
Compressive Traffic Analysis:
A New Paradigm for Scalable Traffic Analysis

Milad Nasr

University of Massachusetts Amherst

milad@cs.umass.edu

Amir Houmansadr

University of Massachusetts Amherst

amir@cs.umass.edu

Arya Mazumdar

University of Massachusetts Amherst

arya@cs.umass.edu

ABSTRACT
Traffic analysis is the practice of inferring sensitive information

from communication patterns, particularly packet timings and

packet sizes. Traffic analysis is increasingly becoming relevant

to security and privacy with the growing use of encryption and

other evasion techniques that render content-based analysis of

network traffic impossible. The literature has investigated traffic

analysis for various application scenarios, from tracking stepping

stone cybercriminals to compromising anonymity systems.

The major challenge to existing traffic analysis mechanisms is

scaling to today’s exploding volumes of network traffic, i.e., they

impose high storage, communications, and computation overheads.

In this paper, we aim at addressing this scalability issue by introduc-

ing a new direction for traffic analysis, which we call compressive
traffic analysis. The core idea of compressive traffic analysis is to

compress traffic features, and perform traffic analysis operations on

such compressed features instead of on raw traffic features (there-

fore, improving the storage, communications, and computation

overheads of traffic analysis due to using smaller numbers of fea-

tures). To compress traffic features, compressive traffic analysis

leverages linear projection algorithms from compressed sensing,

an active area within signal processing. We show that these algo-

rithms offer unique properties that enable compressing network

traffic features while preserving the performance of traffic analysis

compared to traditional mechanisms.

We introduce the idea of compressive traffic analysis as a new

generic framework for scalable traffic analysis. We then apply com-

pressive traffic analysis to two widely studied classes of traffic

analysis, namely, flow correlation and website fingerprinting. We

show that the compressive versions of state-of-the-art flow correla-

tion andwebsite fingerprinting schemes—significantly—outperform

their non-compressive (traditional) alternatives, e.g., the compres-

sive version of Houmansadr et al. [44]’s flow correlation is two

orders of magnitude faster, and the compressive version of Wang et

al. [77] fingerprinting system runs about 13 times faster. We believe

that our study is a major step towards scaling traffic analysis.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3134074

CCS CONCEPTS
• Security and privacy→ Pseudonymity, anonymity and untrace-
ability; Privacy-preserving protocols;

KEYWORDS
Traffic analysis; compressed sensing; website fingerprinting; flow

correlation

1 INTRODUCTION
Traffic analysis is the art of inferring sensitive information from

communication patterns, particularly packet timings and packet

sizes. Traffic analysis is becoming increasingly more relevant to

security and privacy with the surging use of encryption and other

evasion techniques that render content-based analysis of traffic

infeasible. For instance, stepping stone relays [73, 88] re-encrypt

packet payloads and modify packet headers to prevent matching

of packets based on content. Also, the flows comprising a Tor con-

nection (e.g., between various Tor relays) can not be correlated

by content matching as each of these flows are encrypted with a

different key. As another example, the use of VPNs conceals the

contents of the underlying network packets.

Researchers have investigated the use of traffic analysis in var-

ious application scenarios to either defend or attack the security

and privacy of networked systems. On one hand, various traffic

analysis techniques have been designed to identify cybercrimi-

nals (such as botmasters) who proxy their attack traffic through

compromised machines or public relays in order to conceal their

identities [40, 65, 73, 88, 90]. On the other hand, researchers have

demonstrated various traffic analysis techniques that enable ad-

versaries to demote online privacy [3, 24, 43, 64, 79, 80, 92], e.g.,

by compromising anonymity systems like Tor [28] and mix net-

works [25, 67, 68] through flow correlation [64, 80] or website

fingerprinting [12, 62, 77] attacks.

The major challenge to traffic analysis is scaling to today’s gi-

gantic volumes of network traffic. First, traffic analysis parties need

to store extremely large volumes of collected traffic characteristics.

For instance, the border routers of an ISP who intends to iden-

tify stepping stone attacks [73, 88] need to collect and store traffic

characteristics of all of the flows that they intercept. Second, in

many applications, traffic analysis involves the transmission of the

collected traffic characteristics between multiple traffic analysis

parties in real-time. For instance, flow correlation attacks on Tor

are conducted by adversaries who communicate among themselves

the traffic features that they collect at different points of the Tor

network (e.g., on multiple compromised Tor relays). Finally, traffic

analysis systems need to run their correlation algorithms (e.g., sta-

tistical correlation [43] or machine learning algorithms [52, 77]) on

the—extremely large—database of collected traffic characteristics,

https://doi.org/10.1145/3133956.3134074

imposing high computation overheads. In summary, existing traffic

analysis mechanisms suffer from enormous storage, communi-
cations, and computation overheads due to the overwhelming

network traffic volumes.

The goal of this work is to improve the scalability of traffic anal-

ysis. We introduce a new direction to traffic analysis, which we

call compressive traffic analysis. Our approach is inspired by an

active research area in signal processing, called compressed sens-
ing [9, 19, 22, 69, 74, 87], which aims at performing efficient signal

acquisition. The core idea of compressive traffic analysis is to use

the linear projection algorithms used by compressed sensing sys-

tems to compress the traffic features used in traffic analysis. Traf-

fic analysis operations are then performed on such compressed

traffic features—instead of on raw traffic features which is done

traditionally—therefore improving storage, communications, and

computation overheads, i.e., improving scalability. Note that we

call an algorithm A to be more scalable than B if either (1) when

both algorithms offer the same traffic analysis performance (e.g.,

same fingerprinting accuracy), A has less storage, communications,

and computation overheads (e.g., it is faster by using fewer features

for fingerprinting), or (2) for the same storage, communications,

and computation overheads, A provides better traffic analysis per-

formance (e.g., higher fingerprinting accuracy). We will use these

two equivalent notions interchangeably throughout the paper.

Compressive traffic analysis is possible due to two unique prop-
erties of compressed sensing’s linear projection algorithms: (1) The

linear projection algorithms used in compressed sensing are de-

signed to work best on sparse data vectors [19, 47]. Fortunately,

traffic features used in traffic analysis (particularly, packet timings

and packet sizes) are sparse signals, making them a natural target

for such sensing algorithms. (2) Because of the restricted isometry
property (RIP) [31] of compressed sensing algorithms, traffic fea-

tures preserve their Euclidean distances after compression by linear

projection algorithms. This enables us to perform traffic analysis

on compressed (sparse) features, instead of raw features, without

significantly degrading the performance of traffic analysis. Due to

this property, compressive traffic analysis does not need to recon-

struct the compressed traffic features, and can perform analysis

directly on the compressed traffic features (therefore, avoiding the

big computation overhead of reconstruction).

We present the idea of compressive traffic analysis as a generic
new direction towards scaling various types of traffic analysis al-

gorithms. To demonstrate the applicability of compressive traffic

analysis, we investigate it for two widely-studied classes of traffic

analysis, namely, flow correlation [24, 43, 72] and website finger-
printing [49, 62, 78]. We design compressive algorithms for flow

correlation and website fingerprinting, and compare their perfor-

mance to their non-compressive (traditional) alternatives. Our ex-

tensive experiments demonstrate the significant scalability improve-

ments of compressive traffic analysis over traditional traffic analysis.

For instance, through experiments on Tor [28] we show that our

compressive flow correlation offers a true positive correlation rate

of ≈ 0.9, while its non-compressive alternative (Houmansadr et

al. [44]) only offers a ≈ 0.3 true positive rate—when both of the

algorithms offer the same false positive rate and have the same

overheads; alternatively, our compressive flow correlation is—two

orders of magnitude faster—for the same correlation performance.

As another example, our compressive website fingerprinting al-

gorithm is—13 times faster—than its non-compressive alternative

(Wang et al. [77]) for the same fingerprinting accuracy.

To summarize, we make the following main contributions:

• We introduce and formulate the novel idea of compressive

traffic analysis, which aims at making traffic analysis more

scalable by leveraging recent advances in signal processing.

• We introduce compressive flow correlation by applying com-

pressive traffic analysis to traditional (state-of-the-art) flow

correlation schemes. Through extensive experimentation

and simulations of network traffic on the Internet and Tor

network [28] we show that our compressive flow correlation

schemes significantly improve scalability compared to their

traditional, non-compressive alternatives.

• We introduce compressive website fingerprinting by apply-

ing compressive traffic analysis to major state-of-the-art

approaches for website fingerprinting (i.e., k-NN and SVM

based approaches). We demonstrate through comprehen-

sive simulations that our compressive website fingerprinting

systems significantly improve scalability compared to their

non-compressive alternatives.

The rest of this paper is organized as follows: In Section 2 we

overview traffic analysis. We introduce and formulate the idea of

compressive traffic analysis in Section 3. We introduce and design

compressive flow correlation systems in Section 4, and evaluate

them in Section 5 through experiments and simulations. We also

introduce and design compressive website fingerprinting systems in

Section 6 and evaluate their performance in Section 7. We conclude

the paper in Section 8.

2 BACKGROUND: TRAFFIC ANALYSIS
Traffic analysis is inferring sensitive information from communica-

tion characteristics,1 particularly packet sizes, packet timings, and

their derivatives like packet rates and inter-packet delays. Traffic

analysis is particularly useful in scenarios where encryption and

other content evasion techniques such as content obfuscation do

not allow one to inspect the contents of communications. In the

following, we review popular types of traffic analysis and discuss

their applications.

Flow correlation Flow correlation is used to link network flows
in the presence of encryption and other content obfuscation mech-

anisms. On one hand, flow correlation is used to link network

flows in order to identify and stop cybercriminals who use network

proxies to obfuscate their identities [73, 88, 90], i.e., stepping stone

attackers. On the other hand, flow correlation is known to be usable

by adversaries to compromise privacy in anonymity systems like

Tor [28] and mix networks [25, 67, 68] by linking the traffic features

of egress and ingress flows [3, 24, 60, 65, 72, 79, 80, 92].

Flow correlation links network flows by evaluating traffic fea-

tures that do not significantly change by content obfuscation mech-

anisms. Most flow correlation systems use packet timing charac-

teristics [24, 30, 36, 72, 82, 90] (or derivative features like packet

counts, packet rates, and inter-packet delays), and some use packet

1
In this paper, we use the terms flow “characteristics”, “patterns”, and “features”

interchangeably.

sizes [53]. For instance, Wang et al. [82] cross-correlated the inter-

packet delays of network flows. He and Tong use packet counts [36]

to correlate network flows, and Paxson and Zhang [90] model

packet arrivals as a series of ON and OFF patterns, which they use

to correlate network flows.

