The Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)

Improving Private Random Forest Prediction Using Matrix Representation

Arisa Tajima', Joie Wu?, Amir Houmansadr'

"University of Massachusetts Amherst
’Independent Researcher
atajima@cs.umass.edu, joie.y.wu@gmail.com, amir @cs.umass.edu

Abstract

We introduce a novel matrix representation for differentially
private training and prediction methods tailored to random
forest classifiers. Our approach involves representing each
root-to-leaf decision path in all trees as a row vector in a ma-
trix. Similarly, inference queries are represented as a matrix.
This representation enables us to collectively analyze privacy
across multiple trees and inference queries, resulting in opti-
mal DP noise allocation under the Laplace Mechanism. Our
experimental results show significant accuracy improvements
of up to 40% compared to state-of-the-art methods.

Introduction

Recent advances in machine learning services empower
users to make inference queries using deployed models
through black-box APIs. However, the outcomes of these
predictions raise concerns about potential information dis-
closure regarding the training data, making them vulnerable
to attacks like membership inference attacks (Shokri et al.
2017; Hu et al. 2022). To address this, differential privacy
(DP) (Dwork and Lei 2009) has emerged as a promising so-
lution, aiming to mitigate the risk of model predictions re-
vealing sensitive information.

Two primary DP-based approaches exist for private pre-
diction: DP training and DP prediction (Ponomareva et al.
2023). DP training (Chaudhuri, Monteleoni, and Sarwate
2011; Jayaraman and Evans 2019; Abadi et al. 2016;
Fletcher and Islam 2019) integrates DP noise into model
parameters, ensuring that predictions from privately trained
models do not reveal information about the underlying train-
ing data. By contrast, DP prediction (Dwork and Feldman
2018; Nissim, Raskhodnikova, and Smith 2007; Bassily,
Thakkar, and Guha Thakurta 2018) introduces perturbations
to the predictions of non-private models. Unfortunately, de-
spite the widespread adoption of DP in machine learning, a
significant utility-privacy gap persists between DP-enabled
machine learning and its non-private counterparts.
DP-enabled Random Forests: In this paper, we focus on
random forest classifiers—a versatile machine learning al-
gorithm known for its strong performance with tabular data
like demographic surveys and medical records. We address
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the challenge of private prediction through both DP training
and prediction approaches while maintaining high accuracy.

DP random forest classifiers have been extensively stud-
ied. Past approaches primarily differ in their use of base
tree algorithms and node splitting functions to balance pri-
vacy budget usage and accuracy (Patil and Singh 2014; Ja-
gannathan, Pillaipakkamnatt, and Wright 2009; Fletcher and
Islam 2017, 2019; Hou et al. 2019). Regarding the tree-
building process, there are greedy approaches, where op-
timal split points are determined (Hou et al. 2019; Patil
and Singh 2014) and random approaches, where split at-
tributes are chosen randomly to save privacy budget for leaf
nodes (Fletcher and Islam 2017; Jagannathan, Pillaipakkam-
natt, and Wright 2009; Holohan et al. 2019). The latter
method, which we focus on, is known as random decision
trees. It is predominantly adapted in recent works for its con-
sistently strong performance; see the comprehensive survey
by Fletcher et al. (Fletcher and Islam 2019).

While distributing the privacy budget is crucial for DP
random forests, many approaches allocate it equally among
trees (Patil and Singh 2014; Jagannathan, Pillaipakkam-
natt, and Wright 2009; Fletcher and Islam 2017; Hou et al.
2019). However, this per-tree privacy analysis faces chal-
lenges when a large number of trees are used, resulting in
low accuracy despite the ensemble learning principle that
training more trees generally improves performance.

To our knowledge, no prior work has addressed DP
prediction techniques specifically for random forests.
Alternatively, a well-known model-agnostic DP pre-
diction method—the subsample-and-aggregate frame-
work—allocates the privacy budget equally to each
inference query (Dwork and Feldman 2018; Nissim,
Raskhodnikova, and Smith 2007). However, this heuristic
allocation results in poor accuracy when many inference
queries are required (van der Maaten and Hannun 2020).

