decoy routing: The censoring ISP AS1 disconnects herself from the Internet
provider (A), and re-routes all her routes through her other Internet provider (B).

Clients: A Waterfall client is a censored Internet user who installs
Waterfall’s circumvention software to bypass censorship.
Censor: A censor is a nation-state who regulates, monitors, and
restricts the Internet access of its Internet users. A censoring ISP
is an ISP under the jurisdiction of a censor, therefore one that
implements the censorship mechanisms instructed by the censor.
Overt (Non-Blocked) Destinations: Internet destinations (e.g., web-
pages) that are not forbidden by the censor. Similar to other decoy
routing systems, Waterfall’s client software connects to some arbi-
trary overt destinations in order to bypass censorship.
Covert (Blocked) Destinations: Internet destinations that are for-
bidden by the censor, and therefore are not directly accessible by
censored users. Censored users use Waterfall’s client software to
covertly communicate with blocked destinations.
Decoy AS: A friendly autonomous system (AS) who cooperates
with Waterfall by mounting Waterfall’s decoy routing software
on its border routers, i.e., decoy routers. Previous work [41] has
discussed the incentives of Internet ASes on becoming decoy ASes.

5.2 Overview of Waterfall’s Operation
Figure 1c illustrates the main architecture of Waterfall. Here, we
introduce the main phases of Waterfall’s operation, which will be
thoroughly discussed in the following sections.
Registration Phase To use Waterfall, a censored client first needs
to register with the Waterfall system. During the registration, the
client provides Waterfall with information required for the opera-
tion of Waterfall. Particularly, such information enables Waterfall
decoys to authenticate the registered censored client, and to be able
to man-in-the-middle the registered client’s TLS traffic (with the
client’s consent). We will describe this phase in Section 6.
Circumvention Phase After the client has registered with Wa-
terfall, she can use Waterfall to bypass censorship and connect to
blocked Internet destinations, which is done in the following steps:
1 Establish an overt connection: Like other decoy routing systems,
a Waterfall client first establishes a TLS overt connection with
an arbitrary non-blocked (overt) Internet destination. The overt
destination should be chosen such that the downstream traffic to
the client transits through a decoy AS (e.g., by trying random overt
destinations until one is identified). Unlike previous designs, the

upstream traffic to the overt destination does not need to transit
through a decoy AS.
2 Authentication: To serve registered Waterfall clients, Waterfall
decoy routers need to identify the traffic belonging to the regis-
tered clients. This is done by using the information provided by
the clients during their registration. Decoy routers also use client’s
registration information to authenticate Waterfall users, as well as
to authenticate themselves to Waterfall users. This is required to
protect the clients’ confidentiality as well as to prevent manipula-
tion of non-registered users’ traffic. We will thoroughly describe
this step in Section 6.
3 Covert communications: Finally, an authenticated client covertly
communicates with her intercepting decoy router through partic-
ular upstream and downstream covert channels. Through these
channels, the decoy router proxies the client’s traffic to the blocked
Internet destinations requested by the client. We will thoroughly
describe the design of Waterfall’s upstream and downstream covert
channels in Section 7.

We present the details of Waterfall’s components below.

6 CLIENT REGISTRATION AND
AUTHENTICATION IN WATERFALL

To be able to use Waterfall for circumvention, censored clients need
to register with Waterfall’s registration server. The registration
server disseminates the registration information to Waterfall decoy
routers for them to be able to authenticate and serve the registered
clients.