Flowwatermarking Network flowwatermarking is an active vari-
ant of the flow correlation mechanism introduced above. Similar

to flow correlation schemes, flow watermarking also aims at link-

ing network flows in application scenarios similar to those of flow

correlation, e.g., stepping stone detection [73]. However, flow wa-

termarking systems perturb traffic features, e.g., packet timings and

sizes, before attempting to correlate them across network flows. In

particular, many flow watermarking systems [39, 41, 43, 64, 80, 89]

perturb timing characteristics by slightly delaying network pack-

ets in a way to modulate an artificial pattern, called the water-

mark. For instance, RAINBOW [43] manipulates the inter-packet

delays of packets in order to embed watermark signals. Several

proposals [64, 80, 89], known as interval-based watermarks, work

by delaying packets into specific, secret time intervals.

Website fingerprinting Website fingerprinting aims at detect-

ing the websites (or webpages) visited over encrypted channels

like VPNs, Tor, and other proxies [12, 33, 35, 37, 50, 56, 62, 77, 78].

The attack is performed by a passive adversary who monitors the

victim’s encrypted network traffic, e.g., a malicious ISP or a surveil-

lance agency. The adversary compares the victim’s observed traffic

patterns against a set of prerecorded webpage traces, called finger-

prints, to identify the webpage being browsed. Website fingerprint-

ing is different from flow correlation and flow watermarking in that

the adversary only observes one end of the connection, i.e., the tar-

get user’s flow, but not the traffic going to the destination website.

Website fingerprinting has particularly been widely studied in the

context of Tor traffic analysis [35, 49, 62, 78].

Similar to the other classes of traffic analysis discussed above,

website fingerprinting also uses traffic features that are not much

impacted by encryption. Website fingerprinting mechanisms com-

monly use traffic features like packet timings, packet directions,

and packet sizes. Most website fingerprinting mechanisms lever-

age machine learning algorithms to implement their fingerprint-

ing attacks [12, 33, 35, 37, 50, 52, 56, 62, 77, 78]. In particular,

the state-of-the-art website fingerprinting mechanisms use one

of the two machine learning algorithms of Support Vector Machines
(SVM) [12, 62, 78] and k-Nearest Neighbor (k-NN) [33, 35, 77].
Other types of traffic analysis Traffic analysis has also been

applied to other application scenarios in order to disclose sensitive

information. Particularly, various types of side channel attacks are

built on traffic analysis. For instance, multiple studies use traffic

analysis to uncover not only the language spoken over encrypted

VoIP connections [86], but also the spoken phrases [84, 85]. Chen

et al. [20] demonstrate a traffic analysis-based side channel attack

on critical web services like online financial services. Schuster et

al. [70] use traffic analysis to infer the video streams being watched

over encrypted channels. Geddes et al. [32], Houmansadr et al. [42],

and Wang et al [76] show that repressive governments can identify

and block encrypted circumvention traffic through various types

of traffic analysis attacks.

3 OVERVIEW OF THE CORE IDEAS
We start by introducing the idea of compressed sensing. We then

describe how we use linear projection algorithms from compressed

sensing to design compressive traffic analysis mechanisms.

3.1 Compressed Sensing
Compressed sensing is an actively studied approach for signal ac-

quisition and compression that aims at efficient reconstruction of

signals from few linear projections [6, 9, 15–17, 19, 22, 29, 69, 74, 87].

Compressed sensing is built on the principle that the ‘sparsity’

of a signal can be exploited to recover it from far fewer samples
than what is required by the Shannon-Nyquist sampling theo-

rem [6, 22, 69, 87].

A sparse signal [6, 19] is one that containsmany coefficients close

to or equal to zero in some domain of representation. For instance,

digital images have many zero or near-zero components when

represented in theWavelet domain [19]. Compressed sensing works

by sampling a sparse signal in a basis that can be even different from

the basis in which the signal is known to be sparse. For instance,

an image can be sampled in the spatial domain even though it is

sparse in the Wavelet domain (but not in the spatial domain). The

compressive samples are the weighted linear combinations of a

signal’s components. Suppose that XN×1 is a signal vector of size

N . The compressive measurement is derived as

YM×1 = ΦM×N × XN×1 (1)

where ΦM×N is the sampling or sensing matrix, and Y is the com-

pressed vector containing M elements. The ratio R = N /M is the

compression ratio, and the goal of compressed sensing is to make

this as large as possible, i.e.,M << N .

Reconstruction. In compressed sensing, the reconstruction pro-

cess involves finding the signal vector given the compressive sam-

ples. This amounts to finding the solution of an underdetermined

linear system. While in general no unique solution is possible, the

sparsity of the signal helps find a unique solution when certain

conditions are satisfied. One of the most famous reconstruction

algorithms is basis pursuit, which involves solving the following

optimization problem [17, 31]:

X̂N×1 = min

fN×1∈RN
| | fN×1 | |1 s .t . ΦM×N × fN×1 = YM×1 (2)

where | | · | |1 is the L1 norm. In particular, this reconstruction is

robust to noise and recovers the sparse approximation of any signal

as long as M = O(K logN), where K is the sparsity (number of

nonzero values) of the signal vector.

Note that we do not need to reconstruct data in compressive traffic
analysis, as discussed later.

Applications. Compressed sensing has recently been used in

various contexts, particularly, data compression [9], channel cod-

ing [17], and data acquisition [74]. It has specially been used in im-

age processing, for instance for efficient photography [22, 69] and fa-

cial recognition [87]. Compressed sensing has recently been applied

to some networking problems, particularly, network datasets [91]

and network traffic matrix estimation and completion [58]. To the

best of our knowledge, we are the first to apply compressed sensing

to network traffic analysis.

3.2 Introducing Compressive Traffic Analysis
In this paper, we apply the idea of compressed signal acquisition

by linear projection to the problem of traffic analysis of encrypted

network traffic (as introduced in Section 2). Specifically, we borrow

and adapt linear projection methods from compressed sensing to

make traditional traffic analysis mechanisms more scalable, e.g.,

faster and less resource-intensive. We refer to this advanced type of

traffic analysis as compressive traffic analysis. We particularly apply

compressive traffic analysis to two popular classes of traffic analysis,

flow correlation and website fingerprinting, and demonstrate their

scalability improvements.

3.2.1 How it works: In compressive traffic analysis, we leverage

random and deterministic linear projection algorithms from com-

pressed sensing to compress the traffic features used for traffic

analysis, e.g., packet timings, inter-packet delays, and packet sizes.

Consider fN×1 to be a features vector, i.e., a vector containing N
traffic feature values such as N inter-packet delays. We derive the

compressed features vector, f CM×1, as:

f CM×1 = ΦM×N × fN×1 (3)

The compressed features vector f CM×1 contains M values where

M < N . We define the compression ratio metric as:

R = N /M (R > 1). (4)

In compressive traffic analysis, the traffic analysis operations are

performed on compressed traffic features, instead of raw features,

therefore reducing storage, communications, and computation over-

heads. The goal of compressive traffic analysis is to achieve reason-

able traffic analysis performance (e.g., high flow correlation rates)

with a large compression ratio R. As will be shown later, increas-

ing this compression ratio improves the scalability advantages of

compressive traffic analysis.

Note that compressive traffic analysis only uses the linear projec-

tion algorithms of compressed sensing to compress traffic features,

however, it does not need to reconstruct the compressed traffic

features, which is discussed below.

3.2.2 Why it works: There are two reasons why compressive

traffic analysis improves scalability while preserving the perfor-

mance of traffic analysis:

1) Sparsity. Recall from Section 3.1 that compressed sensing per-

forms best on sparse signals. Fortunately, the traffic features com-

monly used in traffic analysis, namely packet timings and packet
sizes are sparse signals. Figure 1 shows the inter-packet delays of
10,000 network flows randomly selected fromCAIDA 2016 traces [13],

and Figure 2 shows the histogram of packets sizes of 500 Tor con-

nections. Both figures confirm the sparsity of the packet timing

and packet size features, which is in agreement with previous stud-

ies [47, 54].

2) Restricted isometry property (RIP). Decompressing com-

pressed traffic features is not only computation-intensive (the basis

pursuit algorithm requires solving a linear programming), but also

adds noise to the recovered signals if the features vector is not

exactly sparse [16] (therefore negatively impacting performance).

Compressive traffic analysis, however, does not need to reconstruct
traffic features, and it performs traffic analysis operations directly

−0.005 0.000 0.005 0.010 0.015 0.020 0.025

IPD(s)

0

50000

100000

150000

200000

250000

300000

Figure 1: Sparsity of inter-packet delays (histogramof 10,000
flows)

0 200 400 600 800 1000 1200 1400 1600
Packet Size

0

5000

10000

15000

20000

25000

30000

35000

40000

C
ou

nt

Figure 2: Sparsity of packet sizes (histogram of 500 Tor con-
nections)

on the compressed traffic features. This is possible only because

the linear projection algorithms used in compressed sensing are

designed to preserve the Euclidean distance between traffic features

after compression, and therefore traffic analysis can be performed

on the compressed features themselves with no need for reconstruc-

tion. The Euclidean distance is preserved if the sampling matrix,

Φ, satisfies the restricted isometry property (RIP) [15], which is a

sufficient condition for robust recovery for any compressed sensing

scheme. The sampling matrix Φ is said to satisfy the RIP property

if for any two sparse vectors fN×1 and f ′N×1 with sparsity K , we
have (5) for some δ ∈ (0, 1), where | | · | |2 is the L2 norm.

1 − δ ≤
|| f CM×1 − f ′CN×1 | |

2

2

| | fN×1 − fN×1 | |
2

2

≤ 1 + δ (5)

For smaller δ , the compressed feature will better preserve the Eu-

clidean distance.

The RIP property enables us to perform traffic analysis directly

on the compressed traffic features (with no need for decompres-

sion) without significant degradation in traffic analysis performance.

Note that one can perform traffic analysis on the reconstructed traf-

fic features as well, i.e., after decompressing. However, since the

reconstruction process can be lossy, this will not only increase the

computation overhead due to running reconstruction algorithms

(which involve solving optimization problems), but also degrade

the accuracy of traffic analysis (we have demonstrated this in Ap-

pendix A).

3.3 Candidate Linear Projection Algorithms
The compressive sensing literature has proposed various linear

projection methods [1, 4, 7, 14, 18, 27, 51]. We particularly, investi-

gate the random projection method, and a deterministic projection

methods based on error-correcting codes in constructing our com-

pressive traffic analysis algorithms.

Random Sensing: We investigate the use of the most pervasive

compressed sensing method, i.e., the random projection [19]. In

random sensing, the sampling matrix, ΦM×N , is generated ran-

domly with i.i.d. entries. Such random ΦM×N is then used as a

universal compression strategy.

We will discuss the generation of our sensing matrices in the

following sections. Comparing various types of random projection

algorithms, we find that Gaussian random projection performs the

best, in which the elements of the basis matrix are generated based

on Gaussian distribution. Gaussian random matrices also satisfy

the RIP condition due to the Johnson-Lindenstrauss (JL) lemma [26],

which states that for any x ∈ Rd s.t. |x | ≤ 1, |x ′ | ≤ 1 and anm × d
i.i.d. Gaussian matrix Φ, we have Pr (|∥Φx ∥2

2
− 1| > δ) < ϵ when

m = O(δ−2 log(1/ϵ) [5].

