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Abstract. Federated learning (FL) is a distributed machine learning
paradigm that enables training models on decentralized data. The field
of FL security against poisoning attacks is plagued with confusion due to
the proliferation of research that makes different assumptions about the
capabilities of adversaries and the adversary models they operate under.
Our work aims to clarify this confusion by presenting a comprehensive
analysis of the various poisoning attacks and defensive aggregation rules
(AGRs) proposed in the literature, and connecting them under a common
framework. To connect existing adversary models, we present a hybrid
adversary model, which lies in the middle of the spectrum of adversaries,
where the adversary compromises a few clients, trains a generative (e.g.,
DDPM) model with their compromised samples, and generates new syn-
thetic data to solve an optimization for a stronger (e.g., cheaper, more
practical) attack against different robust aggregation rules. By present-
ing the spectrum of FL adversaries, we aim to provide practitioners and
researchers with a clear understanding of the different types of threats
they need to consider when designing FL systems, and identify areas
where further research is needed.

Keywords: Model Poisoning · Federated learning · Denoising Diffusion
Probability Model (DDPM).

1 Introduction

Federated learning (FL) is a machine learning paradigm that enables training
models on decentralized data, such as mobile devices or edge devices. In FL, each
client updates the global model using their local data, and communicate the
updated model to the central server. Finally, the server aggregates the updates
from all clients using an aggregation rule (AGR), creating the next version of
the global model. This approach allows for the training of models on large-scale,
non-iid data without collecting clients’ original data.
Fake or compromised? A fork in the literature! FL is susceptible to
poisoning by malicious clients who aim to hamper the accuracy of the global
model by contributing malicious updates during FL’s training process. Based
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on how the adversary introduces malicious clients in the FL ecosystem, existing
works on FL poisoning can be categorized into two major lines of work: 1)
a small percentage (<1%) of “actual” clients are compromised by an adversary,
e.g., by taking control of some compromised mobile devices; 2) a large percentage
(>10%) of fake clients are created and injected into the FL ecosystem, e.g., by
creating Sybil accounts or using botnets. The “compromised” category [3,16,19]
targets sophisticated, large-scale applications such as Gboard and Siri that have
deployed proper protections against Sybil attacks and botnets. However, these
attacks require compromising actual FL devices, which is costly in practice.

On the other hand, the “fake” category [6, 9, 14] assumes that the adver-
sary can inject large numbers of fake clients, such as spam bots, into the FL
ecosystem. Such (large-scale) fake clients cannot be injected into sophisticated
applications such as Gboard and Siri as thoroughly discussed by [20]; however,
FL applications built on third-party code/software may be vulnerable to such
fake clients.
Introducing a hybrid adversary model. As discussed above, the literature
has only evaluated against two extreme adversary models, i.e., all compromised
and all fake adversarial clients. We make the case for a hybrid adversary model in
which the adversary compromises a very small number of actual users, and then
uses their data to fabricate a large number of fake clients (who are supposed
to be more impactful than oblivious fake clients considered in the literature).
Given the quick and broad adoption of FL in various applications, we believe
that such hybrid adversary model can be representative of a very large fraction
of FL applications in the future.

Under such a hybrid adversary model, we propose a novel model poisoning at-
tack, called hybrid attack, that first leverages the data of compromised clients to
generate more data using state-of-the-art generative models, e.g., the denoising
diffusion probabilistic model (DDPM) [10,17]. The adversary then uses existing
state-of-the-art model poisoning attacks to fabricate poisoned model updates for
its compromised and fake clients (which are sent to the FL server). DDPM is a
generative model that has recently gained attention for its ability to learn the
underlying structure of complex data distributions from limited and noisy obser-
vations. DDPM is based on the idea of diffusion, which is a process of iterative
exchange of information between the data points in order to reveal their under-
lying structure. Specifically, DDPM uses a diffusion process to transform given
input data into a latent representation, which captures the underlying structure
of the data. This latent representation can then be used to generate new samples
that are similar to the original input data.

One key advantage of DDPM is that it is able to learn the structure of the
data distribution from a small number of observations, even in the presence of
noise. This makes it particularly useful for applications where the data is limited
or noisy, such as in the case of compromised clients in federated learning. By
using DDPM to generate new samples from a small number of compromised
clients, an adversary is able to craft a malicious update for FL poisoning that is
representative of the data distribution of the benign clients.
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Empirical evaluations: We provide extensive evaluations of existing attacks as
well as our hybrid attacks under various adversary models obtained by combining
the spectrum of adversaries and defenders discussed above. We experiment with
two datasets, FEMNIST and CIFAR10, in real-world heterogeneous FL settings.
In summary, our key contributions are as follows:
– The literature of FL poisoning has forked into two separate lines of work

that assume two differing adversary models, i.e., fake and compromised, as
introduced earlier. Our work aims to highlight the differences between these
two lines of work by contrasting their application scenarios, assumptions,
and costs.

– We fill the gap between fake and compromised adversary models by in-
troducing a spectrum of adversary models, which we call hybrid. Through
extensive experiments we demonstrate how the hybrid adversary models es-
tablish trade-offs between attack accuracy and attack cost in comparison to
the fake and compromised models.

– We design and evaluate novel FL poisoning attacks that work under the
newly introduced hybrid adversary model. Our attack leverages DDPM to
generate poisoning data for fake clients based on the data collected from a
small number of compromised clients.

2 Types of Byzantine-robust aggregation rules

The existing Byzantine-robust aggregation rules (AGRs) for federated learning
can be categorized into three categories: non-robust AGRs, AGRs agnostic to
poisoning attacks, and AGRs that adapt to or are aware of the poisoning attacks
in FL ecosystem.
Non-robust AGR: Non-robust aggregation rules, such as federated averaging
(FedAvg) [12, 15], do not consider the presence of malicious clients in the fed-
erated learning ecosystem. Therefore, such AGRs simply aggregate the model
updates received from all clients by computing a non-robust function of the up-
dates. While these approaches are generally simpler and easy to implement, they
are vulnerable to model and data poisoning attacks [8, 16,19,20].
Robust AGRs agnostic to FL poisoning: Robust AGRs, such as Me-
dian [22] and Norm-Bounding [21], are robust in that they aim to reduce the
impact of malicious clients’ updates. But, they are agnostic in that they do not
have any knowledge of the specifics of the attacks, e.g., they do not know the
number of malicious updates in each round. These rules use techniques from
robust statistics, such as outlier removal or clipping the norms of updates, to
exclude or mitigate the impact of malicious updates during the aggregation pro-
cess.