There are two reasons why we need the client registration phase.
First, registration enables a censored user interested in using Wa-
terfall to inform Waterfall operators (e.g., decoy routers) of her
interest. Waterfall decoy routers manipulate the traffic of only the
registered clients, without interfering with the traffic of other In-
ternet users who are not intending to use Waterfall. Even for each
registered client, the registration phase enables the decoy routers to
intercept only the specific overt connections intended by the clients.
Second, the information exchanged during registration enables Wa-
terfall decoy routers to man-in-the-middle the overt connections
of the registered client (with their consents), which is required for
circumvention. Note that most of the previous (upstream) decoy
routing systems perform client registration (also called signaling)
through a client’s upstream traffic. This, however, is not possible in



Waterfall since Waterfall decoys are not expected to be intercepting
the client’s upstream traffic.
Registration mechanism: Client registration is performed by a
client sending a particularly formatted file, called the registration
package, to a Waterfall registration server. Waterfall’s registration
phase is not latency-sensitive, therefore the registration package can
be sent through any latency-insensitive communication channel. In
our design of Waterfall, a client encrypts her registration package
with the public key of Waterfall registration server, and emails the
encrypted package to the publicly-advertised email address of the
registration server. The server confirms the receipt of the package
through a confirmation email.

Note that using email is not central to our design, as the en-
crypted registration package can be sent through any other latency-
insensitive channel, e.g., by broadcasting on social networks or
through domain fronted Tor bridges.
Registration package: A registration package is a file formatted
as:

RClient = EncryptPK (ClientID |Conn1ID |Conn2ID |...) (1)

where PK is the public encryption key of Waterfall’s registration
server; ClientID and ConniID are described in the following.
Client identifier (ClientID ). Client identifier is used by decoy routers
to filter out unrelated overt traffic. A client with a static public IP
address will use that IP as her ID. For a client behind dynamic NAT,
the client will use her subnet as her ID.
Connection identifier (ConniID ). Each connection identifier contains
information that lets a decoy router identify an overt Waterfall
connection created by a registered Waterfall client. Table 4 shows
the format of a connection identifier. A connection identifier enables
a decoy router to perform four main tasks:
1 Identify overt Waterfall connections: A connection identifier
allows a decoy router to identify the overt connection created by
a registered client for decoy routing. In our design, the TCP ISN
value is used for identifying such overt connections. Note that the
TCP ISN is a 4 Bytes field that is generated randomly by the client
establishing a connection. Waterfall clients will pre-generate such
ISNs, and share them with the decoy routers during registration.
2 Man-in-the-middle the identified overt connections: Waterfall
decoy routers will only man-in-the-middle the overt connections
that are identified as described above (i.e., by comparing the TCP
ISNs). Figure 5 shows a typical TLS handshake. As can be seen from
the figure, to be able to man-in-the-middle a TLS connection, a
decoy router needs to know the client’s TLS Random nonce as well
as the client’s public exchange key. Since the decoy router does not
intercept the upstream traffic, the Waterfall client includes them
as part of connection identifiers (Table 4). This will be discussed
further in Section 7.
3 Authenticate Waterfall clients: An adversary may send invalid
registration information to Waterfall on behalf of a user who is
not willing to use Waterfall (i.e., to DoS specific users or flood
Waterfall). The adversary, however, has little chance in correctly
guessing the values of the ISN and TLS Randomnonces to be used by
the non-Waterfall client. Therefore, once a decoy router succeeds
in de-ciphering an overt connection’s downstream traffic using

a connection identifier provided in the registration package, the
authenticity of the registration package is verified.
4 Secure covert communications: The write and read keys (last
column of Table 4) are used to encrypt the client’s upstream and
downstream covert communications with a decoy router.

Note that each registration package will contain multiple con-
nection identifiers. To preserve unobservability, each connection
identifier should be used only once for covert communications.
Size of the registration package: Each client identifier is 4 Bytes,
and each connection identifier is at maximum 375 Bytes (as shown
in Table 4). Therefore, a registration package with 1000 connection
identifiers has a size of around 375 KBytes, which can easily be sent
through a latency-insensitive channel like email. A client needs
to send a new registration package to the registration server only
after he runs out of unused connection identifiers.

7 COVERT COMMUNICATIONS IN
WATERFALL

In this section, we describe how a registered client covertly com-
municates with the Waterfall decoy router intercepting her overt
traffic. As discussed earlier, we use different channels for upstream
and downstream covert communications in Waterfall. Figure 6 il-
lustrates a typical covert communication in Waterfall. We assume
that the decoy router has already authenticated the client based on
her registration information, as described earlier in Section 6.