Main Contributions

Existing methods for DP training and DP prediction add sub-
optimal levels of noise, hampering utility. Our primary con-
tribution lies in addressing the inefficiencies of current meth-
ods by translating random forest training and prediction
into matrix multiplication. This new representation allows
us to optimize solutions for training models and predicting
class labels under DP, introducing finer-grained noise than



the state-of-the-art.

We introduce DP batch training, which allocates the pri-
vacy budget across an ensemble of trees. The key insight
behind our approach is the observation that some leaf val-
ues can be expressed as linear combinations of others. We
optimize budget allocation based on leaf values along de-
cision paths, preserving high accuracy even as the number
of trees learned increases. Our allocation strategy is data-
independent, unlike a recent method that uses weighted pri-
vacy budget allocation for trees, which incurs budget expen-
diture (Li et al. 2022). Thus, our approaches offer privacy-
free hyperparameter tuning, a significant advantage over ex-
isting methods including DP-SGD (Abadi et al. 2016).

Additionally, we introduce DP batch prediction which
takes into account prediction results collectively rather than
isolating individual queries. This technique optimizes DP
noise addition across a set of inference queries for major-
ity voting in an ensemble. Batch privacy analysis closes the
performance gap between DP prediction performance and
DP training due to the former’s limit on inference queries.
Our results show that this approach maintains good accu-
racy, even as the number of inference queries increases.

We validate our methods on real-world datasets, demon-
strating a significant accuracy improvement of up to 40%
compared to existing approaches. When tested on our Car
dataset, both of our DP batch training and DP batch predic-
tion approaches achieve 85% accuracy under a privacy bud-
get of € = 2 when predicting 345 test samples on 128 ran-
dom decision trees, exceeding the accuracy of existing solu-
tions by 30%. Finally, our matrix representation can be ex-
tended to work within the subsample-and-aggregate frame-
work, yielding an improvement of up to 50%. Our code and
technical appendix will be available at: https://github.com/
arisa77/mrf-public.git.

Background
Data and Schema

Schema. Consider a schema consisting of d attributes:
{41, As,..., Aq}. Each attribute A; has a finite domain

®(A;) of size n;. The full domain size is then Hle n;. For
clarity, we assume the first d — 1 attributes represent feature
attributes with domains denoted as X; for i € [d — 1]. Let
X = Hf:_ll X, and n = H?:_ll n;. The last attribute is the
target class attribute, denoted as ) with k variables. We dis-
tinguish & as the d-1 dimensional feature space and ) as the
1-dimensional target space.

Example 1 (Tennis Schema) We use a simplified tennis
dataset with attributes {outlook, windy, play} and domains
D (outlook) {sunny, overcast, rainy}, ®(windy)
{false,true}, and ®(play) = {no,yes}. The features are
‘outlook’ and ’windy’, and the target is 'play’. The feature
domain X contains all tuples from ®(outlook) x ®(windy),
resulting in X = {(sunny, false), (sunny, true), (overcast,
false), (overcast, true), (rainy, false), (rainy, true)}. The tar-
get domain is Y = {no, yes}.

Data Matrix. We have a sensitive training dataset consist-
ing of N individuals, represented as an N x d matrix X.
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Each row X is an individual record and X; ; € ®(A;) is
the value of attribute A;. We often represent this dataset X
as a 2-way contingency table of feature variables X by tar-
get variables ), denoted as a matrix Dx &€ R™%k We may
drop the subscript X and write D if the context is clear.
This matrix captures the frequency of every possible tuple
(z,y) € X x Y in X. Although the frequency represen-
tation is favored for mathematical convenience, our imple-
mentation uses the record-by-record format for efficiency.

Example 2 (Tennis Dataset) Consider the tennis dataset
with six samples shown in Figure la. The corresponding 6
by 2 frequency matrix D is illustrated in Figure Ic. For in-
stance, D11 = 1 indicates a single sample with features
(sunny, false) and a target class of no.

Differential Privacy

Differential privacy (DP) (Dwork, Roth et al. 2014) is the de-
facto standard for data privacy, formally defined as follows.