Norm-Bounding AGR [21] bounds the L2 norm of all submitted client up-
dates to a fixed threshold τ , with the intuition that the effective poisoned up-
dates should have high norms. For a threshold τ and an update ▽, if the norm,
||▽||2 > τ , ▽ is scaled by τ

||▽||2 , otherwise, the update is not changed. The final
aggregate is an average of all the updates, scaled or otherwise.



4 H. Mozaffari et al.

Robust AGRs that adapt to FL poisoning: Adaptive aggregation rules
have the advantage of knowing the number of malicious updates in each round for
aggregation. These rules use this information to adapt their aggregation process
in order to mitigate the impact of malicious updates on the final model.

Blanchard et al. [4] proposed Multi-Krum AGR as a modification to their
own Krum AGR. Multi-Krum selects an update using Krum and adds it to
a selection set, S. Multi-Krum repeats this for the remaining updates (which
remain after removing the update that Krum selects) until S has c updates such
that n − c > 2m + 2, where n is the number of selected clients and m is the
number of compromised clients in a given round. Finally, Multi-Krum averages
the updates in S.

Yin et al. [22] proposed Trimmed-Mean that aggregates each dimension of
input updates separately. It sorts the values of the jth-dimension of all updates.
Then it removes m (i.e., the number of compromised clients) of the largest and
smallest values of that dimension, and computes the average of the rest of the
values as its aggregate for the dimension j.

3 Distinguishing Fake And Compromised Adversary
Models

A poisoning attack is either data or model poisoning attack: in data poisoning,
the adversary can poison only the data on malicious client device, while in model
poisoning, the adversary can directly manipulate/poison the model updates of
the malicious clients. In this work, we focus on model poisoning, as it is strictly
stronger than data poisoning [19, 20]; hence, poisoning in any context refers to
model poisoning, unless stated otherwise.

3.1 Adversary with fake clients

In federated learning (FL) systems, an attacker can inject fake clients in order to
send arbitrary fake local model updates to the cloud server. This type of attack
is more affordable and easier to perform than compromising genuine clients, as
the attacker does not need to bypass anti-malware software or evade anomaly
detection on the clients’ devices. Instead, the attacker can emulate fake clients
using open source projects or free software such as android emulators, which
can be run on a single machine to emulate multiple instances, i.e., multiple FL
clients, significantly reducing the attack cost. Fake clients also offer the advantage
of being fully controlled by the attacker, as Android emulators can grant root
access to the devices. These factors make model poisoning attacks using fake
clients a realistic threat in FL systems.

Cao et al. proposed MPAF [6], a method of attacking FL systems through
the injection of fake clients. In MPAF, the attacker selects a randomly initialized
model as the base model (θ′), whose test accuracy is close to random guessing,
and crafts fake local model updates to force the global model to mimic the base
model. This is done by subtracting the current global model parameters (θt for
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the FL round t) from the base model parameters and scaling the fake local model
updates by a factor λ to amplify their impact. Equation 1 shows the malicious
updates of the fake clients.

θtm∈[M ] = λ(θ′ − θt) (1)

where θm∈[M ] are the malicious model updates for M injected fake clients, and
θ′ is the randomly initialized base model.

To perform MPAF, the attacker must have minimum knowledge of the FL
system, which means that they only have access to the global models received
during training. Despite this limited information, MPAF is able to effectively
manipulate the global model by driving it towards the base model in each FL
round. This is done by calculating fake local model updates (θm∈[M ]), which
are then aggregated by the cloud server along with genuine local model updates
from genuine clients. The attacker can choose a large λ to ensure that the attack
is effective even after aggregation.

In our paper, we refer to this attack as the Fake attack. This attack is charac-
terized by the minimal knowledge and ability required from the adversary who
controls the fake clients. Specifically, the fake attack is the simplest attack of
this kind in FL and represents one end of the spectrum of attacks based on the
impact and cost of the attack.

3.2 Adversary with compromised clients

To evaluate the robustness of various FL algorithms, we use state-of-the-art
model poisoning attacks from [19]. The attack proposes a general FL poisoning
framework and then tailors it to specific FL settings. First, it computes an av-
erage θb,t = favg(θ

t
c∈[C]) of benign updates, θtc∈[C], available to the adversary in

the FL round t. Then it perturbs θb,t in a dynamic, data-dependent malicious
direction ω to calculate the final poisoned update θt,mc∈[C] = θb,t+γω. The attack,
called DYN-OPT, finds the largest γ that successfully circumvents the target
AGR. DYN-OPT is much stronger than its predecessors, because it finds the
largest γ and uses a tailored dataset ω. In the following, we detail the DYN-
OPT attacks against the AGRs from Section 2 that we consider in this work.

FedAVG DYN-OPT attack against FedAVG is quite straightforward and uses
a random direction ω and a very large value γ to compute the poisoned update
θt,mc∈[C].

Mutli-Krum Multi-Krum uses Krum iteratively to construct a selection set S
and computes the average of the updates in the selection set as its aggregate.
Therefore, DYN-OPT aims to maximize the perturbation γω used to compute
the poison update θt,mc∈[C], while ensuring that Multi-Krum selects all its poison
updates in S. Note that this strategy minimizes the number of benign updates
in S and maximizes γω by increasing the poisoning impact of malicious updates
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on the final aggregate. The optimization problem we solve to mount DYN-OPT
on Multi-Krum is given in (2).

argmax
γ

|{θt,mc∈[C] ∈ fmkrum

(
θt,mc∈[C] ∪ θti∈[C+1,n]

)
}| (2)

s.t. θt,mc∈[C] = θb,t + γω

Trimmed-Mean and Median For Trimmed-Mean and Median AGRs, DYN-
OPT solves the optimization given in (3). Following [19], we fix the perturbation
ω and keep all poisoned updates the same. The objective here is to maximize
the L2 norm of the distance between the benign update reference θb,t and the
aggregate, fagr(.), calculated using fagr ∈ {ftrmean, fmedian} on the set of benign
and malicious updates.

argmax
γ

∥θb,t − fagr

(
θt,mc∈[C] ∪ θti∈[C+1,n]

)
∥2 (3)

s.t. θt,mc∈[C] = θb,t + γω

Norm-Bounding We formulate the DYN-OPT attack against AGR bound
to Norm using the original framework proposed in [19]. More specifically, to
circumvent Norm-Bounding, the norm of the poisoned update should be less than
the threshold norm, τ , used by Norm-Bounding AGR. Therefore, to compute
the poison update θt,mc∈[C] using DYN-OPT, we can scale the norm of the original
poison update, θb,t + γω, to τ . The final poisoned update would be θt,mc∈[C] =

Scale(θb,t + γω, τ), where Scale(u, τ) = u · min(1, τ
∥u∥2

).