7.1 Upstream Covert Channel
A registered client uses Waterfall’s upstream covert channel to send
various messages to Waterfall decoys. Particularly, the channel is
used by the clients to send to the decoys the upstream traffic (i.e.,
TCP packets) destined to censored destinations. The channel can
also be used by the client to send various Waterfall-specific com-
mands to a decoy router, such as commands to update registration
information. Note that a client encrypts her upstream covert traffic
using the Write Keys shared withWaterfall during the registration
process (last column of Table 4).

To enable interactive, real-time browsing of the censored web-
sites, the upstream channels between Waterfall clients and decoys
should be low-latency channels. Previous designs [4, 15, 21, 25, 58,
59] (which are all upstream designs) establish this channel by sim-
ply embedding upstream covert messages into the upstream TLS
records destined to an overt destination (whose upstream path is
intercepted by some decoy routers). This, however, is not possible
in a downstream-only decoy routing system like Waterfall since the
decoys are not expected to be intercepting clients’ upstream traffic
to overt destinations. We therefore design several novel low-latency
covert channels for upstream communications between Waterfall
clients and decoys. Our channels offer lower capacity compared to
the upstream channel used in previous (upstream) decoy proposals,
however, the capacity suffices for upstream covert communica-
tions in Waterfall given the asymmetric nature of web traffic (i.e.,
upstream HTTP traffic has much less volume than downstream).

7.1.1 HTTP-based Channels. We leverage various features of
the HTTP protocol to establish several kinds of upstream covert
channels in Waterfall, i.e., from a client to a decoy router on the



Table 4: The format of connection identifiers (ConniID ), sent in a registration package.

Needed to identify connections Needed to intercept connection Needed to secure covert communication

TCP ISN #1 (4 Bytes) Client public/private exchange keys (2 × 255
Bytes Maximum) Write Key, Write MAC Secret (56 Bytes)

Client TLS random nonce (4 Bytes) Read Key, Read MAC Secret (56 Bytes)

TCP ISN #2 (4 Bytes) Client public/private exchange keys (2 × 255
Bytes Maximum) Write Key, Write MAC Secret (56 Bytes)

Client TLS random nonce (4 Bytes) Read Key, Read MAC Secret (56 Bytes)
.
.
.

.

.

.

Figure 5: A typical TLS handshake. The bolded elements are needed by a decoy router to intercept the TLS connection.

(a) Upstream Covert Communication using HTTP Redirect chan-
nels.

(b) Downstream Covert Communication

Figure 6: Covert communications in Waterfall.

downstream (but not upstream) path. The common feature of these
HTTP-based channels is that they reflect (part of) themessage being
sent in an upstream HTTP message (which is not intercepted by
downstream-only decoy routers) into a downstreamHTTPmessage

sent towards the client, therefore intercepted by Waterfall decoys.
Figure 6a illustrates the main idea.
HTTP 404 Error. If a webserver receives an HTTP GET for a non-
existing URL, the webserver will respond with an HTTP 404 error
message; many webservers include the invalid URL in the returned
error message. We leverage this to build an upstream covert channel
for Waterfall. In order to send a covert message CovertMessage,
a Waterfall client sends the following HTTP message to her overt
destination:

GET /CovertMessage HTTP/1.1
Host: www.overt.com

Since /CovertMessage is not a valid URL, the server will respond
the following back to the client, which will be intercepted by the
decoy router on the downstream traffic:

HTTP/1.1 404 Not Found
Content-Length: 95

<html>
<title> Not Found </title>
The url <code> /CovertMessage </code> was
not found.
</html>

Note that not all websites replay the URL in the 404 errormessage.
Particularly, our evaluation of the top 10,000 Alexa websites [2]
shows that 3,916 websites support HTTPS, out of which 812 (20%)
replay the URL in the 404 error.
HTTP 3XX Redirects. Typical Internet websites usually have
multiple alternative hostnames. The HTTP 3XX redirection mes-
sages are designed to redirect a client to a different location. The



most common use case of 3XX redirects is when a websites redi-
rects to its www prefixed hostname, e.g. redirecting a request for
example.com to www.example.com, or vice versa. What enables
us to use HTTP 3XX Redirects for upstream covert communications
is that such HTTP 3XX Redirect messages typically contain the
whole requested path as part of the Location header. Therefore, a
Waterfall client can send the following upstream HTTP message to
her overt destination in order to send CovertMessage to a decoy:
GET /CovertMessage HTTP/1.1
Host: overt.com

