I.: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

LSH-Based Probabilistic Pruning
of Inverted Indices for Sets and
Ranked Lists

Koninika Pal and Sebastian Michel

pal@cs.uni-kl.de
smichel@cs.uni-kl.de

TU Kaiserslautern, Germany

K. Pal - WebDB 2017 1

Introduction

* Top-k Rankings, Preference lists

Bloomberg ¥ BloombergBiliona

Rank Name Total net worth

- Movies, TV Celebs, Events
& Showtimes ~ & Photos M
1 Bill Gates $87.2B .
Top 100 Greatest Actors of All Time (The
2 Jeff Bezos $83.3B Ultimate List)
1. Jack Nicholson Actor, The Shining
8 Amancio Ortega $82.5B
2. Marlon Brando Actor, The Godfather
4 Warren Buffett $73.4B
3. Rob De Ni A , Goodfell
5 Mark Zuckerberg $64.5B obert be Hiro ctor, Goodiellas
6 Carlos Slim $58.9B q. Al Pacino Actor, The Godfather
7 Bernard Arnault $50.9B 5. Daniel Day-Lewis Actor, There Will Be Blood
8 Larry Ellison $48.3B

K. Pal - WebDB 2017 2

* Top-k Rankings, Preference lists
* Some applications:

— Finding similar queries by results,
— mining relations between entities,

— recommender system, e.g. business promotion, etc.

* Similarity search over ranked lists or sets of
preferences

K. Pal - WebDB 2017

Inverted Index

* |Inverted index handles set similarity efficiently.

m=[2,5,4,3,1]
To — :1,4, 7,5,2:
3 = 10,8,7,5, 6

1 — <7'1>, <7’2>

:> 2 = (11), (T2)

3 — <7'1>

* Filter: look up inverted index for each elements
from query and collect candidates.

* Validate: calculate distance between the
candidates and the query

K. Pal - WebDB 2017

Motivation

Higher similarity === more overlapping elements

U

Using multiple elements as key == more precision

Simple index Pairwise index
1 — (1), (2) (1,2) = (1), (72)
2 — (11),(T2) (1,3) = (1)
3 — (11) (2,3) — (1)

Number of Key Increases exponentially

> |ncrease size of index structure

»> |ncrease look up at query time
query size 10 = 10 keys from query : 45 access keys from query

K. Pal - WebDB 2017 5

How do we prune the index?
How do we measure the effect of pruning in
similarity search?

K. Pal - WebDB 2017

How do we prune the index?
How do we measure the effect of pruning in
similarity search?

Key idea: Connecting index structure with locality
sensitive hashing (LSH)

K. Pal - WebDB 2017

Problem Description

* Collection T of sets 1; of size k
T, — [2,5,4, 3]

* Input at query time:
— A query q ofsize k
— A distance threshold @

e Set similarity: Compute
R ={ri|m €T and d(1;,q) < 0}

d(t;, q) = dissimilarity measure between 7;, ¢
R = Result set while using complete index structure

K. Pal - WebDB 2017

* Index pruning factor ¢

* Query on pruned index return result set R,
- R, CR

* Additional Input to similarity search
— Recall threshold ¢

marimize Q@

Objective:
JELHVE subject to R,/R > o

K. Pal - WebDB 2017

Content

* Motivation & Problem
* Pruning of Inverted Index

K. Pal - WebDB 2017

10

Pruning of Index Structure

Horizontal Pruning Vertical Pruning Diagonal Pruning
H- H- B
H- B0 -
- _mmi «— | B
u-EEEE u-EEN
—[1] bl | V\
Randomly select | Randomly delete | Randomly delete
factor ¢ of keys factor ¢ of factor ¢ of
and delete the elements in each | elements from
complete entry. posting lists. each sets and
then build the

index.
K. Pal - WebDB 2017 11

Pruning of Index Structure

* Similarity with document search:
— Horizontal pruning: stop-word removal.

— Vertical pruning: term-based index pruning (scoring
model: tf-idf, KL-divergence etc.).

— Diagonal pruning: document-centric pruning.

Horizontal Pruning Vertical Pruning Diagonal Pruning
- - -
- - -
L - a < B
T H-EEEN H-EEE .

K. Pal - WebDB 2017 12

Pruning of Index Structure

* Similarity with document search:
— Horizontal pruning: stop-word removal.

— Vertical pruning: term-based index pruning (scoring
model: tf-idf, KL-divergence etc.).

— Diagonal pruning: document-centric pruning.

e Contrast with common document retrieval:

— Same size of query and documents.

— Does not use score-based document search method.

