
LSH-Based	Probabilistic	Pruning	
of	Inverted	Indices	for	Sets	and

Ranked	Lists
Koninika	Pal	and	Sebastian	Michel

pal@cs.uni-kl.de
smichel@cs.uni-kl.de

TU	Kaiserslautern,	Germany

K.	Pal	- WebDB	2017 1

Introduction
• Top-k	Rankings,	Preference	lists

K.	Pal	- WebDB	2017 2

• Top-k	Rankings,	Preference	lists
• Some	applications:
– Finding	similar	queries	by	results,
– mining	relations	between	entities,
– recommender	system,	e.g.	business	promotion,	etc.

• Similarity	search	over	ranked	lists	or	sets	of	
preferences

K.	Pal	- WebDB	2017 3

Inverted	Index
• Inverted	index	handles	set	similarity	efficiently.

• Filter:	look	up	inverted	index	for	each	elements	
from	query	and	collect	candidates.

• Validate:	calculate	distance	between	the	
candidates	and	the	query

K.	Pal	- WebDB	2017 4

⌧2 = [1, 4, 7, 5, 2]

⌧1 = [2, 5, 4, 3, 1]

⌧3 = [0, 8, 7, 5, 6]

1 ! h⌧1i, h⌧2i
2 ! h⌧1i, h⌧2i
3 ! h⌧1i

Using	multiple	elements	as	key			 more	precision

Number	of	Key	Increases	exponentially
≫ Increase	size	of	index	structure

≫ Increase	look	up	at	query	time
query	size	10	à 10	keys	from	query	:	45	access	keys	from	query	

Higher	similarity							 more	overlapping	elements

Motivation	

K.	Pal	- WebDB	2017 5

.

Pairwise	indexSimple	index

.

1 ! h⌧1i, h⌧2i
2 ! h⌧1i, h⌧2i
3 ! h⌧1i

(1, 3) ! h⌧1i
(2, 3) ! h⌧1i

(1, 2) ! h⌧1i, h⌧2i

Using	multiple	elements	as	key			 more	precision

Increase	size	of	index	structure
Increase	look	up	at	query	time

More	similarity							 more	overlapping	elements

K.	Pal	- WebDB	2017 6

.
.
6 ! h⌧3i

7 ! h⌧2i, h⌧3i
5 ! h⌧1i, h⌧2i, h⌧3i (7, 5) ! h⌧2i, h⌧3i

(5, 6) ! h⌧1i

How	do	we	prune	the	index?
How	do	we	measure	the	effect	of	pruning	in	
similarity	search?

Using	multiple	elements	as	key			 more	precision

Increase	size	of	index	structure
Increase	look	up	at	query	time

More	similarity							 more	overlapping	elements

K.	Pal	- WebDB	2017 7

.
.
6 ! h⌧3i

7 ! h⌧2i, h⌧3i
5 ! h⌧1i, h⌧2i, h⌧3i (7, 5) ! h⌧2i, h⌧3i

(5, 6) ! h⌧1i

Key	idea:	Connecting	index	structure	with	locality	
sensitive	hashing	(LSH)

How	do	we	prune	the	index?
How	do	we	measure	the	effect	of	pruning	in	
similarity	search?

Problem	Description

K.	Pal	- WebDB	2017 8

• Collection						of		sets						of	size	k	

• Input	at	query	time:
– A	query							of	size	k	
– A	distance	threshold

• Set	similarity:	Compute

= dissimilarity	measure	between
=	Result	set	while	using	complete	index	structure	

T ⌧i
⌧i = [2, 5, 4, 3]

q

d(⌧i, q) ⌧i, q

✓

R = {⌧i|⌧i 2 T and d(⌧i, q)  ✓}

R

• Index	pruning	factor
• Query	on	pruned	index	return	result	set
–

• Additional	Input	to	similarity	search
– Recall	threshold

Objective:	

K.	Pal	- WebDB	2017 9

�

Rp

maximize �

subject to Rp/R � %

%

Rp ✓ R

Content

• Motivation	&	Problem
• Pruning	of	Inverted	Index
• Query	Processing	on	Pruned	index
• Experimental	Results
• Conclusions

K.	Pal	- WebDB	2017 10

Pruning	of	Index	Structure

K.	Pal	- WebDB	2017 11

Randomly	select																																																	
factor					of	keys	
and	delete	the	
complete	entry.

Randomly	delete																																																
factor					of	
elements	in	each		
posting	lists.

� �
Randomly	delete																																																	
factor					of	
elements	from	
each	sets	and	
then	build	the	
index.		