The overt.com server will respond the following downstream
message to the client, which will be intercepted by a Waterfall
decoy router:
HTTP/1.1 301 Moved Permanently
Location: www.overt.com/CovertMessage

Note that CovertMessage can be any arbitrary covert message,
for instance, HTTP GET covert.com.

Our evaluation of the top 10,000 Alexa websites [2] show that
50% (1,976 out of all 3,916) of all HTTPS websites perform HTTP
3XX Redirect to or from their www prefixed hostnames, therefore
can be used for our upstream covert channel.
Channels tailored to specific (popular) webpages. Aside from
the channels mentioned above, which work for a large number of
overt websites, we also design upstream covert channels that are
tailored to specific (popular) overt websites. Such channels exist
because some websites reflect parts of the HTTP requests they
receive from clients, such as the requested path or an HTTP header,
back to the clients. In particular, sending the following request to
the Google search engine:
GET /url?rct=j&url=CovertMessage HTTP/1.1
Host: www.google.com

will result in an HTTP response with the following META tag:
<META ... content="0;URL='CovertMessage'">

Similar to Google search, most websites with search capabili-
ties tend to repeat the search query in the response HTML. Em-
bedding covert messages in the search query will allow the de-
coy router to obtain the messages from the responses. Websites
supporting this type of channel include popular search engines
such as google.com, bing.com, yandex.com and yahoo.com and
other websites with search capabilities such as github.com and
amazon.com. Note that some (but not all) searchable websites in-
spect uncommon queries from users, e.g., by asking the user to
solve a CAPTCHA.

7.1.2 Other possible channels. There are other possibilities to de-
sign low-capacity upstream covert channels forWaterfall. One direc-
tion is the use of known network steganographymechanisms [1, 40],
such as timing channels, IPID, and TCP ISN. Such features will
be reflected in the downstream traffic, and therefore intercepted
by downstream decoy routers. These mechanisms, however, offer
much lower capacities than the channels we introduced above. An-
other possibility is the use of heartbeat messages in the TLS protocol.
The purpose of heartbeat messages is to make sure a connection is
alive. A heartbeat message consists of a payload field that can be
filled with arbitrary content [51]. A webserver receiving a heartbeat

Figure 7: The architecture of Waterfall client software

message will return the exact message on the downstream traffic,
therefore it can be used as a Waterfall upstream covert channel.
Note that, however, the use of TLS heartbeat messages is not very
common in regular TLS connections, and therefore excessive use
of it by Waterfall can raise suspicion.

7.2 Downstream Covert Channel
Designing Waterfall’s downstream covert channel is more straight-
forward than its upstream channel, since Waterfall decoy routers
intercept downstream traffic of the censored clients. We implement
Waterfall’s downstream covert channel by replacing the down-
stream TLS records of a client’s overt traffic, as shown in Figure 6b.
The decoy router is able to manipulate the downstream overt TLS
records by using the information provided by the client in her reg-
istration package (Section 6). The decoys encrypt the downstream
covert content using the Read Keys provided by the user during
registration.

Note that simply replacing overt TLS records with covert content
will makeWaterfall’s traffic prone to various traffic analysis attacks,
i.e., based on the timing, sizes, and order of packets. In Section 9, we
describe how we carefully embed the upstream and downstream
covert messages to resist traffic analysis attacks.