K. Pal - WebDB 2017

13

Content

 Motivation & Problem
* Pruning of Inverted Index
* Query Processing on Pruned index

K. Pal - WebDB 2017

14

Connecting Index with LSH Family

Hash tables (LSH index) Inverted index
Hash_keyl - Objects map to keyl Key 1> posting lists
Hash_key2 = Objects map to key2 Key2 - posting lists

""" One to one mapping

Example: projects sets on single elements
hy the(r) =z if x € ho(m) =T [1,4,7,5,
0,8,7,5

h7 : 7 —(r2),(m3) &&= 7— (72),(73)

— Multiple hash functions are possible to use
conjunctively in LSH

h77 h5 : (77 5) — <7_2>7 <T3> <:> (77 5) — <T2>7 <7_3>

2)
, 6]

72
73

K. Pal - WebDB 2017 15

Properties of LSH

* Why LSH?

— Similar objects have higher probability to collide into
same bucket

— Tuning of number of index entries(/) are needed to
look up to reach recall 0

o=1—(1-pP")

e What we need?

— Collision probability of hash function: P;
— Number of hash functions are used at query time.

K. Pal - WebDB 2017 16

Query Processing on Pruned Index

* Pruning of index -> dropping objects from LSH
index

* Missing collision at query processing:
— Objects and query are not similar

— Objects are dropped due to pruning

e Access more entries (/) than the LSH method
required.

e How many extra index look up are required?

K. Pal - WebDB 2017 17

Ad-hoc Query Processing

* Continue index look up until /[successful
accesses. p=1-—(1—P")

* Max. lookup = look up all keys from query

* Expected look ups: Ell] = (1/f) -1
* Modifying factor in collision probability: f

K. Pal - WebDB 2017 18

Probabilistic Query Processing

* Find modified collision probability
* Find required modified number of accesses Iy

o=1—(1—fy-PMY

» Modifying factor fy = function(¢)

— Modifying factor of horizontal pruning f;
* ¢ faction of index pruning |

_ _ pEEEEEEN
* - removing ¢ faction of keys -

* fh=1-0 T

K. Pal - WebDB 2017 19

Optimizing the Pruning Factor
* Max. lookup =2 look up all keys from query (f)
* Look up ly is bound by (f)

e Number of access (Iy): o =1— (1 — fy - P™)"

 Modifying factor fy = function(¢)

¢ = argmax {(I:) —ly = 0}

K. Pal - WebDB 2017 20

Case Studies

* Case 1: Jaccard Distance over sets
— Use pairwise index
— Relate LSH! index to pairwise index

p=-2 m=2 o=1—(1-Pm)

e Case 2: Kendall’s Tau Distance over rankings

[1] Koninika Pal and Sebastian Michel. Efficient Similarity Search across Top-k Lists under the Kendall’s Tau
Distance. In SSDBM 2016.

K. Pal - WebDB 2017 21

Content

 Motivation & Problem

* Pruning of Inverted Index
 Query Processing on Pruned index
* Experimental Results

K. Pal - WebDB 2017 22

Experimental Setup

e Datasets:

— LifeJ: 100,000 profiles from Live Journal; truncated to set size = 20.
— Yago: 25,000 top-20 rankings; Wikipedia based.

* 5 consecutive experimental runs over 1000 queries.
e Recall threshold 0 =99%

* Baseline approach: The plain LSH methods on the non-
pruned index structures.

* Full scan and prefix filtering? method in simple index
retrieve candidates > 5 times than the baseline approach.

[2] jiannan Wang, Guoliang Li, and Jianhua Feng. 2012. Can we beat the prefix filtering?: an adaptive
framework for similarity join and search. In SIGMOD.

K. Pal - WebDB 2017 23

Theoretically Established Parameters

for Livel
not Horizontal Vertical Diagonal
pruned pruning pruning pruning
2 K
0| L | ¢ | ln Bl ¢ | L |EWL]] ¢"| la |Eld]
0.1 2 0.8 125 10 0.8 125 10 0.5 95 8.6
0.3 4 0.8 167 20 0.8 167 20 0.5 126 | 17.4
0.5 8 0.7 112 | 26.6 | 0.7 112 | 26.6 | 0.4 87 23.5
¢™ : Optimal pruning factor. Y:{h/v/d}

ly : Number of scan for probabilistic query processing.
Elly]: Expected number of scan for [successful scan.