4 Our proposed hybrid adversary model

1 Compromising a few clients

Server

Global
Model

2 Generate diffusion-generated samples

3 Injecting fake clients with new samples (offline)

Server

Global
Model

Generated
Samples

Diffusion Model

Generated
Samples

4 Crafting malicious updates 

for FL round t (online)

AGR

Fig. 1. Our hybrid attack pipeline.

Compromising real clients in
FL to launch a model poison-
ing attack can be a challeng-
ing task for an attacker. This
is because genuine clients par-
ticipating in FL are typically
owned and controlled by dif-
ferent entities (e.g., individual
users in cross-device FL and
hospitals in cross-silo FL),
and the attacker should get
access to and take control
of these clients in order to
manipulate the updates they
send to the server.

One way an attacker might
try to do this is by using mal-
ware or phishing attacks to
compromise clients. However,
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successfully executing these types of attacks requires a certain level of skill and
resources, and the attacker would need to be able to bypass any security mea-
sures that the clients have in place. Additionally, the cost of compromising a
large number of genuine clients can be high, as the attacker would need to pay
for access to undetected zombie devices or other resources. This may make it in-
feasible for the attacker to compromise a large fraction of genuine clients, which
is typically necessary for a model poisoning attack to be successful.

Another factor that makes it difficult to compromise real clients in FL is the
decentralized nature of the system. In FL, clients are typically distributed across
a wide geographical area and may have different levels of security and defenses
in place. This can make it difficult for the attacker to gain access to and take
control of a large number of clients simultaneously.

In general, the combination of technical challenges and the high cost of com-
promising genuine clients in FL makes it a difficult task for an attacker to launch
a successful model poisoning attack using only compromised clients.

Instead, we propose to use both fake and compromised clients to mount
a hybrid attack. Figure 1 shows the pipeline of our hybrid attack: The hybrid
adversary first compromises a few real clients and then uses their data to generate
synthetic data using a DDPM. Next, the adversary uses these synthetic data to
emulate FL clients and uses the model poisoning attacks (Section 3.2) to craft
strong malicious updates. The injected fake clients and compromised clients
submit the generated malicious update if the server selects them in that FL
round for their local updates.

Note that in Figure 1, Step 1 can be removed if the adversary is able to obtain
(high-quality) data samples that represent the data distribution of typical clients.
For example, if abundant public data is available related to the target FL task,
the adversary can simply use such public data to synthesize the poisoning data
for its fake clients. However, high-quality (i.e., representative) public data is not
always available, especially in proprietary applications.

4.1 Comparing the costs of different adversaries

In this section, we discuss the cost of the three types of attacks discussed above:
fake, hybrid, and compromised. We assume that the cost of compromising a
client is c and the cost of creating a fake client is f ; depending on the scenario, c
and f can vary widely, but generally the cost of a fake client is much lower than
that of a compromised client, that is, f ≪ c. Furthermore, we assume αf fake
clients in the fake attack, βc compromised clients in the compromised attack,
and αh fake and βh compromised clients in the hybrid attack.

If the number of malicious clients in the three attacks is the same, that is,
αf = αh+βc = βc, the cost of each of the attacks is as follows: f ·αf for the fake
attack, f ·αh+c ·βh for the hybrid attack, and c ·βc for the compromised attack.
Next, note that in our hybrid attack, we use very few compromised clients to
launch a very large number of fake clients, i.e., αh ≫ βh, which also implies
that the number of fake clients in our hybrid attack is very close to that in the
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fake attack, i.e., αh ≈ αf . Hence, the order of the cost of the three attacks is:
costf < costh ≪ costc, with costf and costh being very close.

Let us consider a concrete scenario involving IoT devices, e.g., CCTV traf-
fic cameras or WiFi routers. The goal of the adversary is to mount a model
poisoning attack against an IoT application, e.g., predicting traffic at a certain
location. The application stores and uses images from traffic cameras, and trains
a global image classification model using FL. With high probability, these IoT
devices are also part of some botnet, and the cost of owning such zombie de-
vices in a botnet can be as low as 1. However, all IoT devices need not have
the target application, e.g., many CCTV cameras may not have required soft-
ware/hardware updates. For concreteness, consider that 1% of the devices have
the target application. Furthermore, note that, generally, the botnet owners do
not know what all applications are running on the zombie devices.

Therefore, in case the compromised attack requires m malicious clients, where
the zombie IoT devices must have the application, the adversary will have to buy
100m devices to ensure that m of them have the target application and discard
99m devices. However, in the case of our hybrid attack, the adversary just needs
to ensure that m′ ≪ m devices have the application (and, therefore, the required
data) and should buy max(100m′,m) devices. Then they can install the target
application on the m−m′ devices and populate them with synthetic data. In the
case of a fake attack, the adversary simply has to buy m devices. If the cost of
buying a zombie device is c, the costs of compromised, hybrid and fake attacks
are 100mc ≫ 100m′c > mc; the first inequality holds because m ≫ m′.
5 Experimental Setup
5.1 Datasets and hyperparameters

In this work, we conduct experiments on two datasets, CIFAR10 [13] and FEM-
NIST [5, 7], in order to evaluate the performance of different Byzantine robust
aggregation under different adversary models.
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0.1% compromised 0.3% compromised 0.5% compromised

Fig. 2. Number of samples for each label
when the attacker compromised 0.1% (1
client), 0.3% (3 clients), and 0.5% (5 clients)
in our data distribution (fixed through all
the experiments) for learning CIFAR10 dis-
tributed over 1000 clients.

CIFAR10 dataset is a widely used
image classification dataset consisting
of 60,000 32x32 color images in 10
classes, with 6,000 images per class.
There are 50,000 training images and
10,000 test images. For this dataset,
we use VGG9 architecture. For local
training in each FL round, each client
uses 5 epochs. Each client uses SGD
with learning rate of 0.01, momentum
of 0.9, weight decay of 1e-4, and batch
size of 8.
FEMNIST is a character recog-
nition classification task with 3,400
clients, 62 classes (52 for upper and
lower case letters and 10 for digits),
and 671,585 gray-scale images. Each
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client has data of their own handwritten digits or letters. For this dataset, we
use LeNet architecture. For local training in each FL round, each client uses
2 epochs. Each client uses SGD with learning rate of 0.01, momentum of 0.9,
weight decay of 1e-4, and batch size of 10.
Data distribution: Most real-world FL settings have heterogeneous client
data, hence following previous works [11, 18], we distribute CIFAR10 datasets
among 1,000 clients in non-iid fashion using Dirichlet distribution with param-
eter β = 0.5. Note that, increasing β results in more iid datasets. FEMNIST is
naturally distributed non-iid among 3,400 clients.