8 WATERFALL’S IMPLEMENTATION
Wehave implementedWaterfall as a fully operational system, which
is available online [55].

8.1 Main components
Figure 7 shows the high-level architecture of the Waterfall client
software, which is composed of the following components.
Application. This is any application softwarewith SOCKS support
that intends to use Waterfall to bypass censorship. We particularly
use a web browser as the application component in order to make
Waterfall for censorship-resistant web browsing.
SOCKS Proxy Server. A client application (e.g., a web browser)
tunnels its traffic through Waterfall by connecting to a SOCKS
proxy server run by Waterfall client software.
Covert Connection Handler. Each SOCKS connection made by
a client application (e.g., an HTTP request by a web browser) is



handled by a separate Covert Connection Handler (CCH). A CCH

exchanges messages with the OvertConnection component, de-
scribed below.
Overt User Simulator. The Overt User Simulator (OUS) is essen-
tially a headless browser that creates overt traffic for Waterfall
communications. The OUS does so by repeatedly sending requests
for specific overt websites set by the client. As we describe in
Section 9, the traffic generated by the OUS is used to resist traffic
analysis attacks.
Overt Connection. The OvertConnection component embeds
the covert data received from CCHs into the overt traffic generated
by the OUS. More specifically, OvertConnection buffers the covert
traffic received from CCHs until there is sufficient overt traffic that
can carry the buffered covert traffic in a way resistant to traffic
analysis. The OvertConnection decides an upstream covert mech-
anism (from the set of mechanisms introduced in Section 7.1) for
various overt destinations.

8.2 Step-By-Step Operation
We have described the step-by-step operation of our implemented
Waterfall software in Appendix A.

8.3 Implementation Details
Our Waterfall client software implementation is written in about
900 lines of Python. It uses the Twisted Framework [52] for net-
work communications and the Scapy [47] library for creating and
manipulating TLS connections and messages. The OUS uses the
Python Selenium library [49] to run and control a PhantomJS [44]
browser. In order to intercept the overt requests, the PhantomJS
browser is configured to use an HTTPS proxy running in the client
which man-in-the-middles the overt requests using a self-signed
certificate that the PhantomJS browser is configured to ignore.

Our Waterfall client supports the HTTP Redirect and HTTP 404
upstream covert channels (Section 7.1). It is possible to easily extend
our client to support any other HTTP-based channels, including
website specific channels, by simply providing a Python class that
implements a given interface. A sample class for using Google as
an overt destination with HTTP Redirects is shown in Appendix B.

We have also implemented a proof-of-concept decoy router using
an experimental setup by simulating a network router intercepting
downstream flows. We use iptables with NFQUEUE to intercept
packets coming from overt destinations and process them with our
decoy router code (~500 lines of Python). The decoy router code
uses the negotiated client credentials (Section 6) to man-in-the-
middle a client’s TLS connection with an overt destination, and to
extract covert upstream messages.

9 RESISTING TRAFFIC ANALYSIS ATTACKS
We describe how our implementation of Waterfall, described in
Section 8, enforces mechanisms to resist traffic analysis attacks.
To resist traffic analysis attacks, a decoy routing system must pre-
serve the traffic patterns, i.e., packet timing and sizes, of the overt
webpages in both upstream and downstream communications. Slith-
een [4] is the state-of-the-art decoy routing system whose main
objective is strong resistance to traffic analysis. To achieve unob-
servability, Slitheen embeds the upstream covert data within custom

Figure 8: Waterfall’s Overt User Simulator (OUS)

headers in the overt HTTP requests made by an OUS. Tomake room
for covert data while preserving the original request size, Slitheen
removes or compresses redundant HTTP header fields. Slitheen also
preserves downstream traffic patterns by replacing data in HTTP
responses of the overt website with covert data of the same size.
However, in order to allow the OUS to complete a normal page load
of the overt website, Slitheen only replaces responses containing
leaf content (e.g., images and videos). Consequently, Slitheen is
only able to use 40% of the available downstream throughput [4].

Similar to Slitheen our OUS aims at preserving traffic patterns
in both upstream and downstream overt traffic while increasing
downstream throughput compared to Slitheen. Note that we can
not borrow the mechanism used in Slitheen (i.e., embedding covert
data in overt request headers made by the OUS) since Waterfall
decoys do not intercept upstream overt traffic. In order to send
upstream covert data, Waterfall must make separate requests, e.g.,
requests that will result in HTTP 404 or 3XX Redirect responses.
This complicates the task of imitating a normal user browsing the
overt website.