Definition 1 (Differential Privacy) A randomized mecha-
nism M satisfies e-DP if for any two neighboring datasets
X, X' € D and for any subset of outputs S C Range(M)
it holds that: Pr(M(X) € §] < e Pr[M(X’) € S].

DP offers valuable properties such as the post-processing
and composition theorem (Dwork, Roth et al. 2014), which
we utilize in this work. Following the literature on DP ran-
dom forests, we focus on employing the Laplace mecha-
nism (Fletcher and Islam 2019; Holohan et al. 2019).

Matrix Mechanism. Matrix Mechanism (Li et al. 2015) is
a variant of the Laplace mechanism designed for answering
input queries defined by matrix W by using a set of un-
derlying queries A such that there exists some X for which
W = XA. A isreferred to as the strategy matrix. The naive
case where A = W corresponds to the vectorized Laplace
mechanism. Heuristics for choosing the best strategy matrix
have been widely studied (Xiao, Gardner, and Xiong 2012;
Xiao, Wang, and Gehrke 2010).

Definition 2 (Matrix Mechanism) Given | by n data-
independent query matrix W, m by n data-independent
strategy matrix A (possibly induced by W ), and n by k data
matrix D x, the following Matrix Mechanism satisfies e€-DP.
Ma(W,Dx) = WDx + WA Lap(||A|]1/e)™**.

The sensitivity of a query matrix is defined as its L1 norm
[|A||1. AT denotes the pseudoinverse of A. The original
work utilizes a data vector instead of a data matrix, although
both expressions are essentially interchangeable. The mean-
squared error of query answers to W under the strategy ma-
trix A is given as follows, independent of the actual data
input. || - || p denotes the Frobenius norm.

Definition 3 (Error of strategy query answering)

Given query matrix W, strategy matrix A, the total
mean squared error of Matrix Mechanism is given as:
Err (W, A) = 2/€%||A|[f[[ WAT[]3.

The state-of-the-art minimizes this error through parame-
terized optimization, identifying a (p 4+ n) X n strategy ma-
trix A by finding a p X n parameter matrix (McKenna et al.
2018). We treat the optimization routine as a black box, de-
noted as A < OPT,(W), where p is a hyperparameter.
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Figure 1: Matrix multiplication for computing leaf values for training (c) and weighted voting for prediction (d) in random
decision trees. The matrices D, T, and Q correspond to the training data (a), tree decision paths (b), and test samples (d).

Random Decision Trees

Random decision tree models were initially proposed as ef-
ficient classifiers for large databases in non-private settings
(Fan et al. 2003; Geurts, Ernst, and Wehenkel 2006). They
have since become a dominant algorithm for state-of-the-art
DP random forests due to their data-independent tree con-
struction (Jagannathan, Pillaipakkamnatt, and Wright 2009;
Holohan et al. 2019; Fletcher and Islam 2017). Unlike tra-
ditional decision trees such as ID3 and CART, random de-
cision trees are constructed by randomly selecting test at-
tributes for nodes. Because this attribute selection occurs be-
fore examining any training data, there is no need to allocate
a privacy budget for finding optimal split points.

Base Classifiers. We consider 7 random decision trees
each with depth h, denoted as F' = {T7,...,T,}. We may
denote Fs as those built over a specific feature subset .S.
We may build ¢ ensembles of such random decision trees,
each associated with a random feature subset, denoted as
F = {Fs, }%_,. The tree structure, including random feature
selection, is pre-computed using schema information alone.
Training data X is then used to calculate class count distri-
butions at all leaves. Each tree is fitted on the same training
dataset unless stated otherwise. We provide the full algo-
rithm of random decision trees in the technical appendix.
During prediction, the trained random decision trees F' take
asample s € X and output a predicted label y € ), denoted
as y < F'(s). Each tree casts a vote, and the label with the
most votes is chosen as the final prediction.

Private Prediction and Problem Statement. Given b in-
ference queries Q € X, our goal is to release prediction
results y < F(Q) (abusing the notation above) under DP

to limit information leakage about the training data X from
the predictions. We will introduce formulations for both DP
training and DP prediction. DP training is achieved by mak-
ing the random forest ' DP. Thus, the subsequent prediction
algorithm maintains privacy due to the post-processing theo-
rem. DP prediction, on the other hand, is achieved by adding
DP noise to the predictions of the non-DP random forest F'.