K. Pal - WebDB 2017

24

Experimental Results for Probabilistic

Query Processing on Lifel

metho | 0 | {my | Feancicates | recanl | BTy |
0.1 | 11.17 10031.3 100 24.6 125 5105.3
Horizontal | 0.3 | 11.54 13257.0 100 33.9 167 7360.4
0.5 | 13.39 14452.2 100 33.6 112 9059.5
0.1 14.0 11252.9 100 125 125 5105.3
Vertical 0.3 0.8 12208.7 100 167 167 7360.4
0.5 11.0 14001.9 100 112 112 9059.5
0.1 | 10.38 10378.3 99.5 79.69 95 5105.3
Diagonal | 0.3 | 11.06 11512.7 100 104.58 126 7360.4
0.5 | 11.32 13003.1 99.7 76.84 87 9059.5

K. Pal - WebDB 2017

25

Experimental Results for Ad-hoc Query

Processing on Lifel

method | 0 | (me) | feondisates recal | TER | Elly] - (S
0.1 | 34 3806.7 100 9.45 10 5105.3
Horizontal | 0.3 | 4.4 5163.3 100 19.39 20 7360.4
05 | 7.4 78225 99.9 | 26.29 26.6 9059.5
0.1 | 1.03 11422 | 513 2 10 5105.3
Vertical | 0.3 | 1.67 | 19269 | 643 4 20 7360.4
05 | 408 | 39989 | 936 8 26.6 | 9059.5
0.1 | 124 | 13091 | 373 2.63 8.6 5105.3
Diagonal | 0.3 | 1.99 | 20984 | 47.3 4.94 174 | 7360.4
05 | 352 | 39389 | 610 9.61 235 | 9059.5

K. Pal - WebDB 2017

26

Content

 Motivation & Problem

* Pruning of Inverted Index
 Query Processing on Pruned index
* Experimental Results

* Conclusions

K. Pal - WebDB 2017 27

Conclusions

e Saving upto 80% index pruning for small distance
threshold, § < 0.3

* Probabilistic query processing ensures recall
requirement.

* Ad-hoc query processing in horizontal pruning
outperforms.

e Future directions:

— Combining the proposed approach with compression
techniques.

— Analysis over non-randomized, application driven pruning.

K. Pal - WebDB 2017 28

K. Pal - WebDB 2017

Thank you

29

Theoretically Established Parameters
for Yago

not Horizontal Vertical Diagonal
pruned pruning pruning pruning
2 K

0| 1 | ¢ | ln Bl ¢ | lw |E[L]] ¢"| la |Elld]
0.1 2 0.8 125 10 0.8 125 10 0.5 95 8.6
0.3 4 0.8 167 20 0.8 167 20 0.5 126 | 17.4
0.5 8 0.7 112 | 26.6 | 0.7 112 | 26.6 | 0.4 87 23.5
¢™ : Optimal pruning factor. Y:{h/v/d}

ly : Number of scan for probabilistic query processing.
Elly]: Expected number of scan for [successful scan.

K. Pal - WebDB 2017

30

Experimental Results for Probabilistic

Query Processing on Yago

method | 0 | (my | Heandidates | recall | U 0y R
0.1 | 1117 | 100313 | 100 24.6 125 5105.3
Horizontal | 0.3 | 11.54 | 13257.0 | 100 33.9 167 7360.4
0.5 | 1339 | 144522 | 100 33.6 112 9059.5
0.1 | 140 | 112529 | 100 125 125 5105.3
Vertical | 0.3 | 9.8 12208.7 | 100 167 167 7360.4
05| 11.0 | 140019 | 100 112 112 9059.5
0.1 | 1038 | 103783 | 995 | 79.69 95 5105.3
Diagonal | 0.3 | 11.06 | 115127 | 100 | 10458 | 126 7360.4
05| 1132 | 130031 | 99.7 | 76.84 87 9059.5

K. Pal - WebDB 2017

31

Experimental Results for Ad-hoc Query

Processing on Yago

method | 0 | (me) | feondisates | recal | TER | Ellv] | (S
0.1 | 34 3806.7 100 9.45 10 5105.3
Horizontal | 0.3 | 4.4 5163.3 100 19.39 20 7360.4
05 | 7.4 78225 | 99.9 | 26.29 26.6 | 9059.5
0.1 | 1.03 11422 | 513 2 10 5105.3
Vertical | 0.3 | 1.67 | 19269 | 643 4 20 7360.4
05 | 408 | 39989 | 936 8 26.6 | 9059.5
0.1 | 124 | 13091 | 373 2.63 8.6 5105.3
Diagonal | 0.3 | 1.99 | 20984 | 47.3 4.94 174 | 7360.4
05 | 352 | 39389 | 61.0 9.61 235 | 9059.5

K. Pal - WebDB 2017

32