Deterministic Sensing: Random projection is a traditional way

of dimension reduction in Euclidean space. However, in various

communications applications it is preferred to use a deterministic

projection algorithm; this is primarily because in random projection

the sampling matrix needs to be shared between the encoder and

decoder parties (anM × N matrix), whereas in deterministic pro-

jection only the parameters of the deterministic matrix need to be

shared (e.g., two integer numbers). This is not much of an advantage

in the application of compressive traffic analysis since the sensing

matrices do not need to be updated frequently. Another advan-

tage of deterministic sensing is the existence of greedy algorithms

for fast decompression; this also is not relevant in our application

since compressive traffic analysis does not recover the compressed

features. However, a third advantage of structured deterministic

matrix is that the matrix-vector multiplication in the sampling op-

eration can be done really fast in many cases (by exploiting, say

Fast Fourier transform algorithm [75]).

Various deterministic projections have been proposed in the

literature [1, 14, 27, 46, 51, 59]. We particularly use sampling matri-

ces generated from dual codes of Bose-Chaudhuri-Hocquenghem

codes (BCH) [8, 61]. For any two integersm > 2 and t > 2, a binary

dual-BCH code is a {0, 1}-matrix of sizeM × N whereM = 2
m − 1

and N = 2
mt

(this produces a family of matrices that are indexed

bym and t). To construct deterministic sampling matrices from a

dual-BCHmatrix, we use a bipolar mapping: 0→ + 1√
M
; 1→ − 1√

M
,

to obtain Φ. Using the basic distance properties of dual-BCH code

[57], we can have the following lemma.

Lemma 3.1. The inner product of any two different columns of Φ
constructed as above from dual-BCH codes is at most 2(t−1)

√
M

, and the
L2 norm of any column is 1.

Based on this lemma, the matrix Φ will satisfy the RIP property

for any two features vectors with sparsity K , with δ ≤ 2K (t−1)
√
M

(using a result from [7]).

3.4 Related Approaches
Our proposed compressed traffic analysis approach can be consid-

ered as a technique for dimension reduction. One may consider

other approaches towards this. Particularly, one may consider using

sketching algorithms to reduce the dimension of traffic features.

The only work we are aware of using sketching algorithms is by

Coskun et al. [23], where they use standard sketching schemes like

count-min to compress traffic features for the purpose of flow cor-

relation. Coskun et al. show that sketching improves the scalability

of flow correlation, but it comes at non-negligible degradation in

the performance of traffic analysis. Later in Section 5.6 we show

that our compressive flow correlation significantly outperforms the

sketching-based algorithm of Coskun et al. through experimenta-

tion. We argue that the better performance of compressive traffic

analysis is due to the fact that they highly preserve the Euclidean

distance between (sparse) traffic features, as discussed above.

Other possible approaches to reduce the dimension of traffic

features include learning-based algorithms like Principal Compo-

nent Analysis (PCA) [48] and Independent Component Analysis

(ICA) [45] (note that we are not aware of any prior work applying

these mechanisms to scale traffic analysis). In addition to the fact

that such approaches impose higher computation overheads com-

pared to compressive traffic analysis (which is due to their learning

component), they are known [83] to perform worse on sparse sig-

nals compared to compressed sensing algorithms. We confirm this

through experimentation (Section 5.6).

4 COMPRESSIVE FLOW CORRELATION
Flow correlation is to link network flows by correlating traffic fea-

tures like packet timings and packet sizes. Flow correlation has

particularly been studied for the detection of stepping stone at-

tacks [73, 88, 90] and compromising anonymity systems [3, 24, 60,

65, 72, 79, 80, 92] like Tor and mix networks. For instance, an adver-

sary can use flow correlation to link the ingress and egress flows of

a Tor connection, and therefore de-anonymize that connection. In

Section 2, we overviewed major previous work on flow correlation.

Figure 3 shows a typical scenario of flow correlation. A number of

traffic analysis parties, which we call correlators, intercept network
traffic at different network locations. The number of correlators

depends on the application scenario; the figure shows a scenario

with two correlators without loss of generality. For instance, when

flow correlation is used to attack Tor, the correlators are malicious/-

compromised Tor relays, and in the stepping stone application, the

correlators are an enterprise network’s border routers. The correla-

tors will need to frequently exchange the traffic characteristics of

the network flows that they intercept among themselves to enable

real-time flow correlation. In Figure 3, such features are exchanged

by being frequently written to a database.
Scalability Challenge: A major limitation of existing flow cor-

relation mechanisms is scaling to today’s Internet. Consider the

application scenario shown in Figure 3, and suppose that each of

the correlators intercept S flows each containing N packets at any

Figure 3: A flow correlation scenario. For instance, “correlator 1” is an entry Tor relay and “correlator 2” is an exit Tor relay.

given time.
2
In this case, the order of communications is O(SN),

since the correlators need to exchange the traffic features of the

flows they intercept (e.g., by storing them in the database). Also,

the order of storage is O(SN) as each party will need to store the

features of the intercepted flows for the purpose of flow correlation.

Finally, the order of computation is O(S2N); this is because cor-
relator 2 will need to cross-correlate each of the S flows reported

by correlator 1 with each of the S flows intercepted by herself, in

search for correlated flows. Note that such complexities will in-

crease linearly with the number of traffic correlators, but we will

limit our discussions to the two-correlators scenario of Figure 3 to

avoid complexity.

In this section, we apply the idea of compressive traffic analysis

to flow correlation techniques with the goal of reducing their over-

heads, as described above. We will demonstrate the advantages of

compressive flow correlation by designing compressive flow corre-

lation techniques and comparing them to their non-compressive

variants. We will particularly show that our compressive flow cor-

relation schemes are more scalable (as summarized in Table 1).

4.1 Overall Architecture
Wedesign a compressive flow correlation algorithm that uses packet

timings. Specifically, our compressive flow correlation correlates the

inter-packet delays (IPDs) of network flows, similar to a number of

traditional flow correlation mechanisms [43, 44, 81, 82]. Many flow

correlation schemes use packet timings since obfuscating timing

characteristics of network flows is more challenging that other

features. For instance, Tor traffic is sent in fixed-size packets called

Tor cells to resist size-based flow correlation techniques. This is

while Tor does not offer any protection against timing attacks due

to its high overhead on Tor traffic [3].

Figure 4 shows the block diagram of our compressive flow cor-

relation algorithm. The correlators (e.g., those in Figure 3) use a

compression algorithm to compress the features of each of the flows

that they intercept. The compressed features vectors are exchanged

between the correlators, or are all stored in a centralized database

accessible to all of the correlators as shown in Figure 4. In order to

check if an intercepted flow is correlated with any of the previously

observed flows, a correlator will need to first compress that flow,

and then cross-correlate its compressed features vector against the

compressed features vectors of the previously intercepted flows

stored in the database.

Note that the number of entries in the compressed database is

linear with the number of intercepted flows, so it can be very large.

2
In reality, different correlators may intercept various numbers of flows with varying

numbers of packets, but we use this setting for simplicity without loss of generality.

Figure 4: The block diagram of our compressive flow corre-
lation system

Therefore, we also design a fast data structure which increases the

speed of searching for correlated entries in the database.

In the following, we will discuss each of the components of

Figure 4 in detail.

4.2 IPDs Compression Algorithm
Consider a network flow of length N +1with packet timings {ti |i =
1, 2, ...,N + 1}, where i is the packet index. The IPDs vector of this
flow is given by τN×1 = {τi |i = 1, 2, ...,N }, where τi = ti+1 −
ti . As mentioned in Section 3.2, we suggest to build compressive

algorithms by compressing raw features vectors. Therefore, our

compressive algorithm compresses the IPD features vector τ as:

τCM×1 = ΦM×N × τN×1 (6)

where τCM×1 is the compressed IPDs vector, M < N , and ΦM×N
(simply Φ) is the sensing matrix.

Building the sensing matrix (Φ) The sensing matrix, Φ, needs
to be generated and shared between flow correlators before starting

the flow correlation process. The selection of the sensing matrix

is important to the performance of a compressed sensing algo-

rithm [66]. In Section 3.3 we introduced several candidate mech-

anisms for generating the sensing matrix. Later in Section 5.2 we

will compare these different mechanisms, showing that Gaussian

random projection algorithm works the best.

4.3 Optimal Cross-Correlation Algorithm
Weuse hypothesis testing [63] to derive the optimal cross-correlation
algorithm for our compressive flow correlation system. The optimal

cross-correlation is one that provides the highest true positive rate

given a bounded false positive rate [63].

Suppose that a correlator has just intercepted a network flow

f1 with IPDs vector of τ1 and compressed IPDs vector of τC
1
=

Φ × τ1 (of size M × 1). The correlator aims at checking if f1 is

correlated with (i.e., linked to) a previously observed flow f2 whose
compressed IPDs vector, τC

2
= Φ × τ2, is recorded in the database.

Therefore, the correlator will need to decide which of the following

two hypotheses holds:

• Correlated (H1): f1 and f2 are correlated, i.e., f1 is a noisy
version of f2. That is τ1,i = τ2,i + ∆i for i = 1, 2, ..., where

τ1,i and τ2,i are the ith IPDs of f1 and f2, respectively, and
∆i is network jitter on the ith IPD.

• Not Correlated (H0): f1 is not a noisy version of f2.
We have that: {

H0 : τ
C
2
= Φ × (τ ∗ + ∆)

H1 : τ
C
2
= Φ × (τ1 + ∆)

(7)

where τ ∗ is the IPDs of an arbitrary flow not related to flow f1.
Wemodel IPDs (τ1,i ’s and τ2,i ’s) as i.i.d. exponential distributions

with rate λ, as in previous work [44]. We also model network jitter,

∆i ’s, as i.i.d. Laplace distributions with mean zero and standard

deviation δ . This model has been used by previous work [43], but

we also confirm it through measuring network jitter between 20

Planetlab nodes [10] as shown in Figure 5.

− 0.004 − 0.002 0.000 0.002 0.004
0.00

0.02

0.04

0.06

0.08

0.10

p
m

f

Rate 10 Pkt /s

Rate 50 Pkt /s

Fit ted Laplace

Rate 90 Pkt /s

Network Jitter (s)

Figure 5: Measured jitter between Planetlab nodes, which is
fitted to a Laplace distribution.

Finally, we use the Neyman-Pearson Lemma [63] to derive the

optimal cross-correlation function as a maximum-likelihood ratio

test: {
H1 LT > η

H0 LT ≤ η
(8)

where η is the decision threshold and

LT =
P(Φ × (τ1 + δ))

P(Φ × (τ ∗ + δ))
. (9)

Deriving the optimal LT function is very complex for arbitrary

Φ matrices as it involves the computation of multiple convolutions

(i.e., integrations). In our simulations discussed later, we will imple-

ment LT for specific Φ matrices.