Matrix Random Forests

We introduce a novel approach to representing random for-
est training and prediction using matrices, which we call
Matrix Random Forest (M-RF). This approach is essential
in generating the optimal amount of DP noise, as we will
detail later.

Inference Query Matrix

A sample s € X is represented as an indicator vector q of
length n over X', where the cell at the corresponding tuple is
set to 1. Otherwise, it is set to 0. Thus, a set of b inference
queries {s1, ..., s} € X canbe expressed as a bxn matrix
Q = (qf,...,q]). In contrast to the data matrix D, the
inference query matrix Q is not treated as sensitive.

Example 3 (Inference Query) Figure 1d shows three unla-
beled samples and the corresponding 3 X 6 inference query
matrix Q. For instance, the first row of Q encodes the tuple
(sunny, true) from the dataset.

Decision Path Query Matrix for Training

We introduce the decision path matrix that encodes every
root-to-leaf decision path in random decision trees. Each de-
cision path represents a predicate P(x) over the feature do-
main X. This predicate can be represented as a binary vector
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of length n = |X|, denoted as p, where p; = 1 if the cor-
responding element in & is in the truth set (the set of all
elements in X that make P(x) true); otherwise p; = 0. For
instance, if P(x) stands for “outlook is sunny” in Example
1, the truth set is {(sunny, false), (sunny, true)} and thus the
corresponding predicate results in p = (1,1, 0,0,0,0).

A predicate is used in a counting query to evaluate the
number of instances in the dataset satisfying its correspond-
ing decision path. For a single predicate p, the expression
pD € R* will yield instance counts for each class label.

Thus, a set of o decision paths can be organized into an
o by n matrix where each row corresponds to a predicate,
denoted as T = (p],...,pJ). The matrix encodes the dara-
independent tree structure. The class counts at every leaf
node can be computed as C = TD € R°**. Each C; ;
represents the frequency of data instances that reach the ¢-th
leaf node whose class label is y; € ); see Figure 1c. We
may write Cp to emphasize its dependence on D.

Decision Path Query Matrix for Prediction

For prediction, we construct the decision path matrix for
individual instances. Given the decision path matrix T €
R°*™ and the inference query matrix Q € R®*™ introduced
earlier, their matrix multiplication W = QTT € R?*° pro-
duces the specific decision paths for each sample. Specif-
ically, W; ; = 1 if the i-th sample reaches the j-th leaf
node on the j-th decision path defined by T;; otherwise,
W, ; = 0. Thus, each row vector W; encodes the decision
paths taken by sample ¢ across the random decision trees.

Weight Voting Matrix Operation

We introduce the matrix operations underlying the major-
ity voting process for random decision trees. This method,
which we call weight voting, involves aggregating leaf val-
ues across trees to make predictions. The aggregated votes
represent a weighted count of data points that agree on the
predicted class for each sample.

Given random decision trees, let T denote the decision
path matrix and Cp the leaf value matrix. For an infer-
ence query matrix Q, the weight votes for each target class
are calculated using the matrix product: V. = QTTCp €
R*k. Here V; ; represents the number of training instances
that agree with the class label y; € ) for the i-th infer-
ence query. When C = TD, this operation can be expressed
in terms of D as: V = QTTTD. Here, QTTT represents
weighted queries that aggregate tuples in the feature domain;
see Figure 1f for an example matrix.

DP M-RF Training and Prediction

In this section, we present novel techniques for DP training
and DP prediction of random forests. Our approach lever-
ages the matrix representation formulated in the previous
sections, enabling the derivation of optimal solutions that
significantly improve the accuracy of DP random forests.

DP Batch Training Approach

We present our DP random forest training, referred to as
batch training. This method provides DP leaf values while
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Algorithm 1: DP M-RF Training
Input: Data matrix D, decision path matrix T, privacy bud-
gete.
Output: DP leaf label vector 1
1: A+ OPT(T)
2: C=TD+ TA Lap(||A||1/e)™*F
3: L‘ = argmaxi<; <k C@j, V leaf i.

maintaining high accuracy by optimizing a batch of decision
path queries. The leaf labels are computed from DP leaf val-
ues, ensuring the resultant random forests satisfy DP.