5.2 Evaluation metric

We run all the experiments for 2000 global rounds of FL for CIFAR10, and 1000
global rounds for FEMNIST, while selecting 25 clients in each round randomly.
At the end of each FL round, we calculate the test accuracy of the global model
on the test data, and update the maximum test accuracy. We run each exper-
iment with 5 different random seeds, and we report the median and standard
deviation of the maximum test accuracies in our experiments.
Attack impact metric (Iθ): We define attack impact, Iθ = Aθ − AM

θ , as
the reduction of the accuracy of the global model when the attack is launched.
(Aθ) denotes the maximum accuracy that the global model achieves overall FL
training rounds without the presence of any malicious clients. AM

θ for an attack
shows the maximum accuracy of the model under a given attack. In our Tables,
we report both the maximum test accuracies and Attack Impacts.
Attack Cost: Analyzing the cost efficiency tradeoffs of different poisoning at-
tacks in federated learning is crucial for understanding the severity and impact
of such attacks. In Section 4.1, we present a cost analysis of various poisoning
attacks across the spectrum of adversary models, ranging from fake to com-
promising attacks. We assume that an adversary can acquire control of zombie
devices in a botnet for $1 per device. Furthermore, we consider that only 1%
of these devices possess the target application with real data. This implies that
out of 100 purchased zombie devices, 99 do not have any real data (suitable for
fake attacks), while one device has access to real data, which can be used for a
compromising attack.

In a compromising attack scenario that necessitates m malicious clients, with
the requirement that the zombie IoT devices have the target application, the
attacker must acquire 100m devices to confirm that m devices possess the target
application while discarding the other 99m devices. On the other hand, in our
proposed hybrid attack, the attacker only needs to make certain that m′ ≪ m
devices contain the application (along with the required data) and purchase
max(100m′,m) devices. They can then install the target application on m−m′

devices and populate them with artificial data. In the case of a fake attack, the
attacker simply needs to obtain m devices.

For instance, if the attacker aims to launch a compromising attack with 100
malicious clients, they would need to purchase 10,000 zombie devices. Assuming
a cost of $1 per control of each device, the total cost amounts to $10,000. In
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contrast, if the attacker desires 100 fake clients, the cost would be $100. If the
attacker wants a hybrid attack with 3 compromised clients possessing real data
and 97 fake clients, the cost would be $300. However, if the attack requires 1
real client and 99 fake clients for a compromising attack, the cost would be $100.
We provide the cost of each attack scenario in each table based on the required
number of malicious clients and the type of attack.

5.3 Generating synthetic data using DDPM

In Section 4, we explained the pipeline of our hybrid attack, which takes control
of a few real clients and generates new synthetic data. In this section, we explain
the details of this process for images of CIFAR10 and FEMNIST. To generate
new samples, we use the following steps (similar to steps provided in Figure 1):

(a) Generated by DDPM
using 0.1% (1 client) com-
promised

(b) Generated by DDPM
using 0.3% (3 clients) com-
promised

(c) Generated by DDPM
using 0.5% (5 clients) com-
promised

Fig. 3. Airplanes generated by DDPM using different percentages of compromised
client’s data in our hybrid attack.

Collecting the data of compromised clients. We collect all the data sam-
ples of 0.1%, 0.3% and 0.5% of first clients in both CIFAR10 and FEMNIST
learning. For CIFAR10, we distribute the data in a non-iid fashion using Dirich-
let distribution with parameter β = 0.5. We saved the data assignment of the
dataset and used this fixed distribution throughout our experiments. For CI-
FAR10, we collect the data samples of the first 1 (0.1%), 3 (0.3%), and 5 (0.5%)
of the clients. Figure 2 shows the number of samples for each label (label 0 repre-
sents airplane images, label 1 represents car images, etc.) for our data collection.
As we can see from this figure, when the attacker has only compromised 0.1%
of clients, it does not have access to any data samples of labels 3, 6, and 9. This
means it cannot produce any new samples for these labels. For compromising
0.3%, the adversary does not have access to any samples from label 9. For FEM-
NIST, we also used the same generated data assignment (produce non-idd), and
we collected the data samples of the first 4 (0.1%), 7 (0.3%), and 11 (0.5%) of
the clients.
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Generating new samples using DDPM We use the code provided in [2] to
generate new samples for the hybrid attacks. This code implemented the denois-
ing diffusion probabilistic model (DDPM) [10] in PyTorch. It is a transcribed
code from the official Tensorflow version [1]. It uses denoising score matching to
estimate the gradient of the data distribution, followed by Langevin sampling
to sample from the true distribution. After collecting the data samples of com-
promised clients, we ran the DDPM on these images for each label separately
to generate new samples. To train the diffusion model, we used a batch size of
8, learning rate of 0.00008, and 250 sampling size. To generate samples for CI-
FAR10, we used 2000 diffusion steps, and for FEMNIST we used 1000 diffusion
steps.

Figure 3 shows some DDPM-generated samples when the adversary has com-
promised 1 (0.1%), 3 (0.3%), and 5 (0.5%) of the clients in learning of CIFAR10
distributed over 1000 clients. Figure 2 shows the number of samples for each la-
bel. From this Figure, we can see the adversary has access to 1, 6, and 10 images
of airplanes by compromising 0.1%, 0.3%, and 0.5% of the clients, respectively.
In Figure 3(a), we can see that the DDPM model memorized the only image it
has, and it just tried to add randomness to it because it has access to only one
image of an airplane. Moreover, in Figure 3(b) and Figure 3(c), we can see that
the model can generate better samples as it has access to more images from the
true distribution.
Data assignment for the injected fake clients. In all the hybrid attacks
experiments, we first create a large dataset of all synthetic images from all the
labels. We create this dataset by generating 5 samples per label multiplied by the
number of injected fake clients. Then we distributed this dataset over the fake
clients in a non-iid fashion using Dirichlet distribution with parameter β = 0.5
for both CIFAR10 and FEMNIST experiments. Next, for launching the model
poisoning attacks provided in Section 3.2, the adversary chooses 25 random
fake clients for its optimization and creates its malicious updates. This process
happens in each FL round based on the global parameters θt.

6 Experiments

In this section, we conduct experiments to evaluate the performance of different
Byzantine robust aggregation rules under different adversaries, using the FEM-
NIST [5, 7] and CIFAR10 [13] datasets. We consider a range of malicious client
percentages, including 5%, 10%, 20%, and 30%, and report the maximum test
accuracy and the impact of various attacks on the global model. For each attack,
we also report attack cost, the number of benign, compromised, and injected fake
clients present in the FL training process.