4.4 Practical Cross-Correlation Algorithm
Despite being optimal in performance, the optimal cross-correlation

function of Section 4.3 has two main drawbacks. First, it involves

performing many PDF convolution operations (i.e., integrations),

depending on the size of Φ; this makes the correlation process

very slow. Second, the optimal algorithm is optimal only if the

network parameters such as a flow’s data rate and network jitter

are estimated precisely. Such parameters change over time, and are

hard to predict for a live connection.

We therefore design a non-optimal cross-correlation algorithm

that is several orders of magnitude faster than the optimal algo-

rithm, but only slightly underperforms the optimal algorithm. Our

non-optimal cross-correlation function uses cosine similarity [63] to

correlate compressed IPDs vectors. That is, for two vectors of com-

pressed IPDs, τC
1

and τC
2

(each of lengthM), the cross-correlation

is evaluated as:

C(τC
1
,τC
2
) =

∑M
i=1 τ

C
1
(i)τC

2
(i)√∑M

i=1 τ
C
1
(i)2

√∑M
i=1 τ

C
2
(i)2

(10)

As demonstrated in the experiments (Figures 13 and 11), our

cosine-based cross-correlation algorithm is only slightly less accu-

rate than the optimal algorithm of Section 4.3, but is several orders

of magnitude faster. It is also not sensitive to flow rate and network

jitter parameters. Using Cosine similarity as our correlation func-

tion also enables us to speed up the database search process, which

is discussed in the following section.

4.4.1 Resisting Packet-Level Modifications. In addition to resist-

ing network delays (e.g., jitter), a flow correlation algorithm needs

to be resistant to packet-level modifications such as packet drops,

repacketization, and reordering. While such modifications can hap-

pen very occasionally, depending on the network condition, even a

single packet modification can de-synchronize a flow correlation

algorithm.

Previous IPD-based flow correlation schemes [43, 44] use a slid-

ing window-based mechanism to resist potential packet-level mod-

ifications. However, that algorithm significantly increases the com-

putation complexity as it needs to match every IPD in an egress

flow with multiple IPDs in an ingress flow. We propose an alterna-

tive algorithm to resist packet-level modifications with negligible

overhead. Our algorithm can be used with any IPD-based cross-

correlation function, including our cross-correlation functions in-

troduced before.

Our algorithm is summarized in Algorithm 1. It divides the time

interval into non-overlapping intervals of lengthL seconds. Suppose
that we receive a network flow with N IPDs (N + 1 packets). The
algorithm generates the vector of “raw” IPDs by picking only the

first NI IPDs from each of the L-long intervals. Therefore, if the

flow has more than NI IPDs in an interval the extra IPDs will be

ignored, and if an interval has less than NI IPDs the algorithm

will put zero for the non-existing IPDs. This makes the correlation

resistant to packet modifications: if a single packet is dropped or

repacketized it will only impact the IPDs in its own interval, but

will not impact any of the IPDs in other intervals.

It is still possible that a network packet moves from one interval

to its next interval due to network jitter. This will desynchronize

both of the intervals. To prevent this, we define guard subintervals

of lengthд < L at the end of each interval, and we exclude any pack-
ets in those guard intervals. д should be chosen based on network

jitter. We model network jitter, ∆, as a Laplace distribution with

mean zero and standard deviation σ , as discussed earlier. Therefore,
using Chebyshev’s inequality:

P(|∆| ≥ д) ≤
σ 2

д2
. (11)

Therefore, we can ensure that the probability of interval desyn-

chronization is less than ϵ by choosing д = σ/
√
ϵ . For instance, for

σ = 5msec and ϵ = 0.01, we have д = 50msec .

Algorithm 1 Algorithm to resist packet-level modifications

L←Interval Length

NI ←Interval max packets

д←Guard Value

I ←list of intervals

for each captured flow F do
TF ← Extract the Timing information of flow F
for each tFi in TF do

i = ⌊
t Fi
L ⌋

if |i ∗ L − tFi | < д and |(i + 1) ∗ L − tFi | < д then
Insert tFi to Ii

for each Ii do
Compute τFi from Ii
Resize τFi to NI , add zeros if needed or remove the end

Merge all τFi to get τF
Save τF

4.5 Fast Data Structure
In a flow correlation scenario, a correlator needs to correlate an

intercepted network flow against—all—of the previously observed

network flows stored in the IPDs database. For instance, an egress

Tor flow observed by a malicious Tor exit node needs to be cross-

correlated against all of the ingress flows observed by a malicious

Tor guard node. Note that this is not specific to our compressive

correlation algorithms, and is a (bigger) constraint for traditional

correlation algorithms as well.

We design a fast data structure for storing compressed IPD fea-

tures based on the locality-sensitive hashing (LSH) [34] data struc-
tures. LSH is a particular hash function that, unlike traditional cryp-

tographic hash functions, produces similar hashes for similar inputs.

LSH offers a provable sub-linear query time and sub-quadratic space
complexity, despite its very good performance [71]. LSH divides

the features spaces into a number of “hyperplanes,” where similar

instances will appear on the same hyperplane with high probability.

As illustrated in Figure 6, LSH reduces search time and complexity

by only looking at the most probable hyperplane, as opposed to the

whole database.

We specifically use a recent LSH algorithm by Andoni et al. [2],

which uses Euclidean distance on the sphere to measure the dis-

tance between entries. This makes Andoni et al. [2]’s LSH a natural

option for our system since cosine similarity (our sub-optimal cross-

correlation function) on the plain coordinates is equivalent to the

Figure 6: An illustration of how LSH stores and looks up en-
tries

Euclidean distance on the sphere. We therefore use this LSH algo-

rithm to fragment the space on the sphere to hyperplanes. As a

result, compressed IPD vectors with close cosine-similarity will end

up on the same hyperplanes with high probability.

In order to add a new flow to our database, we first compress that

flow, and then use LSH to find the hyperplane in the database with

the “closest” compressed IPDs vector to that flow (using LSH). We

then insert the flow’s compressed IPDs vector in that position. In

order to find a match in the database for a given flow we similarly

identify the position (hyperplane) in the database with the closest

compressed IPDs vectors, and only apply our cosine similarity

cross-correlation function on the items of that hyperplane.

The use of LSH significantly improves the speed of database

search. While the normal search in the database has a query time

complexity of O(S) (S is the number of flow entries) Andoni et

al.’s LSH reduces this to O(Sρ), where ρ < 1 represents the search

accuracy.

4.6 Scalability Improvements
Table 1 compares the storage, computation, and communications

complexity of our compressive flow correlation algorithms with

their traditional, non-compressive alternatives.

Communications and storage complexities: Any compressive

algorithm will reduce the order of communications and storage

from O(SN) to O(SN /R) (where R > 1), as they will exchange

and store the “compressed” flow features, as opposed to the raw

features.

Computation complexity: Compressive algorithms also signif-

icantly reduce the computation complexity. Cross-correlation al-

gorithms scale linearly with the number of features. Therefore, a

compressive correlation algorithm reduces computation by a factor

of R = N /M .

Note that a compressive system’s compression process may add

some computation overhead; in particular, our IPD compression

algorithm performs matrix multiplications, therefore imposing a

computation complexity of O(NM) for a random Φ matrix (this

can further reduce for sparse matrices). Therefore, compressive

flow correlation changes computation overhead from O(S2N) to
O(S2M + SMN). However, sinceM is negligible compared to S (the

number of flows), we can approximate the computation complexity

Table 1: Complexity comparison of different flow correlation algorithms (R > 1, ρ < 1)

Algorithm Commun. Storage Computation

Non-compressive optimal O(SN) O(SN) O(S2N)
Compressive optimal O(SN /R) O(SN /R) O(S2N /R)

Non-compressive Cosine O(SN) O(SN) O(S2N)
Compressive Cosine O(SN /R) O(SN /R) O(S2N /R)

Compressive Cosine+LSH O(SN /R) O(SN /R) O(S(1+ρ)N /R)

of compressive algorithm as O(S2M), which has a factor of N /M
reduction compared to traditional flow correlation.

The use of LSH in our algorithm additionally reduces the com-

putation overhead to (S(1+ρ)M), where ρ < 1 represents search

accuracy as introduced earlier.

Note that even though the computation overhead of both of

the optimal and cosine cross-correlation algorithms scale linearly

with the number of samples, the optimal correlation algorithm is

by far slower than the cosine similarity algorithm. This is due to

it performing multiple computation-intensive operations such as

exponentiation and integration. This is also shown later in the

experiments.

5 EXPERIMENTS: COMPRESSIVE FLOW
CORRELATION

5.1 Experimental Setup and Metrics
We use network flows from the CAIDA 2016 anonymized network

traces [13] (out of which we pick 50,000 random flows each at

least 1000 packets long). For any network flow, we simulated the

impact of network jitter by modeling jitter as a zero-mean Laplace

distribution. This model is also used in previous studies of flow

correlation, but we additionally confirm it by measuring network

jitter between 20 Planetlab nodes [10], which is shown in Figure 5.

We also simulated packet drops by dropping packets based on a

Binomial distribution.

We implemented our compressive flow correlation algorithms

in Python, and used Mathematica 11.0 to derive some of the math

formulas. We used the Communication System Toolbox of Matlab

to generate BCH codes.

Metrics: We use two metrics for evaluating the performance of

the flow correlation algorithms. The True Positive (TP) rate shows
the ratio of correctly linking related network flows across all exper-

iments, i.e., when a network flow is decided to be correlated to a

noisy version of itself. On the other hand, the False Positive (FP) rate
shows the ratio of incorrect matches across all experiments, i.e.,

when the flow correlation function declares two non-related flows

to be correlated. Note that the value of the detection threshold, η,
trades off FP and TP.

We show a flow correlation algorithm A is more scalable than
B by showing that one of the two equivalent conditions hold: (1)

when both algorithms offer the same flow correlation performance

(e.g., same TP/FP numbers), A has less storage, communications,

and computation overheads (e.g., it is faster by using fewer IPDs

for correlation), or (2) for the same storage, communications, and

computation overheads (i.e., same number of IPDs), A provides

better flow correlation performance (e.g., better TP/FP metrics).

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Random Gaussian Ratio 100 TP

BCH Ratio 100 TP

Random Bernoulli Ratio 100 TP

Non compressed Same Samples TP

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

Jitter std(s)

0.00

0.02

0.04

0.06

0.08

0.10

Random Gaussian Ratio 100 FP

BCH Ratio 100 FP

Random Bernoulli Ratio 100 FP

Non compressed Same Samples FP

Figure 7: Comparing compressive flow correlation with var-
ious projection algorithms with non-compressive correla-
tion. All compressive correlation algorithms outperform
the non-compressive correlation, and the random Gaussian
projection performs the best.