Optimizing Decision Paths Ultilizing our matrix repre-
sentation, leaf values are computed as the matrix product
C = TD, where T represents root-to-leaf paths in random
decision trees. This serves as a query matrix, where each
row vector counts the number of training data instances sat-
isfying the classification rule of the corresponding leaf node.
Many existing DP approaches apply the Laplace mechanism
by adding the Laplace noise to the leaf values with an equal
privacy budget allocation: TD + Lap(7/€)°**, assigning
each tree a budget of 7/¢. However, this method can lead to
suboptimal accuracy if decision paths in one tree are linearly
dependent on those in others, wasting the privacy budget.
To address this, we optimize leaf-level counts by finding
an optimal strategy A < OPT(T). By specifying the de-
cision path query matrix T into the optimization procedure
OPT, we derive an alternative strategy matrix A € R™*"
that minimizes the error in estimating class counts at leaf
nodes, i.e., Err(T, A). Under this strategy, e-DP leaf values

are estimated as C = TD + TA T Lap(||A||1/e)™*F.

DP Matrix Random Forest Training Algorithm 1
presents our approach for training DP random forests. The
decision path matrix T is precomputed by building random
decision trees. With the data matrix D and the decision path
matrix T, we estimate leaf values under DP, following our
above optimization approach. The resulting DP leaf values
have the following error, a direct implication from Definition
3. Finally, the most frequent class is assigned as the label for
each leaf node based on the noisy leaf values.

Theorem 4 Leaf values C resulting from Algorithm 1 have
MSE of Err (T, A).

Theorem 5 Algorithm 1 satisfies e-DP.

The strategy matrix selection in Line 1 incurs no privacy loss
since it only depends on the data-independent decision path
matrix T. The computation on leaf values in Line 2 satis-
fies e-DP, following the privacy of the Matrix Mechanism.
Finally, from the post-processing theorem, the computation
of leaf labels in Line 3 does not degrade privacy.

DP Batch Prediction Approach

We introduce our DP random forest prediction approach, re-
ferred to as: batch prediction. Our approach predicts labels
for given inference queries under DP while maintaining high
accuracy. Unlike DP batch training, which optimizes leaf



Algorithm 2: DP M-RF Prediction
Input: Data matrix D, decision path matrix T, inference
query matrix Q, privacy budget e.
Output: DP predicted label vector y
1: A+~ OPT(QT™T)
2: V=QTTTD + QTTTA+Lap(||A]|1/e)"**
3: y; = arg maxi<;j<k \71-1]-, V inference query <.

values for classifiers, DP batch prediction focuses on opti-
mizing prediction results for specified inference queries.

Optimizing Decision Paths for Prediction The random
forest prediction problem using weight voting can be ex-
pressed as the matrix product: V. = QTTTD, where Q
denotes the inference query matrix, and T represents deci-
sion paths in the trees. We consider QTTT as a query matrix
where each vector aggregates instance counts (i.e., weighted
votes) at predicted leaf nodes across all trees for the corre-
sponding inference query. Using the optimization procedure
OPT, we find a m x n strategy matrix A + OPT(W),
where W = QTTT, that minimizes the error of answer-
ing votes for inference queries, i.e., Err(W, A). Under this

strategy, e-DP vote counts are estimated as: V = WD +
WA Lap(||A||1/e)™*F.

DP Matrix Random Forest Prediction Algorithm 2
shows our DP prediction approach for random forests. Given
non-private random decision trees, the resulting tree struc-
ture are encoded into a decision path matrix T'. Training data
and inference queries are similarly transformed into matri-
ces D and Q. We then estimate votes tallied across the for-
est for every inference query under DP, following the above
optimization approach. The resulting DP vote counts have
the following error, a direct implication from Definition 3.
Lastly, class labels with the majority noisy votes are returned
as the final prediction results.

Theorem 6 The vote counts V in Algorithm 2 have MSE of
Err.(QTTT, A).