We consider five different attack scenarios, ranging from injecting fake clients
with no knowledge of the true data distribution to a scenario where the adversary
can compromise benign clients and use their data to craft malicious updates.
Additionally, we propose and evaluate three types of hybrid attacks, where the
adversary first compromises a small number of real clients and then uses their
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(d) FEMNIST + NB τ = 2.0 (No
attack acc=87.49%)
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(e) CIFAR10 + NB τ = 0.5 (No
attack acc=78.86%)
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(f) FEMNIST + NB τ = 0.5 (No
attack acc=86.35%)

Fig. 4. Attack impact (Iθ) of the Norm-Bounding and Median aggregation rules in
the presence of different adversaries. τ shows the ℓ2 threshold value that is used in
Norm-Bounding AGR.

data to generate synthetic samples using a DDPM, followed by injecting fake
clients with the new data samples. We explore the impact of different numbers
of compromised clients in these hybrid attacks, specifically 0.5% (5 clients), 0.3%
(3 clients), and 0.1% (1 client) in CIFAR10 experiments and 0.5% (17 clients),
0.3% (11 clients), and 0.1% (4 clients) in FEMNIST experiments. We rank the
attacks in terms of their impact on the global model accuracy, to better illustrate
the spectrum of attacks.
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It is worth noting that we omit the results of the standard aggregation rule,
FedAvg, as it is known to be vulnerable to even a single malicious client [4] and
can result in the global test accuracy approaching random guessing.

6.1 Attacking agnostic robust AGRs

Median AGR. We present our experimental results using the Median aggre-
gation rule in Figure 4 (a) and (b) for CIFAR10 and FEMNIST experiments,
respectively. Detailed results, including the attack cost, the number of benign,
compromised, and injected fake clients corresponding to each attack, are pro-
vided in Table 3 and Table 4 (in Appendix A).

Our findings indicate that the most potent adversary, who has compromised
real clients, exerts the most significant influence on the global model. For in-
stance, on the CIFAR10 dataset with the Median as the AGR, an attack by
10% (20%) malicious clients reduces the model’s accuracy to 33.10% (10.61%).
This implies that the attacker first compromised 100 (200) clients out of the to-
tal clients participating in FL and launched the attack described in Section 3.2
to craft its malicious update. The costs of these attacks would be $10,000 and
$20,000, respectively, making them quite expensive.

On the other hand, fake clients, who do not have any knowledge about the
benign clients’ data distribution, have the least impact on the global model.
For example, on CIFAR10 with Median as the AGR, an attack launched by
10% (20%) of malicious clients reduces the accuracy of the global model to
49.04% (32.78%). To accomplish this, the adversary must inject 112 (251) fake
clients into the FL training, which incurs costs of $112 and $251, respectively,
considerably cheaper than compromising attacks.

Hybrid attacks, positioned in the middle of the spectrum, reveal that if the
hybrid adversary has access to more data (more compromised clients), they can
inflict more significant damage on the global model’s accuracy. For instance, in
the CIFAR10 dataset with the Median as the AGR, a hybrid attack involving
20% malicious clients, where the adversary has compromised 1, 3, and 5 clients
while generating new instances and injecting 249, 247, and 244 new fake clients,
can reduce the FL model’s accuracy to 13.29%, 11.71%, and 11.49%, respectively.
These attacks cost $250, $300, and $500, respectively, which is very close to the
cost of the fake attacks. Similar observations are made for the FEMNIST dataset
as well.
Norm-Bounding AGR. We report the experimental results of our experiments
when the server applies Norm-Bounding with a threshold τ as the aggregation
rule in Figure 4 (b), (c), (e), and (f) for CIFAR10 and FEMNIST datasets
with two thresholds τ = 0.5 and τ = 2.0. Our results show that the Norm-
Bounding aggregation rule has similar impacts on the global model’s accuracy
as the Median AGR, when faced with different types of attacks. For example,
on CIFAR10 with τ = 0.5, when the adversary controls 10% of clients, the
fake adversary can inject 112 fake clients (with a cost of $112) and reduce the
accuracy to 52.52%; the hybrid attack who compromised 1 client and injected
110 clients (with a cost of $111) reduces the accuracy to 49.46%; the hybrid
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attacker who compromised 3 clients and injected 108 fake clients (with a cost
of $300) reduces the accuracy to 46.22%; the hybrid attacker who compromised
5 clients and injected 106 clients (with a cost of $500) reduces the accuracy to
44.79%; and at the end of the spectrum, a powerful adversary who compromised
100 clients (with a cost of $10,000) can reduce the accuracy to 41.73%.

Larger upper bounds in Norm-Bounding results in more damage to
the global model. In our experiments, we consider two thresholds for Norm-
Bounding τ = 0.5 and τ = 2.0. Our results show that for a larger threshold bound
(τ), the adversary has a larger space to craft its malicious updates and have a
more significant impact on the FL global model. For instance, on FEMNIST, the
compromising adversary with 30% malicious ratio causes the accuracy dropped
by 34.58% when τ = 2.0 while the accuracy drop for the same setting and τ = 0.5
is about 29.92%.

Therefore, with larger norm thresholds for the Norm-Bounding aggregation
rule, the attackers have more impact on the global model. Alternatively, If the
server wants to use a smaller threshold, then the model will result in lower
accuracy when there is no malicious client. For instance, on CIFAR10, with
no malicious clients, Norm-Bounding with threshold τ = 0.5 results in 78.86%
while τ = 2.0 results in 83.68%; 10% compromised clients will result in losing of
37.13% and 73.68% for τ = 0.5 and τ = 2.0 respectively. Therefore, there is a
trade-off for choosing a proper threshold for bounding the local updates based
on the assumption of the number of malicious clients in FL training.
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Fig. 5. Local update norms throughout the
FL training on CIFAR10 with 1000 benign
clients and 112 fake clients (i.e., the adver-
sary controls 10% of total clients). In this
figure, we can see that after FL round 1500,
the malicious updates have a more consid-
erable impact on the aggregation compared
to benign updates because they have larger
updates after norm bounding.