5.2 Generating the Sensing Matrix Φ
We investigate several major linear projection algorithms, intro-

duced in Section 3.3, to compress traffic features. We generate the

sensing matrix Φ for each of these algorithms, and compare their

performance. Particularly, Figure 7 compares the TP and FP per-

formance of compressive flow correlation for Random Gaussian

projection, RandomBernoulli projection, and BCH projection, along

with non-compressive flow correlation (forM = 10, N = 1000, and

R = 100). As can be seen, all three types of compressive correla-

tion algorithms outperform non-compressive (traditional) traffic

analysis.

RandomGaussian projection performs the best: We see from

Figure 7 that the random Gaussian projection outperforms all the

other projection mechanisms. This is because, as discussed in Sec-

tion 3.3, based on the Johnson-Lindenstrauss (JL) lemma [26] Gauss-

ian random sensing tightly preserves the Euclidean distance on the

compressed features. Therefore, for the rest of the experiments, we

use Gaussian random projection for compressing traffic features.

We particularly use Candes and Tao’s mechanism [17], where the

elements of the Φ matrix are i.i.d. Gaussian random variables with

mean zero and a constant standard deviation σ [17]. Figure 8 shows

the impact of σ on the performance of flow correlation. We choose

σ = 0.01 as it optimizes the performance of flow correlation.

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104

ΦStandard Deviation

0.982

0.984

0.986

0.988

0.990

0.992

0.994

D
e
te

c
ti
o
n

Figure 8: Impact of Φ’s standard deviation (σ) on correlation.

Impact of Compression Ratio: As intuitively expected, increas-

ing the compression ratio R improves scalability, but at the expense

of degrading the accuracy of flow correlations. Figure 9 shows the

TP and FP metrics for different compression ratios.

0.92

0.94

0.96

0.98

1.00

1.02

Compression Ratio 200 TP

Compression Ratio 100 TP

Compression Ratio 10 TP

0.002 0.004 0.006 0.008 0.010 0.012
Jitter std(s)

0.00

0.01

0.02

0.03

0.04
Compression Ratio 200 FP

Compression Ratio 100 FP

 Compression Ratio 10 FP

Figure 9: Impact of compression ratioR onTP and FPmetrics

5.3 Cosine Similarity vs. Optimal Detector
We compare our optimal (Section 4.3) and cosine similarity (Sec-

tion 4.4) compressive algorithms. Since the optimal correlation

needs to be tailored for each specific flow rate, we pick network

flows from our CAIDA dataset that are in a short range of flow

rates, specifically 10 to 20 packets per second. Figure 13 compares

optimal and cosine similarity algorithms for various jitters (note

that in our Planetlab measurements, we find the average jitter SD

(δ) to be around 5ms , but we simulate our correlation algorithms

for a wider range of δ). As can be seen, the optimal correlation only

slightly outperforms the non-optimal, cosine-similarity correlation

function. This is while the optimal correlation is significantly more

computation-intensive, as discussed earlier in Section 4.6. For in-

stance, for S = 1000 the cosine correlator is about two orders of

magnitude faster (see Figures 10 and 11), which is in full agreement

with Table 1. Additionally, unlike the optimal detector, the cosine

similarity algorithm is not sensitive to network parameters like

flow rates.

5.4 Comparing Runtime
We compare the runtime of different algorithms on a computer

with a 3.5 GHz Intel Xeon processor and 48GB of memory. Fig-

ure 10 compares the runtime of compressive and non-compressive

optimal correlation functions (R=10). As can be seen, the com-

pressed alternative is faster by an order of magnitude, while both
algorithms have the same accuracy (which is in agreement with Ta-

ble 1). Also, Figure 11 compares the runtime of the compressed and

non-compressed versions of the cosine-based correlator. As can be

seen, the Compressed version is two orders of magnitude faster than
its non-compressed version (for similar correlation performance).

5.5 Impact of Packet Drops
Figure 12 shows the performance of our algorithm designed to

resist packet level modifications (Algorithm 1) against dropping

packets at different rates. Note that in our Planetlab measurements,

the average packet drop rate is only 0.001, but we simulate higher

rates of drops to simulate active attackers.

5.6 Comparison to Other Approaches
Non-compressive flow correlation: We compare our compres-

sive correlation algorithms to Houmansadr et al. [44], which is

the state-of-the-art non-compressive alternative to our system. Fig-

ure 14 compares our optimal compressive algorithm (with R = 10)

to the optimal non-compressive algorithm of Houmansadr et al. [44].

As can be seen, our system performs the same while being signifi-

cantly faster as demonstrated in Figure 10 (discussed above) and

shown in Table 1. On the other hand, when both systems use the

same number of IPDs (and therefore have the same runtime), our

compressive algorithms performs significantly better flow correla-

tion (See Figure 15).

Sketching-based correlation: We compare our algorithm to the

sketching-based algorithm of Coskun et al. [23]. Figure 16 shows

that our algorithm significantly outperforms Coskun et al. [23]’s

for the same number of IPD samples.

Dimensionality reduction-based correlation algorithms: A

potential alternative to compressive traffic analysis is using learning

based algorithms to reduce the dimension of traffic features. While

we are not aware of any prior work applying these mechanisms to

scale traffic analysis, we implement a flow correlation algorithm

that uses Principal Component Analysis (PCA) [48] to compress

traffic features. Our algorithm works by first training PCA on the

dataset of traffic features, and then we reduce the dimension of

dataset by multiplying the its instances into the PCA matrix. As

shown in Figure 17, our compressive flow correlation algorithm out-

performs the PCA-based algorithm, except for small jitters where

both perform the same. Also, the PCA-based algorithm is much

slower due to its training phase. Nonetheless, even the PCA-based

0 200 400 600 800 1000
Dataset Size

10−2

10−1

100

R
un

tim
e(

s)
Lo

g
S

ca
le

Non-Compressive Optimal Detector
Compresive Optimal Detector

Figure 10: Runtime comparison: optimal compres-
sive vs. optimal non-compressive (R = 10)

0 2000 4000 6000 8000 10000
Dataset Size

10−3

10−2

10−1

100

101

R
un

tim
e(

s)
Lo

g
S

ca
le

Non-Compressive Cosine
Compressive Cosine
Compressive Cosine+LSH

Figure 11: Runtime comparison: Cosine compres-
sive vs. Cosine non-compressive (ρ = 0.2 and R =
10)

0.6

0.7

0.8

0.9

1.0

1.1

Compression Ratio 100 TP

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

Drop rate

0.000

0.005

0.010

0.015

0.020

0.025 Compression Ratio 100 FP

Figure 12: Impact of packet drops on performance (1000
packets, no network jitter)

algorithm significantly outperforms the traditional flow correlation,

which may be further investigated by future research.

5.7 Experiments on Real Tor Network
We implemented our compressive flow correlation tool, and experi-

mented with it on live Tor traffic by intercepting Tor connections. In

our experiments, we have two correlator entities that are intercept-

ing Tor traffic with the goal of de-anonymizing Tor connections.

In our experiments, we browse the top 500 websites from Alexa
3

over Tor.We do not run any Tor relays, instead we use Tor’s existing

relays. In order to be able to intercept traffic going to a webpage

through Tor, we use a sniffing HTTP proxy and set up our Tor

connections to go through that proxy. We also capture Tor traffic

on our local client before going to a Tor guard relay.

3
http://www.alexa.com/topsites

Figure 18 compares the performance of our compressive flow

correlation algorithm (with rate 4pps) with its non-compressive

alternative when they both use the same number of IPDs features

(therefore, they have the same overhead). As can be seen, our com-

pressive algorithm significantly outperforms its non-compressive

alternative. Note that a system performs better if its lines of TP and

FP metrics have a larger gap. For instance, when both systems offer

a FP of 0.1, our compressive algorithm offers a TP of ≈ 0.9, whereas

the non-compressive algorithm offers a TP of only ≈ 0.3.

6 COMPRESSIVE WEBSITE
FINGERPRINTING

Website fingerprinting is a class of traffic analysis that aims to iden-

tify the websites (or webpages) visited over encrypted channels

like VPN, Tor, and network proxies [12, 21, 38, 62, 77]. While there

has been various proposals for website fingerprinting [12, 33, 35,

37, 50, 56, 62, 77, 78], state-of-the-art website fingerprinting mech-

anisms mainly use one of the two machine learning algorithms of

Support Vector Machines (SVM) [12, 62, 78] or k-Nearest Neighbor (k-
NN) [33, 35, 77]. In this section, we present the idea of compressive

website fingerprinting by applying it on recent k-NN and SVM-

based fingerprinting schemes and demonstrating their significant

scalability improvements.

6.1 Overall Architecture
Compressive website fingerprinting differs from regular website

fingerprinting in that it trains and classifies using compressed traffic

features, as opposed to using raw traffic features as in the traditional

approach. Figure 19 shows the overall architecture of compressive

website fingerprinting. As can be seen, anN -long vector of webpage

features, fN×1, is compressed to

f CM×1 = ΦM×N × fN×1 (12)

This results in the compressed features vector of lengthM < N , f CM×1,
which is then used by the website fingerprinting system’s machine

learning algorithms for training and classification. What enables

us to apply compressive traffic analysis to website fingerprinting is

0.998

0.999

1.000

1.001
Cosine Sim Detector TP
Optimal Detector TP

0.002 0.004 0.006 0.008 0.010 0.012
Jitter std(s)

0.000

0.002

0.004

0.006

0.008

0.010
Cosine Sim Detector FP
Optimal Detector FP

Figure 13: Comparing our compres-
sive algorithms: optimal vs. cosine-
similarity (R = 10).

0.992

0.994

0.996

0.998

1.000

1.002

1.004 Compression Ratio 100 TP

Houmansadr et al. TP

0.002 0.004 0.006 0.008 0.010 0.012
Jitter std(s)

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016 Compression Ratio 100 FP

Houmansadr et al. FP

Figure 14: Comparing our optimal com-
pressive algorithm (R = 10) to its op-
timal non-compressive alternative [44].
Our system performs the same despite
being significantly faster (Table 1).

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Compression Ratio 100 TP
Houmansadr et al. TP

0.002 0.004 0.006 0.008 0.010 0.012
Jitter std(s)

0.000

0.002

0.004

0.006

0.008

0.010 Compression Ratio 100 FP
Houmansadr et al. FP

Figure 15: Comparing our cosine com-
pressive algorithm (R = 100) to op-
timal non-compressive algorithm [44]
with the same runtime. The compressive
algorithm significantly outperforms for
the same runtime.

0.6

0.7

0.8

0.9

1.0

1.1
Compression Ratio 100 TP

Coskun et al. TP

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Jitter std(s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Compression Ratio 100 FP

Coskun et al. FP

Figure 16: Comparing our compressive
algorithm to Coskun et al. [23] for a
drop rate of 0.002; with the same num-
ber of IPD samples, our algorithm signif-
icantly outperforms.