Themain intuition behind ourOUS is to cache previously browsed
overt websites, and only use already cached requests for upstream
and downstream covert communications. This allows Waterfall to
modify and replace requests to perfectly mimic2 the traffic patterns
of the overt website. On the other hands, this approach significantly
increases the downstream covert capacity compared to the state-
of-the-art Slitheen as Waterfall decoys are not limited to replacing
only the leaf content. Figure 8 shows the block diagram of our OUS,
composed of three main components. HeadlessBrowser is a back-
ground browser that repeatedly loads pages from overt websites.
The OUS Cache stores unmodified responses to all overt requests
previously received by the browser. Finally, RequestInterceptor
intercepts the requests made by the HeadlessBrowser, responds
to the browser with content from the Cache, and forwards overt re-
quests to be processed by the overt connection in a traffic analysis re-
silientmanner. Specifically,Waterfall clientmodifies HeadlessBrowser’s
traffic based on the following criteria to preserve traffic patterns:
A. Non-Overt Requests: These are requests that are not directly
targeted at the overt destination server, such as images hosted on
CDNs or advertisements. Such requests are proxied normally with
no modifications.
B. Cache-Miss Requests: These are requests whose responses do
not exist in the Cache, e.g., they have not been previously requested
or their TTLs have expired. Such requests are proxied without any

2Note that since Waterfall runs the actual HTTP protocol, it is not subject to ac-
tive/proactive attacks on imitation systems [20].



changes to the traffic. The responses received in response to these
requests are used to populate the Cache.
C. Small-Response Cached Requests: These are request that
are cached in the OUS, where the size of the cached response is
small, i.e., comparable in size to that of typical HTTP Redirect re-
sponses (we use a threshold of 1 KB based on our measurement of
HTTP redirects in top 10,000 Alexa webpages). Waterfall replaces
such requests with requests used for upstream covert communi-
cation with the decoy routers (e.g., through HTTP Redirect) as
described earlier. To do so, Waterfall will create an overt HTTP
request containing covert data, while preserving the original re-
quest size. Note that requests made by a browser typically have
many HTTP headers, some with large values such as the Cookies
header. We make room for covert data by omitting some of the
non-essential header content. The request will be sent to the overt
destination in place of the original request. In order to maintain a
normal overt page load in the browser, upon receiving the response
to this request, the OUS will respond to the browser’s request from
the Cache.
D. Large-Response Cached Requests: These are requests that
are cached in OUS, where the size of their cached responses are
larger than typical HTTP redirects or errors (i.e., 1 KB). Waterfall
uses such requests for downstream covert communication as they
offer ample downstream covert capacity. That is, theWaterfall client
does not modify their upstream HTTP requests, however, the inter-
cepting Waterfall decoy router replaces their (large) downstream
responses with downstream covert messages, as described earlier.
The decoy router preserves the size and timing of downstream
responses in order to ensure resistance to traffic analysis.

9.1 Evaluating Traffic Analysis Resistance
Our described implementation of Waterfall provides strong resis-
tance to traffic analysis. This is because Waterfall’s OUS and decoy
routers preserve the exact timings and sizes of upstream and down-
stream overt traffic based on the traffic patterns cached from previ-
ous connections. We confirm resistance to traffic analysis through
experiments on our implemented Waterfall. Using Google as the
overt destination, we simulated a browser page load by making
requests for different resources (e.g., HTML, JS, and images) from
Google servers with a sequence of predefined delays across four
seconds. The requests were made by a Python script configured to
use OUS’s RequestInterceptor as an HTTPS proxy. Figures 9a
and 9b compare the CDF of the regular overt traffic with Waterfall
traffic for downstream and upstream traffic, respectively (averaged
over 30 runs). The figures demonstrate that Waterfall strongly pre-
servers the traffic patterns of both upstream and downstream traffic,
as described before. We confirm this statistically using a two-sided
K-S test [36] on total download times. Our test results in a D-value
of 0.11 and a p value of 0.5, showing that the K-S test fails in dis-
tinguishing between regular and Waterfall connections to an overt
website with significant confidence.