Why can fake clients cause a sig-
nificant attack impact for Norm-
Bounding AGR? Figure 5 shows
the L2 norm of the updates (for ma-
licious and benign updates for 10%
of malicious ratio in fake attack) be-
fore and after bounding the updates
to τ = 0.5 for learning CIFAR10
throughout 2000 FL rounds. From
this figure, we can see that when the
global model starts to converge, the
L2 norm of the local updates from
benign updates becomes smaller than
the threshold. For the updates that
have norms smaller than the thresh-
old, no change will be applied to them.
However, on the other hand, the mali-
cious updates are always greater than
the threshold, so they are scaled down
to have an L2 norm of τ . In this figure,
we can see that after FL round 1500,
the malicious updates have a more
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considerable impact on the aggrega-
tion because they have larger updates.

6.2 Attacking adaptive robust AGRs

In this section, we conduct experiments to evaluate the robustness of adap-
tive Byzantine aggregation rules, specifically Trimmed-Mean [22] and Multi-
Krum [4], against a spectrum of adversaries who control varying percentages of
malicious clients. In adaptive aggregation rules, we assume that the server has
knowledge of the exact number of malicious clients in each FL round.

Table 1. Attack impact (Iθ) and maximum test accuracy (AM
θ ) of the Trimmed-Mean

for training on CIFAR10 distributed over 1000 initial clients in the presence of different
adversaries.

AGR Attack Type Malicious
Rate

Number
of Be-
nign
Clients

Number
of Com-
pro-
mised
Clients

Number
of
Injected
Fake
Clients

Attack
Cost
($)

Accuracy (%) Attack Impact (%)

Trimmed-
Mean
(No
attack
acc =
83.66%)

Fake

5% 1000 0 53 53 59.95 (± 0.617) 23.71 (± 0.617) 5
10% 1000 0 112 112 43.88 (± 0.334) 39.78 (± 0.334) 5
20% 1000 0 251 251 32.49 (± 0.451) 51.17 (± 0.451) 5
30% 1000 0 429 429 25.56 (± 0.238) 58.10 (± 0.238) 5

Hybrid
comp: 0.1%

5% 999 1 52 100 50.19 (± 2.791) 33.47 (± 2.791) 4
10% 999 1 110 111 29.42 (± 1.481) 54.24 (± 1.481) 4
20% 999 1 249 250 20.61 (± 5.277) 63.05 (± 5.277) 4
30% 999 1 428 429 10.00 (± 1.188) 73.66 (± 1.188) 4

Hybrid
comp: 0.3%

5% 997 3 50 300 47.78 (± 0.928) 35.88 (± 0.928) 3
10% 997 3 108 300 28.56 (± 1.071) 55.10 (± 1.071) 3
20% 997 3 247 300 20.50 (± 5.415) 63.16 (± 5.415) 3
30% 997 3 425 428 10.01 (± 0.209) 73.65 (± 0.209) 3

Hybrid
comp: 0.5%

5% 995 5 48 500 41.90 (± 3.438) 41.76 (± 3.438) 1
10% 995 5 106 500 27.89 (± 0.909) 55.77 (± 0.909) 2
20% 995 5 244 500 20.31 (± 5.151) 63.35 (± 5.151) 2
30% 995 5 422 500 10.00 (± 0.180) 73.66 (± 0.180) 2

Comp

5% 950 50 0 5,000 44.25 (± 1.195) 39.41 (± 1.195) 2
10% 900 100 0 10,000 27.33 (± 0.346) 55.83 (± 0.346) 1
20% 800 200 0 20,000 10.00 (± 4.130) 73.66 (± 4.130) 1
30% 700 300 0 30,000 10.00 (± 0.000)) 73.66 (± 0.000) 1

We report the performance of the Trimmed-Mean aggregation rule against
different attacks in Table 1 and Table 5 (in Appendix A) for FL models trained
on the CIFAR10 and FEMNIST datasets, respectively, in the presence of 5%,
10%, 20%, and 30% of malicious clients. Similarly, Table 2 and Table 6 (in
Appendix A) show the attack impacts of different attacks when the server uses
Multi-Krum as the aggregation rule for the CIFAR10 and FEMNIST datasets,
respectively.

Our results indicate that adversaries who can compromise clients and use
their data for attacks have the most significant impact on FL global models.
For instance, on the CIFAR10 dataset, an adversary who has compromised 10%
(20%) of clients, with a cost of $10,000 ($20,000), reduces the accuracy of FL by
55.83% (73.66%) and 49.29% (60.37%) with Trimmed-Mean and Multi-Krum,
respectively. On the other hand, adversaries who can only inject fake clients into
the FL training with no knowledge of the true data distribution have the lowest
impact on global model accuracy. For instance, on the CIFAR10 dataset, an
adversary who can inject 10% (20%) of clients, with a cost of $112 ($251), reduces
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Table 2. Attack impact (Iθ) and maximum test accuracy (AM
θ ) of the Multi-Krum for

training on CIFAR10 distributed over 1000 initial clients in the presence of different
adversaries.

AGR Attack Type Malicious
Rate

Number
of Be-
nign
Clients

Number
of Com-
pro-
mised
Clients

Number
of
Injected
Fake
Clients

Attack
Cost
($)

Accuracy (%) Attack Impact (%)

Multi-
Krum
(No
attack
acc =
83.44%)

Fake

5% 1000 0 53 53 82.70 (± 0.291) 0.74 (± 0.291) 5
10% 1000 0 112 112 82.12 (± 0.227) 1.32 (± 0.227) 5
20% 1000 0 251 251 79.89 (± 0.226) 3.55 (± 0.226) 5
30% 1000 0 429 429 75.29 (± 0.256) 8.15 (± 0.256) 5

Hybrid
comp: 0.1%

5% 999 1 52 100 70.12 (± 0.895) 13.32 (± 0.895) 4
10% 999 1 110 111 48.24 (± 2.371) 35.20 (± 2.371) 4
20% 999 1 249 250 24.71 (± 0.257) 58.73 (± 0.257) 4
30% 999 1 428 429 20.22 (± 0.539) 63.22 (± 0.539) 4

Hybrid
comp: 0.3%

5% 997 3 50 300 62.65 (± 0.725) 20.79 (± 0.725) 3
10% 997 3 108 300 36.70 (± 2.188) 46.74 (± 2.188) 3
20% 997 3 247 300 23.79 (± 1.788) 59.65 (± 1.788) 3
30% 997 3 425 428 19.90 (± 2.234) 63.54 (± 2.234) 3

Hybrid
comp: 0.5%

5% 995 5 48 500 62.47 (± 0.914) 20.97 (± 0.914) 2
10% 995 5 106 500 35.65 (± 0.956) 47.79 (± 0.956) 2
20% 995 5 244 500 23.10 (± 1.433) 60.34 (± 1.433) 2
30% 995 5 422 500 19.86 (± 0.619) 63.58 (± 0.619) 2

Comp

5% 950 50 0 5,000 62.04 (± 1.307) 21.40 (± 1.307) 1
10% 900 100 0 10,000 34.15 (± 0.660) 49.29 (± 0.660) 1
20% 800 200 0 20,000 23.07 (± 0.528) 60.37 (± 0.528) 1
30% 700 300 0 30,000 19.31 (± 0.786) 64.13 (± 0.786) 1

the accuracy of FL by 39.78% (51.17%) and 1.32% (3.55%) with Trimmed-Mean
and Multi-Krum, respectively.