0.90

0.95

1.00

1.05

1.10
Random Gaussian Ratio 100 TP
PCA Ratio 100 TP
Non compressed TP

0.000 0.002 0.004 0.006 0.008 0.010
Jitter std(s)

0.00

0.02

0.04

0.06

0.08

0.10

Random Gaussian Ratio 100 FP
PCA Ratio 100 FP
Non compressed FP

Figure 17: Comparing Compressive flow
correlation with PCA-based correlation.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

Compressive TP
Compressive FP
Non-Compressive TP
Non-Compressive FP

Figure 18: Comparing our compressive
algorithm against its non-compressive
algorithm on Tor; when both use the
same number of IPDs features, our com-
pressive algorithm significantly outper-
forms regarding the TP and FP metrics.

Figure 19: General framework of compressive website fin-
gerprinting

the sparsity of traffic features like packet timings and sizes, as well

as the RIP property of linear projection algorithms that preserves

the Euclidean distance of features vectors after compression (as

discussed in Section 3.2).

Similar to compressive flow correlation, we investigate the use of

various linear projection algorithms in generating the basis matrix,

Φ. We will discuss our choices later in the experiments section.

6.2 Improving Scalability
The state-of-the-art website fingerprinting attacks mainly use one

of the twomachine learning algorithms of Support Vector Machines

(SVM) [12, 62, 78] and k-Nearest Neighbor (k-NN) [33, 35, 77]. Each
of these mechanisms are composed of a learning phase and a pre-

diction phase. For any webpage, they generate a features vector of

size N ; this N -long features vector is then used for training and

prediction. The size of the features vector, N , plays an important

role in the performance of a website fingerprinting mechanism:

increasing N improves the classification performance but makes

the fingerprinting process more expensive by increasing the compu-

tation and storage overheads (it also increases the communications

overhead proportional to the storage overhead if the learning and

classification nodes are running at different network locations).

The goal of compressive website fingerprinting is to improve

the scalability of website fingerprinting by achieving similar clas-

sification accuracy with a smaller N . Table 2 demonstrates the

scalability improvement for k-NN and SVM-based fingerprinting

systems, which is discussed in the following.

6.2.1 Scaling k-NN based schemes. Several recent website fin-
gerprinting schemes [33, 35, 77] use the k-NN approach for classifi-

cation using custom weight learning. For instance, Wang et al. [77]

uses packet sizes, packet timings, and packet directions as features

for classification, and it uses the L1 distance metric for finding the

nearest neighbors.

The prediction time of a k-NN based fingerprinting system is

O(SN), where S is the size of the dataset (number of webpages) and

N is the number of the features per webpage [11]. Our compressive

alternative of a k-NN fingerprinting system reduces the number

of features to M < N , therefore lowering the time of k-NN com-

putations to O(SN /R), where R = N /M is the compression ratio

(R > 1). This is summarized in Table 2.

6.2.2 Scaling SVM-based schemes. Several recent proposals [12,
62, 78] use the support vector machines (SVM) algorithm to learn

and classify websites. Support vector machines have a time com-

plexity between O(S2) and O(S3) [55] for the training phase (S is

the size of dataset). The SVM mechanisms also have a prediction

phase time complexity of O(Nsv (N) ·N), where Nsv is the number

of support vectors and N is the number of features [55]. Note that

Nsv itself is a function of N , therefore the prediction time of SVM

is not linear in N . However, as also shown in our experiments, the

prediction time is monotonic with N (therefore it is improved due

to compression). This is summarized in Table 2.

7 EXPERIMENTS: COMPRESSIVE WEBSITE
FINGERPRINTING

7.1 Experimental Setup and Metrics
We demonstrate the scalability improvements of compressive web-

site fingerprinting for the two leading approaches for website fin-

gerprinting, i.e., k-NN-based [12, 62, 78] and SVM-based [33, 35, 77]

mechanisms. We particularly pick the state-of-the-art systems from

each group in our experiments, namely, we pick Panchenko et

al. [62] to represent k-NN and Wang et al. [77] to represent the

SVM-based systems. We use the original codes and datasets from
Wang et al. [77] and Panchenko et al. [62] in our experiments. We

implement the compressive versions of these systems by modifying

their codes as described in Section 6.1 (e.g., by adding the com-

pression stage). Our experiments are run on a Linux machine with

48GB of memory and a 3.5GHz Xeon(R) CPU.

Metrics: We use website fingerprinting accuracy, as used in the

literature, to evaluate and compare the performance of website

fingerprinting systems. We show a fingerprinting algorithm A is

more scalable than B by showing that one of the two equivalent

conditions hold: (1) when both algorithms offer the same (or very

close) website fingerprinting accuracy, A has less storage, commu-

nications, and computation overheads (e.g., it is faster by using

fewer features), or (2) for the same storage, communications, and

computation overheads, A provides higher fingerprinting accuracy.

1e-05 0.001 0.1 100 1000
Standard Devaition

0.81

0.82

0.83

0.84

0.85

0.86

A
cc

ur
ac

y

Figure 20: Impact of Φ’s standard deviation (σ) on the accu-
racy of k-NN website fingerprinting algorithm.

7.2 Generating the Sensing Matrix Φ
We investigate several major linear projection algorithms, intro-

duced earlier, for compressive website fingerprinting. We generate

the sensing matrix Φ for each of these algorithms, and compare

their performance. We find that the Gaussian and Bernoulli random

projection algorithms perform the best in improving the scale of

website fingerprinting, as will be presented in the following. Also,

note that the parameters of Φ impact the performance. Particu-

larly, Figure 20 shows the impact of Φ’s standard deviation, σ , on
the accuracy of our compressive version of Wang et al. [77] when

Gaussian random projection is used (we pick σ = 10
−3
).

7.3 Compressive k-NN
We compare the accuracy and run time of the state-of-the-art k-NN
system of Wang et al. [77] to its compressive alternative. We run

our experiments in an open-world scenario with 100 monitored

websites with 90 instances each, and 5000 non-monitored websites.

To demonstrate the scalability improvements, we compare the com-

pressive version of the algorithm with the original algorithm for

the same number of features (we always keep the most significant

features when we sample down the original non-compressive algo-

rithm). Table 3 summarizes the results (note that the accuracy loss

and speedup metrics are evaluated compared to non-compressive

for R = 1). As can be seen, both Bernoulli and Gaussian compres-

sive algorithms outperform the original system, i.e., for the same

number of features they result in higher fingerprinting accuracy.

For instance, when all algorithms use 467 features, and therefore

have the same storage/computation complexity, our Gaussian com-

pressive algorithm provides a 0.8703 accuracy compared to 0.6880

of the original, non-compressive algorithm. Also, similar to our

results on compressive flow correlation, we see that Gaussian lin-

ear projection provides a better performance compared to other

compression mechanisms.

Table 3 also shows the speedup of our Gaussian compressive

over Wang et al. [77] when both algorithms offer the same accuracy.
For instance, with R = 16, for the same accuracy, our compressive

algorithm makes the fingerprinting process about 13 times faster.
Note that the speedup is a little bit less than 1/R (shown in Table 2)

which is due to the slight drop in accuracy due to compression (i.e.,

compression preserves the Euclidean distance, but not perfectly).

Table 2: Comparing compressive and traditional website fingerprinting mechanisms regarding storage and computation com-
plexities (R > 1 is the compression ratio).

Algorithm Storage Learning Phase Prediction Phase

SVM O(SN) O(S2) ∼ O(S3) O(Nsv (N) · N)
Compressive SVM O(SN /R) O(S2) ∼ O(S3) O(Nsv (N /R) · N /R)
k-NN O(SN) N/A O(SN)
Compressive k-NN O(SN /R) N/A O(SN /R)

Table 3: Comparing compressive and non-compressive (regular) k-NN-based fingerprinting performance (the R = 1 row is the
baseline).

Features R Gaussian Bernoulli Non-compressive Total Accuracy Effective

(N) Compressive Compressive [77] runtime loss Speedup

3736 1 0.9076 0.9076 0.9076 ∼ 33m 0.0 ×1

934 4 0.8913 0.86 0.6920 ∼ 9m 0.0163 ×3

467 8 0.8703 0.85 0.6880 ∼ 4m 0.0373 ×6.75

233 16 0.8520 0.82 0.6800 ∼ 2m 0.0556 ×13.5

Table 4: Comparing compressive and non-compressive (regular) SVM-based fingerprinting performance (the R = 1 row is the
baseline).

Features R Gaussian Bernoulli Non-compressive Prediction Accuracy Speedup

(N) Compressive Compressive [62] Time loss

104 1 0.824 0.8240 0.8240 ∼ 3s 0.0 ×1

26 4 0.8052 0.7923 0.7860 ∼ 1.5s 0.0188 ×2

13 8 0.7867 0.7775 0.7552 ∼ 1s 0.0373 ×3

7.4 Compressive SVM
We also compare the accuracy and run time of the state-of-the-art

SVM-based system of of Panchenko et al. [62] to its compressive

alternative. We run our experiments in the closed-world setting

with 100 websites, each with 40 instances. As before, to demonstrate

the scalability improvements, we compare the compressive version

of the algorithm with the original algorithm for the same number

of features (as before, we keep the most significant features when

we sample down the original non-compressive algorithm). Table 4

summarizes the results, showing that both Bernoulli and Gaussian

compressive algorithms outperform the original system, i.e., for the

same number of features they result in higher fingerprinting accura-

cies (as before, the accuracy loss and speedup metrics are evaluated

compared to non-compressive for R = 1). For instance, when they

both use 26 features (and therefore have a similar storage/runtime

overhead), the Gaussian compressive algorithm provides a 0.8052

accuracy compared to the 0.7860 accuracy of the original algorithm.

Also, as before the Gaussian linear projection provides a better

performance compared to other compression mechanisms.

We also see that increasing the compression ratio R results in a

larger speedup, while slightly reducing the fingerprinting accuracy.

For instance, a compression ratio of R = 8 speeds up the prediction

time three times for a negligible 0.03 accuracy reduction. Note

that as discussed in Section 6.2.2, the prediction time of SVM is

not linear with the number of features. However, as also shown

here, the prediction time is monotonic with the number of features,

therefore compression always improves the scalability.

The runtime gain of compression is larger for k-NN-based fin-

gerprinting systems, as shown above, due to the linear relation of

its complexity with the number of features.