9.2 Evaluating Throughput
Unlike the state-of-the-art Slitheen, which only replaces leaf con-
tent in downstream traffic, in Waterfall decoy routers can use the
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Figure 9: Traffic analysis resistance evaluation

whole content of downstream TLS packets for covert communica-
tions. This is thanks to Waterfall’s OUS preserving traffic patterns
based on cached observations, enabling the client browser to con-
tinue loading the page regardless of the response received from
the overt destination. As a result, Waterfall achieves a significantly
higher downstream throughput compared to the recent Slitheen.
Particularly, while a Waterfall decoy router uses 100% of the down-
stream traffic throughput for covert communications, Slitheen can
only use 40% of downstream throughput (based on Slitheen [4]’s
evaluations for top 1,000 Alexa websites).

As described earlier, a Waterfall client only uses “small-response”
overt requests for its upstream communications. Therefore, the
upstream throughput of Waterfall depends on the ratio of small-
response requests contained in a full page load of the selected overt
websites. We evaluated 1,976 websites that support HTTP redirects,
and find that, on average, 40% of their upstream traffic consists of
small-response requests, which can be used for upstream covert
communications in Waterfall.

10 CONCLUSIONS
Weproposed a new architecture for decoy routing, called downstream-
only, that is significantly stronger to rerouting attacks than all pre-
vious designs, as we demonstrated through extensive Internet-scale
BGP simulations. We designed and built the first downstream-only
decoy routing system, called Waterfall, leveraging novel covert
channels. In addition to its strong resistance to routing attacks,
Waterfall is designed to defeat traffic analysis. We believe that



downstream-only decoy routing is a major step towards making de-
coy routing systems practical by significantly reducing the number
of volunteer ASes needed to deploy decoy routers.
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A STEP-BY-STEP OPERATION OF OUR
WATERFALL IMPLEMENTATION

In Section 8.1 we overviewed the main components of our im-
plementation of Waterfall. To better illustrate the details of our
implementation we will go through the steps taken for a browser
to access a given censored website, covert.com, using the non-
censored website overt.com as the overt destination.

Waterfall Startup

(1) The client establishes a TLS connection to overt.com using
a pre-negotiated nonce value.

(2) The HTTP Redirect channel is selected to be used for sending
upstream covert data for this overt destination.

Establishing a Tunnel

(3) The browser connects to the SOCKS server requesting to cre-
ate a tunnel to covert.com. A new CCH (Covert Connection
Handler) is created for this connection.

(4) The CCH creates a new covert message, cm1, which contains
a command to establish a new tunnel with covert.com. It
forwards the message to the overt connection component.

(5) The overt connection buffers the covert message in the up-
stream buffer.

(6) The OUS sends anHTTP request for the homepage of overt.com.
(7) The overt channel receives the overt request and observes

that there is data available in the upstream buffer. It reads
the message cm1 from the buffer and replaces the overt re-
quest with a request to https://overt.com/<cm1>. It then
sends the new HTTP request on the overt connection.

(8) The overt website’s server responds with an HTTP 301 mes-
sage asking the user to redirect to www.overt.com/<cm1>.

(9) The decoy router intercepts and observes a covert message
in the HTTP response. It reads the message and creates a
tunnel to covert.com as instructed. The decoy router also
assigns an identifier to the tunnel, which the client may use
later to specify which tunnel it wishes to send data on.

(10) Once the client receives the tunnel’s identifier, the CCH noti-
fies the browser that the tunnel has been successfully created
and it may start sending upstream data.

Sending Covert Upstream Data

(11) The user makes a request for the covert.com homepage in
the browser.

(12) The CCH receives the TCP data for this request. It creates
a covert message cm2 containing the request data and the
identifier of the tunnel. It forwards the message to the Overt
Connection that buffers the message in the upstream buffer.