Our experiments also show that the hybrid attack, which compromises only
a few clients and use their data to produce more data samples for the fake
clients, lies in the middle of the spectrum. The more clients are compromised,
the more damage is done to the global accuracy. For instance, on the CIFARA10
training, a hybrid attacker who compromised 1 client, i.e., 0.1% of total clients,
and can inject 110 clients (in total 10% malicious ratio) with a cost of $111, can
reduce the accuracy of the FL model by 54.24% and 35.2% for Trimmed-Mean
and Multi-Krum respectively. While if the hybrid attacker compromised more
clients (5 clients) and injected 106 clients (in total 10% malicious ratio), with
a cost of $500, it can reduce the FL global accuracy by 55.77% and 47.79% for
Trimmed-Mean and Multi-Krum, respectively.

Additionally, we also noticed that the Trimmed-Mean and Norm-Bounding
(with τ = 0.5) are more vulnerable to injected fake clients with no knowledge
about the true distribution of the training datasets. On the other hand, Multi-
Krum can easily detect them and exclude them from aggregation. For instance,
on CIFAR10, 10% of injected fake clients (with $112 attack cost) can reduce
the accuracy of the model by 26.34% and 39.78% with Norm-Bounding and
Trimmed-Mean as the aggregation rule, respectively. On the other hand, Multi-
Krum only loses 1.32% with the presence of this number of injected fake clients.
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7 Conclusions

In conclusion, this work presents a comprehensive study of the poisoning threats
to FL by considering a spectrum of adversaries and robust AGRs. We identify a
hybrid adversary model where an adversary first compromises a few real clients
and use their data to generate more data samples for the fake clients to mount
a large-scale attack. For such a hybrid adversary, we propose a novel hybrid
attack that leverages the denoising diffusion probabilistic model (DDPM) to
generate new samples from a small number of compromised clients. Our experi-
mental results, conducted using FEMNIST and CIFAR10 datasets, demonstrate
the varying impact of different attack configurations on FL systems. Notably,
we find that the hybrid attacks, utilizing a mix of compromised and syntheti-
cally generated fake clients, offer a potent threat vector that balances cost and
impact effectively. These findings highlight significant vulnerabilities in current
FL systems, particularly under adaptive aggregation rules, and underscore the
need for developing more sophisticated defense mechanisms that can anticipate
and mitigate a range of attack modalities.
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Table 3. Attack impact (Iθ) and maximum test accuracy (AM
θ ) of the Median for

training on CIFAR10 distributed over 1000 initial clients in the presence of different
adversaries.

AGR Attack Type Malicious
Rate

Number
of Be-
nign
Clients

Number
of Com-
pro-
mised
Clients

Number
of
Injected
Fake
Clients

Attack
Cost
($)

Accuracy (%) Attack Impact (%)

Median
(No
attack
acc =
76.05%)

Fake

5% 1000 0 53 53 63.94 (± 1.253) 12.11 (± 1.253) 5
10% 1000 0 112 112 49.04 (± 0.649) 27.01 (± 0.649) 5
20% 1000 0 251 251 32.78 (± 0.699) 43.27 (± 0.699) 5
30% 1000 0 429 429 25.41 (± 4.937) 50.64 (± 4.937) 5

Hybrid
comp: 0.1%

5% 999 1 52 100 49.08 (± 1.131) 26.97 (± 1.131) 4
10% 999 1 110 111 33.53 (± 0.902) 42.52 (± 0.902) 3
20% 999 1 249 250 13.29 (± 6.026) 62.76 (± 6.026) 4
30% 999 1 428 429 10.03 (± 0.536) 66.02 (± 0.536) 4

Hybrid
comp: 0.3%

5% 997 3 50 300 48.85 (± 1.258) 27.20 (± 1.258) 3
10% 997 3 108 300 34.36 (± 0.892) 41.69 (± 0.892) 4
20% 997 3 247 300 11.71 (± 5.848) 64.34 (± 5.848) 3
30% 997 3 425 428 10.00 (± 0.000) 66.05 (± 0.000) 3

Hybrid
comp: 0.5%

5% 995 5 48 500 48.65 (± 1.654) 27.40 (± 1.654) 2
10% 995 5 106 500 33.48 (± 1.337) 42.57 (± 1.337) 2
20% 995 5 244 500 11.49 (± 5.820) 64.56 (± 5.820) 2
30% 995 5 422 500 10.00 (± 0.000) 66.05 (± 0.000) 2

Comp

5% 950 50 0 5,000 48.01 (± 0.598) 28.04 (± 0.598) 1
10% 900 100 0 10,000 33.10 (± 1.166) 42.95 (± 1.166) 1
20% 800 200 0 20,000 10.61 (± 1.669) 65.44 (± 1.669) 1
30% 700 300 0 30,000 10.00 (± 0.000) 66.05 (± 0.000) 1

Table 4. Attack impact (Iθ) and maximum test accuracy (AM
θ ) of the Median for

training on FEMNIST distributed over 3400 initial clients in the presence of different
adversaries.

AGR Attack Type Malicious
Rate

Number
of Be-
nign
Clients

Number
of Com-
pro-
mised
Clients

Number
of
Injected
Fake
Clients

Attack
Cost
($)

Accuracy (%) Attack Impact (%)

Median
(No
attack
acc =
84.29%)

Fake

5% 3400 0 179 179 83.29 (± 0.146) 1.00 (± 0.146) 5
10% 3400 0 378 378 81.81 (± 0.109) 2.48 (± 0.109) 5
20% 3400 0 850 850 78.48 (± 0.223) 5.81 (± 0.223) 5
30% 3400 0 1458 1,458 74.44 (± 0.574) 9.85 (± 0.574) 5

Hybrid
comp: 0.1%

5% 3396 4 175 400 82.13 (± 0.126) 2.16 (± 0.126) 4
10% 3396 4 374 400 79.57 (± 0.275) 4.72 (± 0.275) 4
20% 3396 4 845 849 73.61 (± 0.756) 10.68 (± 0.756) 4
30% 3396 4 1452 1,456 62.51 (± 4.007) 21.78 (± 4.007) 4