7.5 Significance of the Scalability
Improvements

As discussed earlier, the scalability improvement of compressive

fingerprinting is two-fold: lower storage and computation (predic-

tion time). One may argue that with the reduced costs of storage,

the storage benefits of compressive website fingerprinting may not

matter that much, especially when the number of fingerprinted

websites is moderate (e.g., if the close world is limited to only 100

specific websites). Nonetheless, the fingerprinting adversary will

still benefit from the improved computation overhead, resulting

in faster detection of the fingerprinted webpages in live traffic, as

shown in Tables 3 and 4. This will be more significant if the fin-

gerprinting adversary needs to inspect a large number of network

flows in real-time, e.g., an adversary in control of an Internet IXP.

8 CONCLUSIONS
We introduced a new direction to traffic analysis, which we call com-

pressive traffic analysis. Our approach is inspired by the trending re-

search area of compressed sensing, and works by using compressed

traffic features, as opposed to raw features, for traffic analysis. We

discussed why and how compressive traffic analysis improves the

scalability of traffic analysis. We also demonstrated compressive

traffic analysis on flow correlation and website fingerprinting, two

widely-studied types of traffic analysis. Our evaluations show sig-

nificant improvements (e.g., orders of magnitude speedup) over

traditional algorithms.

We believe that compressive traffic analysis is a significant step

forward in designing traffic analysis algorithms that scale to the

exploding volumes of network communications. An interesting

topic for future work will be to investigate the application of com-

pressive traffic analysis to other kinds of traffic analysis, such as

active flow correlation mechanisms. Improving the performance of

feature compression is another topic for future work.

ACKNOWLEDGMENTS
We would like to thank anonymous reviewers for their comments.

This work was supported by the NSF grants CNS-1525642 and

CCF-1642550.

REFERENCES
[1] Arash Amini and Farokh Marvasti. 2011. Deterministic construction of binary,

bipolar, and ternary compressed sensing matrices. IEEE Transactions on Informa-
tion Theory 57, 4 (2011), 2360–2370.

[2] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig

Schmidt. 2015. Practical and optimal LSH for angular distance. In Advances in
Neural Information Processing Systems. 1225–1233.

[3] Adam Back, Ulf Möller, and Anton Stiglic. 2001. Traffic Analysis Attacks and

Trade-Offs in Anonymity Providing Systems. In Information Hiding (Lecture Notes
in Computer Science), Vol. 2137. Springer, 245–247.

[4] Waheed U Bajwa, Jarvis D Haupt, Gil M Raz, Stephen J Wright, and Robert D

Nowak. 2007. Toeplitz-structured compressed sensing matrices. In Statistical
Signal Processing. IEEE, 294–298.

[5] Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin. 2008. A

simple proof of the restricted isometry property for randommatrices. Constructive
Approximation 28, 3 (2008), 253–263.

[6] Richard G Baraniuk. 2007. Compressive sensing. IEEE Signal Processing Magazine
24, 4 (2007).

[7] Alexander Barg and Arya Mazumdar. 2010. Small ensembles of sampling matrices

constructed from coding theory. In Information Theory Proceedings (ISIT), 2010
IEEE International Symposium on. IEEE, 1963–1967.

[8] Alexander Barg, Arya Mazumdar, and Rongrong Wang. 2013. Random subdic-

tionaries and coherence conditions for sparse signal recovery. arXiv preprint
arXiv:1303.1847 (2013).

[9] Dror Baron, Marco F Duarte, Michael BWakin, Shriram Sarvotham, and Richard G

Baraniuk. 2009. Distributed compressive sensing. arXiv preprint arXiv:0901.3403
(2009).

[10] Andy C Bavier, Mic Bowman, Brent N Chun, David E Culler, Scott Karlin, Steve

Muir, Larry L Peterson, Timothy Roscoe, Tammo Spalink, and Mike Wawrzoniak.

2004. Operating Systems Support for Planetary-Scale Network Services. In NSDI,
Vol. 4. 19–19.

[11] Christopher M Bishop. Pattern recognition and machine learning.

[12] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. 2012. Touching from

a distance: Website fingerprinting attacks and defenses. In ACM CCS. 605–616.
[13] The CAIDA UCSD Anonymized Internet Traces 2016 - [2016]. http://www.caida.

org/data/passive/passive_2016_dataset.xml.

[14] Robert Calderbank, Stephen Howard, and Sina Jafarpour. 2010. Construction of

a large class of deterministic sensing matrices that satisfy a statistical isometry

property. IEEE journal of selected topics in signal processing 4, 2 (2010), 358–374.

[15] Emmanuel J Candès, Justin Romberg, and Terence Tao. 2006. Robust uncer-

tainty principles: Exact signal reconstruction from highly incomplete frequency

information. IEEE Transactions on information theory 52, 2 (2006), 489–509.

[16] Emmanuel J Candes, Justin K Romberg, and Terence Tao. 2006. Stable signal

recovery from incomplete and inaccurate measurements. Communications on
pure and applied mathematics 59, 8 (2006), 1207–1223.

[17] Emmanuel J Candes and Terence Tao. 2005. Decoding by linear programming.

IEEE Transactions on Information Theory 51, 12 (2005), 4203–4215.

[18] Emmanuel J Candes and Terence Tao. 2006. Near-optimal signal recovery from

random projections: Universal encoding strategies? IEEE transactions on infor-
mation theory 52, 12 (2006), 5406–5425.

[19] Emmanuel J Candès and Michael B Wakin. 2008. An introduction to compressive

sampling. IEEE signal processing magazine 25, 2 (2008), 21–30.
[20] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. 2010. Side-channel

leaks in web applications: A reality today, a challenge tomorrow. In IEEE S&P.
IEEE, 191–206.

[21] Heyning Cheng and Ron Avnur. Traffic Analysis of SSL EncryptedWeb Browsing.

https://pdfs.semanticscholar.org/1a98/7c4fe65fa347a863dece665955ee7e01791b.

pdf.

[22] Compressive Imaging: A New Single-Pixel Camera. http://dsp.rice.edu/cscamera.

[23] Baris Coskun and Nasir D Memon. 2009. Online Sketching of Network Flows for

Real-Time Stepping-Stone Detection. In ACSAC. Citeseer, 473–483.
[24] George Danezis. 2004. The traffic analysis of continuous-time mixes. In Interna-

tional Workshop on Privacy Enhancing Technologies. Springer, 35–50.
[25] George Danezis, Roger Dingledine, and Nick Mathewson. 2003. Mixminion:

Design of a type III anonymous remailer protocol. In IEEE S&P. IEEE, 2–15.
[26] Sanjoy Dasgupta and Anupam Gupta. 2003. An elementary proof of a theorem of

Johnson and Lindenstrauss. Random Structures & Algorithms 22, 1 (2003), 60–65.
[27] Ronald A DeVore. 2007. Deterministic constructions of compressed sensing

matrices. Journal of complexity 23, 4-6 (2007), 918–925.

[28] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-

Generation Onion Router. In USENIX Security Symposium.

[29] David L Donoho. 2006. Compressed sensing. IEEE Transactions on information
theory 52, 4 (2006), 1289–1306.

[30] David L Donoho, Ana Georgina Flesia, Umesh Shankar, Vern Paxson, Jason Coit,

and Stuart Staniford. 2002. Multiscale stepping-stone detection: Detecting pairs

of jittered interactive streams by exploiting maximum tolerable delay. In RAID.
Springer, 17–35.

[31] Yonina C Eldar and Gitta Kutyniok. 2012. Compressed sensing: theory and appli-
cations. Cambridge University Press.

[32] J. Geddes, M. Schuchard, and N. Hopper. 2013. Cover Your ACKs: Pitfalls of

Covert Channel Censorship Circumvention. In CCS.
[33] Xun Gong, Negar Kiyavash, and Nikita Borisov. 2010. Fingerprinting websites

using remote traffic analysis. In ACM CCS. ACM, 684–686.

[34] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. 2012. Approximate Nearest

Neighbor: Towards Removing the Curse of Dimensionality. Theory of computing
8, 1 (2012), 321–350.

[35] Jamie Hayes and George Danezis. 2016. k-fingerprinting: A robust scalable

website fingerprinting technique. arXiv preprint arXiv:1509.00789 (2016).
[36] Ting He and Lang Tong. 2007. Detecting encrypted stepping-stone connections.

IEEE Transactions on Signal Processing 55, 5 (2007), 1612–1623.

[37] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. 2009. Website

fingerprinting: attacking popular privacy enhancing technologies with the multi-

nomial naïve-bayes classifier. In ACM workshop on Cloud computing security.
ACM, 31–42.

[38] Andrew Hintz. 2002. Fingerprinting websites using traffic analysis. In Interna-
tional Workshop on Privacy Enhancing Technologies. Springer, 171–178.

[39] Amir Houmansadr and Nikita Borisov. 2011. SWIRL: A Scalable Watermark to

Detect Correlated Network Flows. In NDSS.
[40] Amir Houmansadr and Nikita Borisov. 2013. BotMosaic: Collaborative network

watermark for the detection of IRC-based botnets. Journal of Systems and Software
86, 3 (2013), 707 – 715. https://doi.org/10.1016/j.jss.2012.11.005

[41] Amir Houmansadr and Nikita Borisov. 2013. The need for flow fingerprints to

link correlated network flows. In PETS. Springer, 205–224.
[42] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. 2013. The Parrot Is

Dead: Observing Unobservable Network Communications. In S&P.
[43] Amir Houmansadr, Negar Kiyavash, and Nikita Borisov. 2009. RAINBOW: A

Robust And Invisible Non-Blind Watermark for Network Flows. In NDSS.
[44] Amir Houmansadr, Negar Kiyavash, and Nikita Borisov. 2014. Non-blind water-

marking of network flows. IEEE/ACM Transactions on Networking (TON) 22, 4
(2014), 1232–1244.

[45] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. 2004. Independent component
analysis. Vol. 46. John Wiley & Sons.

[46] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards

removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. ACM, 604–613.

[47] Hao Jiang and Constantinos Dovrolis. 2005. Why is the Internet traffic bursty in

short time scales?. In ACM SIGMETRICS Performance Evaluation Review, Vol. 33.
ACM, 241–252.

[48] Ian Jolliffe. 2002. Principal component analysis. Wiley Online Library.

[49] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt.

2014. A critical evaluation of website fingerprinting attacks. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security. ACM,

263–274.

[50] Albert Kwon. 2015. Circuit fingerprinting attacks: Passive deanonymization of tor
hidden services. Ph.D. Dissertation. Massachusetts Institute of Technology.

[51] Shuxing Li, Fei Gao, Gennian Ge, and Shengyuan Zhang. 2012. Deterministic con-

struction of compressed sensing matrices via algebraic curves. IEEE Transactions
on Information Theory 58, 8 (2012), 5035–5041.

[52] Marc Liberatore and Brian Neil Levine. 2006. Inferring the source of encrypted

HTTP connections. In ACM CCS. ACM, 255–263.

[53] Zhen Ling, Junzhou Luo, Wei Yu, Xinwen Fu, Dong Xuan, and Weijia Jia. 2009.