Theorem 7 Algorithm 2 satisfies e-DP. Similar to the pri-
vacy proof of Theorem 5, the privacy of Algorithm 2 primar-
ily follows from the privacy of the Matrix Mechanism.

Optimizing Subsample-and-Aggregate Framework

We enhance the subsample-and-aggregate method (Dwork
and Feldman 2018) using our batch prediction technique.
In this approach, non-private random decision trees are fit-
ted on disjoint training datasets to estimate weighted votes
V = QTT7C under DP. Since C # TD, the above DP batch
prediction is not directly applicable. To address this, our ap-
proach identifies an m x o strategy matrix A <— OPT(QTT)
that minimizes Err.(QTT, A). The DP vote counts are then
computed as V = QTTC + QTTATLap(||A||1/e)™**.
This method ensures query sensitivity remains indepen-
dent of the number of inference queries, unlike the exist-
ing method, which allocates an equal budget among queries,
significantly degrading accuracy with more queries. Further
details appear in the technical appendix.
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Our Full DP M-RF Framework

Our complete framework for private prediction with random
decision trees is shown in Algorithm 3, capturing both DP
batch training and DP batch prediction. The framework in-
volves: 1) building trees, 2) optimizing strategies, 3) fitting
training data, and 4) making predictions, detailed below.

We construct g ensembles of random decision trees,
where each ensemble I} is built over a random feature sub-
set S; of size d. Our method involves performing strat-
egy optimizations within each ensemble over the schema
S;, allowing potentially expensive computations to be per-
formed in parallel across ensembles. The best strategy ma-
trix A is chosen from OPT for generating refined DP
noise. The query matrix W () is instantiated with T() or
Q(T)TT(), depending on batch training or batch predic-
tion, recalling the prior sections. Here, T(9) denotes the de-
cision path matrix associated with ensemble ¢. The optimal-
ity of our approach comes from the theoretical optimality of
the strategy matrix from OPT for a fixed strategy. The de-
rived strategy matrix remains optimal within the constraints
of each individual ensemble.

Private training data is fit on each ensemble forest by up-
dating the leaf values and labels. For DP training, the refined
DP noise is added to leaf values, and the resulting random
decision trees F; are privatized. For DP prediction, the DP
noise is added to the predicted vote counts, with predictions
made on non-DP random decision trees. Finally, prediction
labels are determined collectively across the ¢ ensembles.

Algorithm 3 can capture our improved subsample-and-
aggregate method as well by setting W) = Q(T))T and
fitting disjoint subsets of data on each ensemble forest.

For privacy, following Theorem 5 and 7, each ensemble
algorithm with a privacy budget of ¢/ satisfies €/¢-DP for
batch training and prediction. Thus, from the composition
theorem, Algorithm 3 satisfies e-DP.

Complexity. The primary overhead of DP M-RF in Algo-
rithm 3 comes from the optimization for refining DP noise,
crucial for balancing accuracy and efficiency. This process
is parallelizable across ensembles for efficiency. Assuming
each feature has n values with a total domain size of n?, the
size of W is 0 x n?, b x n?, b x o for DP batch training,
DP batch prediction, and subsample-and-aggregate. Here, o
is the total number of leaves per ensemble and b is the num-
ber of inference queries. Our implementation adopts an im-
plicit matrix representation, effectively reducing the matrix
size to e.g., o X dn for batch training (McKenna et al. 2018).

The optimization cost depends on the chosen strategies,
producing a (p; + n?) x n? matrix A®) with p; = O(n?).
The space and time complexity of noise generation in Line
6 are both O(n?) for DP batch training and prediction; for
subsample-and-aggregate, they are O(o+b) and O((0+b)o),
independent of domain sizes.

Tree building and optimization do not require the actual
training data and can be preprocessed efficiently. Thus, the
overhead for DP training and prediction is negligible. More-
over, matrices Y ") and V() are computed without material-
izing the data matrix D, ensuring efficient space complexity.



Algorithm 3: DP M-RF Framework

Input: features .S, training data X, inference queries @), pri-
vacy budget €, number of ensembles ¢, number of trees
Ti,...,Tq tree depth hq, ..., hy, max feature size d.