(13) The OUS sends an HTTP request for an object in overt.com.
The overt channel replaces the request with a request to
overt.com/<cm2>.

(14) The overt website responds with a redirect allowing again
for the decoy router to receive the covert message cm2. The
decoy router reads the upstream TCP data from the message
and forwards it on the specified tunnel to covert.com.

Receiving Downstream Data

(15) The covert website receives the client’s request through the
tunnel and sends the response back to the decoy router. The
decoy router buffers the response.

(16) The OUS sends a request for an image in overt.com and the
overt channel forwards the request on the overt connection
without any modification.

(17) The overt destination responds with an HTTP response con-
taining the image data. The decoy router intercepts this
response and replaces the image data with buffered down-
stream data received from covert.com.

(18) The client receives the HTTP response, but instead of con-
taining image data it contains covert downstream data. The
CCH sends this downstream data to the browser over the
SOCKS connection.

B SAMPLE WEBSITE-SPECIFIC OVERT
CHANNEL IMPLEMENTATION

The following is an example covert channel class implementation
for using Google as the overt destination with HTTP Redirects. The
make_message method is used by the Waterfall client to create
a request containing covert data which will be responded with a
HTTP 301 Redirect from the Google server. The extract_message
is used by the decoy router to extract the covert data embedded in
the HTTP Redirect response received from the overt website.

c l a s s Goog l eRed i r e c tChanne l :
ho s t = "google.com"

p r e f i x = "/waterfall"

def make_message ( s e l f , ove r t _ r eq , c o v e r t _ bu f ) :
l e ng t h = s e l f . c a l c _ c o v e r t _ l e n g t h ( o v e r t _ r e q )
da t a = c o v e r t _ bu f . r ead ( l e ng t h )
encoded_da ta = base64 . b64encode ( da t a )

r e q u e s t = Reques t ( )
r e q u e s t . s e t _ p a t h ( s e l f . p r e f i x + encoded_da ta )
r e q u e s t . s e t _ h e a d e r ( "Host" , s e l f . ho s t )

return r e q u e s t

def e x t r a c t _me s s a g e ( s e l f , r e q u e s t ) :
l o c = r e qu e s t . g e t _heade r ( "Location" )
r eg = re . s e a r ch ( "%s/(.+)" % s e l f . p r e f i x , l o c )
da t a = reg . group ( 1 )
return da t a

C POTENTIAL QUESTIONS
Here we present some of the useful questions raised during the
reviwing process.
What if the censors disrupt Waterfall’s registration by block-
ing Waterfall email messages? First, previous work [23] has
studied censorship resistant emails that can be leveraged by Wa-
terfall. Second, as discussed earlier, Waterfall registration does not
fundamentally depend on emails, and any latency-insensitive chan-
nel can be used for its registration (one can even deploy multiple
registration mechanisms in parallel). Given the small size of reg-
istration packages, Waterfall operators can even set up a resilient



Domain Fronting [17] registration server at very low operational
costs.
Can censors disableWaterfall bynormalizingTCP ISNfields?
We believe no! First, the use of ISNs only helps the decoy routers to
filter out non-Waterfall traffic to reduce their traffic loads. Even if
we eliminate ISNs from its design, Waterfall will still work: decoy
routers will have to check every connection of a registered user
to identify and serve Waterfall connections, as opposed to doing
so only for flows the with specific, registered ISNs. Second, we
believe that normalizing ISNs at large scale (e.g., by China) is not
practical. As the upstream and downstream flows of a connection
may take asymmetric routes, censoring ASes will need to share the
ISN mappings for different flows among themselves in real-time.
Does a Waterfall client need to frequently probe for proper
overt destinations? Would not this affect unobservability?
Previous work [21] shows that the number of probes needed to
identify such overt destinations is reasonably small. Also, given that
routes do not change frequently, identified overt destinations can
be used for long intervals. The Waterfall client software can also
include a BGP path simulator to infer potential overt destinations,
therefore minimizing the number of such probes. Nonetheless, this
is not specific to Waterfall and applies to all decoy routing systems.
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