A new cell counter based attack against tor. In Proceedings of the 16th ACM
conference on Computer and communications security. ACM, 578–589.

http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml
https://pdfs.semanticscholar.org/1a98/7c4fe65fa347a863dece665955ee7e01791b.pdf
https://pdfs.semanticscholar.org/1a98/7c4fe65fa347a863dece665955ee7e01791b.pdf
http://dsp.rice.edu/cscamera
https://doi.org/10.1016/j.jss.2012.11.005

[54] Zhen Ling, Junzhou Luo, Wei Yu, Xinwen Fu, Dong Xuan, and Weijia Jia. 2012.

A new cell-counting-based attack against Tor. IEEE/ACM Transactions on Net-
working (TON) 20, 4 (2012), 1245–1261.

[55] Nikolas List and Hans Ulrich Simon. 2009. SVM-optimization and steepest-

descent line search. In Proceedings of the 22nd Annual Conference on Computational
Learning Theory.

[56] Liming Lu, Ee-Chien Chang, and Mun Choon Chan. 2010. Website fingerprinting

and identification using ordered feature sequences. In European Symposium on
Research in Computer Security. Springer, 199–214.

[57] Florence Jessie MacWilliams and Neil James Alexander Sloane. 1977. The theory
of error-correcting codes. Elsevier.

[58] Mehdi Malboubi, Cuong Vu, Chen-Nee Chuah, and Puneet Sharma. 2013. Com-

pressive sensing network inference with multiple-description fusion estimation.

In Global Communications Conference (GLOBECOM), 2013 IEEE. IEEE, 1557–1563.
[59] Jiří Matoušek. 2008. On variants of the Johnson–Lindenstrauss lemma. Random

Structures & Algorithms 33, 2 (2008), 142–156.
[60] Steven J Murdoch and George Danezis. 2005. Low-cost traffic analysis of Tor. In

2005 IEEE Symposium on Security and Privacy. IEEE, 183–195.
[61] A Nir and Edo Liberty. 2009. Fast dimension reduction using Rademacher series

on dual BCH codes. Discrete Computational Geometry 42, 4 (2009), 615.

[62] Andriy Panchenko, Fabian Lanze, Andreas Zinnen,Martin Henze, Jan Pennekamp,

Klaus Wehrle, and Thomas Engel. 2016. Website Fingerprinting at Internet Scale.

In NDSS.
[63] H Vincent Poor. 2013. An introduction to signal detection and estimation. Springer

Science & Business Media.

[64] Young June Pyun, Young Hee Park, Xinyuan Wang, Douglas S Reeves, and Peng

Ning. 2007. Tracing traffic through intermediate hosts that repacketize flows. In

INFOCOM. IEEE, 634–642.

[65] Daniel Ramsbrock, Xinyuan Wang, and Xuxian Jiang. 2008. A first step towards

live botmaster traceback. In Recent Advances in Intrusion Detection. Springer,
59–77.

[66] Holger Rauhut. 2010. Compressive sensing and structured random matrices.

Theoretical foundations and numerical methods for sparse recovery 9 (2010), 1–92.

[67] Michael K Reiter and Aviel D Rubin. 1998. Crowds: Anonymity for web transac-

tions. ACM Transactions on Information and System Security (TISSEC) 1, 1 (1998),
66–92.

[68] Marc Rennhard and Bernhard Plattner. 2002. Introducing MorphMix: peer-to-

peer based anonymous Internet usage with collusion detection. In Proceedings of
the 2002 ACM workshop on Privacy in the Electronic Society. ACM, 91–102.

[69] David Schneider. 2013. New camera chip captures only what it needs. IEEE
spectrum 3, 50 (2013), 13–14.

[70] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2017. Beauty and the Burst:

Remote Identification of Encrypted Video Streams. In USENIX Security.
[71] Gregory Shakhnarovich, Piotr Indyk, and Trevor Darrell. 2006. Nearest-neighbor

methods in learning and vision: theory and practice.
[72] Vitaly Shmatikov and Ming-Hsiu Wang. 2006. Timing analysis in low-latency

mix networks: Attacks and defenses. In European Symposium on Research in
Computer Security. Springer, 18–33.

[73] Stuart Staniford-Chen and L Todd Heberlein. 1995. Holding intruders accountable

on the Internet. In Security and Privacy, 1995. Proceedings., 1995 IEEE Symposium
on. IEEE, 39–49.

[74] D Takhar, V Bansal, M Wakin, M Duarte, D Baron, KF Kelly, and RG Baraniuk.

2006. A compressed sensing camera: New theory and an implementation using

digital micromirrors. Proc. Computational Imaging IV at SPIE Electronic Imaging,
San Jose (2006).

[75] Yaakov Tsaig and David L Donoho. 2006. Extensions of compressed sensing.

Signal processing 86, 3 (2006), 549–571.

[76] Liang Wang, Kevin P. Dyer, Aditya Akella, Thomas Ristenpart, and Thomas

Shrimpton. 2015. Seeing Through Network-Protocol Obfuscation. In ACM CCS.
[77] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.

Effective attacks and provable defenses for website fingerprinting. In USENIX
Security. 143–157.

[78] Tao Wang and Ian Goldberg. 2013. Improved website fingerprinting on tor. In

Proceedings of the 12th ACM workshop on Workshop on privacy in the electronic
society. ACM, 201–212.

[79] Xinyuan Wang, S. Chen, and S. Jajodia. 2005. Tracking Anonymous Peer-to-peer

VoIP Calls on the Internet. In CCS.
[80] Xinyuan Wang, Shiping Chen, and Sushil Jajodia. 2007. Network flow water-

marking attack on low-latency anonymous communication systems. In IEEE S&P.
IEEE, 116–130.

[81] Xinyuan Wang and Douglas S Reeves. 2003. Robust Correlation of Encrypted

Attack Traffic Through Stepping Stones by Manipulation of Interpacket Delays.

In CCS.
[82] Xinyuan Wang, Douglas S Reeves, and S Felix Wu. 2002. Inter-packet delay

based correlation for tracing encrypted connections through stepping stones. In

ESORICS. Springer, 244–263.
[83] Yair Weiss, Hyun Sung Chang, and William T Freeman. 2007. Learning com-

pressed sensing. In Snowbird Learning Workshop, Allerton, CA.

[84] Andrew M White, Austin R Matthews, Kevin Z Snow, and Fabian Monrose. 2011.

Phonotactic reconstruction of encrypted VoIP conversations: Hookt on fon-iks.

In IEEE S&P. 3–18.
[85] Charles V Wright, Lucas Ballard, Scott E Coull, Fabian Monrose, and Gerald M

Masson. 2008. Spot me if you can: Uncovering spoken phrases in encrypted VoIP

conversations. In IEEE S&P. IEEE, 35–49.
[86] Charles V Wright, Lucas Ballard, Fabian Monrose, and Gerald M Masson. 2007.

Language identification of encrypted VoIP traffic: Alejandra y Roberto or Alice

and Bob?. In USENIX Security.
[87] Allen Y Yang, Zihan Zhou, Yi Ma, and Shankar Sastry. 2010. Towards a robust

face recognition system using compressive sensing. In INTERSPEECH, Vol. 2010.
Citeseer, 11th.

[88] Kunikazu Yoda and Hiroaki Etoh. 2000. Finding a connection chain for tracing

intruders. In ESORICS. Springer, 191–205.
[89] Wei Yu, Xinwen Fu, Steve Graham, Dong Xuan, and Wei Zhao. 2007. DSSS-based

flow marking technique for invisible traceback. In IEEE S&P. IEEE, 18–32.
[90] Yin Zhang and Vern Paxson. 2000. Detecting Stepping Stones. In USENIX Security,

Vol. 171. 184.

[91] Yin Zhang, Matthew Roughan, Walter Willinger, and Lili Qiu. 2009. Spatio-

temporal compressive sensing and internet traffic matrices. In ACM SIGCOMM
Computer Communication Review, Vol. 39. ACM, 267–278.

[92] Ye Zhu and Riccardo Bettati. Unmixing Mix Traffic. In PETS. 110–127.

A RECOVERING COMPRESSED FEATURES
As discussed in Section 3.2, compressive traffic analysis does not

need to recover compressed traffic features for correlation, and can

directly perform correlation on the compressed features. This is

thanks to the RIP property of the utilized linear projection algo-

rithms (as discussed in Section 3.2), which preserves the Euclidean

distance of traffic features vectors after compression. One can per-

form traffic analysis on the reconstructed traffic features as well,

i.e., after decompressing. However, since the reconstruction process

can be lossy, this will not only increase the computation overhead

due to running reconstruction algorithms (which involve solving

optimization problems), but also degrade the accuracy of traffic

analysis as we confirm through experimentation.

We implement code to reconstruct compressed traffic features,

i.e., by solving (2). We particularly, used the CVXOPT
4
optimiza-

tion tools to solve the involved optimization problem and recover

compressed traffic features. Figure 21 compares the performance

4
http://cvxopt.org/

0.90

0.92

0.94

0.96

0.98

1.00

Recovered vector TP
Compressed vector TP

0.00 0.01 0.02 0.03 0.04
jitter std(s)

0.00

0.02

0.04

0.06

0.08

0.10
Recovered vector FP
Compressed vector FP

Figure 21: Performance of compressive traffic analysis with
and without recovery.

http://cvxopt.org/

of our cosine-based compressive algorithm with and without re-

constructing compressed features. As can be seen, constructing

features before correlation slightly drops the performance of cor-

relation (due to the noise in recovery) in addition to making the
correlation process much slower (due to so solving the optimization

problem).

	Abstract
	1 Introduction
	2 Background: Traffic Analysis
	3 Overview of the Core Ideas
	3.1 Compressed Sensing
	3.2 Introducing Compressive Traffic Analysis
	3.3 Candidate Linear Projection Algorithms
	3.4 Related Approaches

	4 Compressive Flow correlation
	4.1 Overall Architecture
	4.2 IPDs Compression Algorithm
	4.3 Optimal Cross-Correlation Algorithm
	4.4 Practical Cross-Correlation Algorithm
	4.5 Fast Data Structure
	4.6 Scalability Improvements

	5 Experiments: Compressive Flow Correlation
	5.1 Experimental Setup and Metrics
	5.2 Generating the Sensing Matrix
	5.3 Cosine Similarity vs. Optimal Detector
	5.4 Comparing Runtime
	5.5 Impact of Packet Drops
	5.6 Comparison to Other Approaches
	5.7 Experiments on Real Tor Network

	6 Compressive Website Fingerprinting
	6.1 Overall Architecture
	6.2 Improving Scalability

	7 Experiments: Compressive Website Fingerprinting
	7.1 Experimental Setup and Metrics
	7.2 Generating the Sensing Matrix
	7.3 Compressive k-NN
	7.4 Compressive SVM
	7.5 Significance of the Scalability Improvements

	8 Conclusions
	References
	A Recovering Compressed Features