Qutput: DP predicted label vector y

1: for every ensemble: =1...¢q do

2: S; < drandom features from S

3:  F; < UTBUILDTREE(S;, h;)

4. W < WORKLOADMATRIX(F}; Q)

5. AW« OPT,, (W®)

6 BO WO (AO)" Lap(q||AD]], /e F
7. F; < UPDATELEAVES(X, F})

8:  if DP Training then

9: Let Y9 be leaf values of F;
10: F; « update F; with leaf values Y + B(*)
11: VO — F(Q)
12:  else if DP Prediction then
13: VO F(Q); V) «— v L B
14:  endif
15: end for

16: §; = argmaxi<i<k )i, \72(31) ,V inference query i

Setting Hyperparameters. Following Theorem 4
and 6, the utility of Algorithm 3 is measured by
Err, /q(W(i), A®). This metric corresponds to errors
in leaf values for DP training and vote counts for DP predic-
tion. The error rates are affected by the matrix W which
is defined by the number of trees 7;, depth h;, and schema
information, including the number of features d. Since this
error metric does not depend on the actual training data, we
can effectively perform privacy-free hyperparameter tuning
without consuming any privacy budget. -

The hyperparameters ¢ (number of ensembles) and d (size
of the feature subspace) involve a trade-off between accu-
racy and efficiency. Smaller feature sets enable more effi-
cient optimizations but might exclude important features, re-
ducing learning capability. Increasing the number of ensem-
bles reduces the privacy budget per ensemble, potentially de-
grading accuracy. For smaller datasets, we recommend using
a single ensemble forest (¢ = 1) with the original feature set
(d = |S|) to maximize accuracy. For larger datasets, d and ¢
should be chosen to balance efficiency and accuracy.

Experiments

We empirically evaluate the performance of our DP training
and prediction techniques for random forests, demonstrating
higher accuracy compared to competing techniques.

Experimental Setup

Datasets. We use six popular classification datasets from
the UCI ML Repository (Kelly, Longjohn, and Nottingham
2023) with feature dimensions ranging from 4 to 128: Car,
Iris, Scale, Adult, Heart, and Mushroom. Certain datasets
with continuous values were preprocessed using public do-
main knowledge, including discretization. The Adult dataset
was already discretized (Chang and Lin 2011).
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Implementation and Competing Techniques. We evalu-
ate Algorithm 3 against various competing techniques. For
consistency, all DP methods use random decision trees. All
implementations are in Python and experiments were con-
ducted on a MacBook Air (M2 chip with 16GB RAM). We
adopt a multi-way tree structure as in ID3. It can be easily
extended to binary trees.

We compare our DP batch training against two widely-
used methods. The first baseline employs the same batch
training but applies the Laplace mechanism, commonly
used in state-of-the-art works (Jagannathan, Pillaipakkam-
natt, and Wright 2009; Maddock et al. 2022). This corre-
sponds to Algorithm 3 with B() = Lap(qr;/e)°** and
g = 1,d = |S|. The second baseline trains each tree on
disjoint datasets using the Laplace mechanism, as seen in
prior works (Holohan et al. 2019; Fletcher and Islam 2017).
For all methods above, we adopt the standard hard vot-
ing for prediction. We do not compare against work that
uses a weaker definition of DP, such as (Rana, Gupta, and
Venkatesh 2015). For DP prediction techniques, we com-
pare our DP batch prediction and subsample-and-aggregate
approach from Algorithm 3 against the existing subsample-
and-aggregate (Dwork and Feldman 2018). Additionally,
we benchmark our techniques against an optimized non-
private random forest algorithm, the Extra-Trees classifier
from scikit-learn to obtain an empirical upper bound on ac-
curacy for private algorithms (Pedregosa et al. 2011). For
runtime comparisons, we evaluate the non-private version
of Algorithm 3 to ensure consistency.

Results

We measure the accuracy and runtime of Algorithm 3 with
at least 5 trials under fixed parameters. Unless explicitly de-
noted, each dataset is split into train and test subsets with a
80:20 ratio. Each ensemble consists of 7/g trees of depth h.