Hybrid
comp: 0.3%

5% 3389 11 168 1,100 82.09 (± 0.335) 2.20 (± 0.335) 3
10% 3389 11 366 1,100 79.20 (± 0.194) 5.09 (± 0.194) 3
20% 3389 11 837 1,100 73.36 (± 0.989) 10.93 (± 0.989) 3
30% 3389 11 1442 1,453 58.27 (± 6.189) 26.02 (± 6.189) 3

Hybrid
comp: 0.5%

5% 3383 17 162 1,700 82.04 (± 0.310) 2.25 (± 0.310) 2
10% 3383 17 359 1,700 79.02 (± 0.326) 5.27 (± 0.326) 2
20% 3383 17 829 1,700 73.12 (± 0.333) 11.17 (± 0.333) 2
30% 3383 17 1433 1,700 56.33 (± 3.858) 27.96 (± 3.858) 2

Comp

5% 3230 170 0 17,000 81.88 (± 0.247) 2.41 (± 0.247) 1
10% 3060 340 0 34,000 78.26 (± 0.214) 6.03 (± 0.214) 1
20% 2720 680 0 68,000 69.93 (± 0.481) 14.36 (± 0.481) 1
30% 2380 1020 0 102,000 52.27 (± 1.458) 32.02 (± 1.458) 1
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Table 5. Attack impact (Iθ) and maximum test accuracy (AM
θ ) of the Trimmed-Mean

for training on FEMNIST distributed over 3400 initial clients in the presence of different
adversaries.

AGR Attack Type Malicious
Rate

Number
of Be-
nign
Clients

Number
of Com-
pro-
mised
Clients

Number
of
Injected
Fake
Clients

Attack
Cost
($)

Accuracy (%) Attack Impact (%)

Trimmed-
Mean
(No
attack
acc =
87.52%)

Fake

5% 3400 0 179 179 84.90 (± 0.108) 2.62 (± 0.108) 5
10% 3400 0 378 378 82.64 (± 0.135) 4.88 (± 0.135) 5
20% 3400 0 850 850 78.04 (± 0.198) 9.48 (± 0.198) 5
30% 3400 0 1458 1,458 73.11 (± 0.384) 14.41 (± 0.384) 5

Hybrid
comp: 0.1%

5% 3396 4 175 400 84.04 (± 0.223) 3.48 (± 0.223) 4
10% 3396 4 374 400 80.44 (± 0.672) 7.08 (± 0.672) 4
20% 3396 4 845 849 72.09 (± 1.114) 15.43 (± 1.114) 4
30% 3396 4 1452 1,456 58.28 (± 0.699) 29.24 (± 0.699) 4

Hybrid
comp: 0.3%

5% 3389 11 168 1,100 83.95 (± 0.151) 3.57 (± 0.151) 3
10% 3389 11 366 1,100 79.38 (± 0.313) 8.14 (± 0.313) 2
20% 3389 11 837 1,100 70.48 (± 0.815) 17.07 (± 0.815) 3
30% 3389 11 1442 1,453 57.15 (± 1.953) 30.37 (± 1.953) 3

Hybrid
comp: 0.5%

5% 3383 17 162 1,700 83.73 (± 0.248) 3.79 (± 0.248) 2
10% 3383 17 359 1,700 79.75 (± 0.659) 7.77 (± 0.659) 3
20% 3383 17 829 1,700 70.33 (± 2.009) 17.19 (± 2.009) 2
30% 3383 17 1433 1,700 54.20 (± 2.420) 33.32 (± 2.420) 2

Comp

5% 3230 170 0 17,000 83.51 (± 0.183) 4.01 (± 0.183) 1
10% 3060 340 0 34,000 78.71 (± 0.498) 8.81 (± 0.498) 1
20% 2720 680 0 68,000 68.13 (± 2.040) 19.39 (± 2.040) 1
30% 2380 1020 0 102,000 40.35 (± 2.275) 47.17 (± 2.275) 1

Table 6. Attack impact (Iθ) and maximum test accuracy (AM
θ ) of the Multi-Krum for

training on FEMNIST distributed over 3400 initial clients in the presence of different
adversaries.

AGR Attack Type Malicious
Rate

Number
of Be-
nign
Clients

Number
of Com-
pro-
mised
Clients

Number
of
Injected
Fake
Clients

Attack
Cost
($)

Accuracy (%) Attack Impact (%)

Multi-
Krum
(No
attack
acc =
87.45%)

Fake

5% 3400 0 179 179 87.25 (± 0.064) 0.20 (± 0.064) 5
10% 3400 0 378 378 87.11 (± 0.066) 0.34 (± 0.066) 5
20% 3400 0 850 850 86.58 (± 0.178) 0.87 (± 0.178) 5
30% 3400 0 1458 1,458 85.60 (± 0.174) 1.85 (± 0.174) 5

Hybrid
comp: 0.1%

5% 3396 4 175 400 86.02 (± 0.176) 1.43 (± 0.176) 3
10% 3396 4 374 400 82.82 (± 0.352) 4.63 (± 0.352) 4
20% 3396 4 845 849 75.88 (± 0.635) 11.57 (± 0.635) 4
30% 3396 4 1452 1,456 62.23 (± 1.825) 25.22 (± 1.825) 3

Hybrid
comp: 0.3%

5% 3389 11 168 1,100 86.26 (± 0.106) 1.19 (± 0.106) 4
10% 3389 11 366 1,100 81.58 (± 0.223) 5.87 (± 0.223) 1
20% 3389 11 837 1,100 73.97 (± 0.582) 13.48 (± 0.582) 3
30% 3389 11 1442 1,453 62.35 (± 0.859) 25.10 (± 0.859) 4

Hybrid
comp: 0.5%

5% 3383 17 162 1,700 85.87 (± 0.126) 1.98 (± 0.126) 2
10% 3383 17 359 1,700 82.03 (± 0.376) 5.42 (± 0.376) 3
20% 3383 17 829 1,700 71.71 (± 2.148) 15.74 (± 2.148) 2
30% 3383 17 1433 1,700 61.94 (± 1.990) 25.51 (± 1.990) 2

Comp

5% 3230 170 0 17,000 85.46 (± 0.113) 1.99 (± 0.113) 1
10% 3060 340 0 34,000 81.73 (± 0.390) 5.72 (± 0.390) 2
20% 2720 680 0 68,000 69.39 (± 1.597) 18.06 (± 1.597) 1
30% 2380 1020 0 102,000 47.83 (± 10.627) 39.62 (± 10.627) 1