Main Results. Figure 2 shows the test accuracy of our DP
batch training and prediction techniques, varying values of
€. We consider commonly used values of 7 = 64 ~ 128. We
use ¢ = 1,d = d—1 for small to medium-sized datasets like
Car, Iris, and Balance; for larger datasets, multiple ensem-
bles are employed. Our optimized approaches consistently
outperform the baselines, showing a significant accuracy im-
provement of 20-40% for small to medium-sized datasets.
Larger datasets such as Heart, Mushroom, and Adult show a
notable accuracy improvement of 10-20%, particularly with
smaller € values. Our novel matrix representation improves
DP batch training and prediction, enabling the learning of
numerous base classifiers and the prediction of a large num-
ber of test samples, all without sacrificing accuracy.

Increasing the number of trees does not negatively im-
pact the accuracy of DP Batch training. With random
forests, predictive power is supposed to increase with the
number of trees. However, DP batch and disjoint training
with the Laplace mechanism both suffer from tree scaling
issues, making the use of a smaller number of trees opti-
mal. Batch training with the Laplace mechanism employs
equal budget allocation; as the number of trees increases,
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Figure 4: Test accuracy of different subsample-and-
aggregate approaches on the Car dataset with various pri-
vacy loss budget of e when 7 = 16,h = 3,q = 1.

the privacy budget per tree decreases. The same tree scal-
ing issue occurs during disjoint training; as the number of
trees increases, the number of training samples per tree de-
creases. In both cases, the predictive power of a single tree
is inversely proportional to the total number of trees. On the
other hand, our DP batch training method preserves good ac-
curacy as the number of trees increases, reflecting the scaling
principle of ensemble learning; see Figure 3a.

Increasing the number of test samples has minimal im-
pact on the accuracy of DP batch prediction. Figure3b
illustrates the relationship between accuracy and the num-
ber of inference queries for the Car dataset, comparing our
DP batch prediction against the baseline subsample-and-
aggregate. Because of the limited number of samples, we
use the entire Car dataset to train a model and report the
prediction accuracy for 5 to 1000 inference queries. The ex-
isting approach exhibits low accuracy as the number of in-
ference queries increases, reaching 30% accuracy for 100
samples. The per-sample budget allocation leads to an im-
mediate degradation in accuracy. In contrast, with our DP
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Time (sec)
Dataset d Method Opti.  Train. Pred.
DP Train. 2557 12.84 30.09
Adult 124 DPPred. 5858 12.88 29.63
Non-DP N/A 13.20 29.24
DP Train.  0.60 1.05 0.52
Heart 14 DP Pred. 0.79 0.82 0.57
Non-DP N/A 0.72 0.36
DP Train. 1624 1222 10.17
Mushroom 23  DP Pred. 24.68 1197 10.07
Non-DP N/A 13.09 9.82

Table 1: Runtime of different privacy prediction techniques
for datasets with feature dimension d, broken down into
noise optimization, training, and prediction.

batch prediction, accuracy remains at 90% even when pre-
dicting as many as 1000 samples. This effectively addresses
potential challenges that existing DP prediction approaches
face when making predictions on numerous samples.

Applying to the subsample-and-aggregate framework.
We show the generalizability of our techniques by adapting
them to the subsample-and-aggregate framework. Figure 4
shows the test accuracy of our optimized approach compared
to the existing non-optimized version, when performing pre-
diction on 345 examples with the Car dataset. Our technique
improves the accuracy of existing solutions by up to 50%,
with similar improvement in other datasets.

Runtime. Table 1 compares the runtime of Algorithm 3 to
non-private random decision trees with the same hyperpa-
rameters as in Figure 2. The runtime for data-independent
tree building is excluded as it incurs no DP overhead. The
primary overhead comes from optimization, which is cru-
cial for high accuracy. Despite this, our approach maintains
minimal runtime overhead during training and prediction.
Although our DP baselines have similar training and predic-
tion complexities, they lack noise optimization. Our results
show that the DP M-RF algorithm is feasible on commodity
hardware, even with large datasets. The optimization over-
head can be reduced by reducing the number of features per
ensemble, potentially at the expense of some accuracy. Fur-
ther experiments are detailed in the technical appendix.
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