�

Pruning	of	Index	Structure

• Similarity	with	document	search:
– Horizontal	pruning:	stop-word	removal.
– Vertical	pruning:	term-based	index	pruning (scoring	
model:	tf-idf,	KL-divergence	etc.).

– Diagonal	pruning:		document-centric	pruning.

• Contrast	with	common	document	retrieval:	
– Same	size	of	query	and	documents.
– Does	not	use	score-based	document	search	method.

K.	Pal	- WebDB	2017 12

Pruning	of	Index	Structure

• Similarity	with	document	search:
– Horizontal	pruning:	stop-word	removal.
– Vertical	pruning:	term-based	index	pruning (scoring	
model:	tf-idf,	KL-divergence	etc.).

– Diagonal	pruning:		document-centric	pruning.

• Contrast	with	common	document	retrieval:	
– Same	size	of	query	and	documents.
– Does	not	use	score-based	document	search	method.

K.	Pal	- WebDB	2017 13

Content

• Motivation	&	Problem
• Pruning	of	Inverted	Index
• Query	Processing	on	Pruned	index
• Experimental	Results
• Conclusions

K.	Pal	- WebDB	2017 14

Example:	projects	sets	on	single	elements

–Multiple	hash	functions	are	possible	to	use	
conjunctively	in	LSH

Connecting	Index	with	LSH	Family

K.	Pal	- WebDB 2017 15

⌧2 = [1, 4, 7, 5, 2]
⌧3 = [0, 8, 7, 5, 6]

7 ! h⌧2i, h⌧3i

h7(⌧2) = 7

7 ! h⌧2i, h⌧3ih7 :

(7, 5) ! h⌧2i, h⌧3ih7, h5 : (7, 5) ! h⌧2i, h⌧3i

h

x

(⌧
i

) = x if x 2 ⌧

i

Hash	tables	(LSH	index)
Hash_key1	à Objects	map	to		key1	
Hash_key2	à Objects	map	to	key2

……

Inverted	index
Key	1à posting	lists
Key2	à posting	lists

…...

h
x

:

One	to	one	mapping

Properties	of	LSH

• Why	LSH?
– Similar	objects	have	higher	probability	to	collide	into	
same	bucket

– Tuning	of	number	of	index	entries()	are	needed	to	
look	up	to	reach	recall

• What	we	need?
– Collision	probability	of	hash	function:
– Number	of	hash	functions	are	used	at	query	time.

K.	Pal	- WebDB	2017 16

% = 1� (1� Pm
1)l

l
%

P1

Query	Processing	on	Pruned	Index

• Pruning	of	index	->	dropping	objects	from	LSH	
index	

• Missing	collision	at	query	processing:
– Objects	and	query	are	not	similar
– Objects	are	dropped	due	to	pruning	

• Access	more	entries	()	than	the	LSH	method	
required.	

• How	many	extra	index	look	up	are	required?

K.	Pal	- WebDB	2017 17

l

Ad-hoc	Query	Processing

• Continue	index	look	up	until				successful	
accesses.

• Max.	lookup	à look	up	all	keys	from	query	

• Expected	look	ups:
• Modifying	factor	in	collision	probability:	

K.	Pal	- WebDB	2017 18

l

f

% = 1� (1� Pm
1)l

E[l] = (1/f) · l

Probabilistic	Query	Processing

• Find	modified	collision	probability
• Find	required	modified	number	of	accesses

• Modifying	factor						=	
–Modifying	factor	of	horizontal	pruning	
• faction	of	index	pruning
• à removing				faction	of	keys
• =	1	–

K.	Pal	- WebDB	2017 19

% = 1� (1� fY · Pm
1)lY

lY

fY

fh

�

�

�

fh

function(�)

Optimizing	the	Pruning	Factor
• Max.	lookup	à look	up	all	keys	from	query

• Look	up						is	bound	by	

• Number	of	access	():

• Modifying	factor						=		

K.	Pal	- WebDB	2017 20

fY

✓
k

t

◆

�

⇤ = argmax�

n

�k
t

�

� lY = 0
o

lY

function(�)

✓
k

t

◆

lY % = 1� (1� fY · Pm
1)lY

Case	Studies

• Case	1:	Jaccard Distance	over	sets
– Use	pairwise	index
– Relate	LSH1 index	to	pairwise	index

• Case	2:	Kendall’s	Tau	Distance	over	rankings

[1] Koninika Pal and Sebastian Michel. Efficient Similarity Search across Top-k Lists under the Kendall’s Tau
Distance. In SSDBM 2016.

K.	Pal	- WebDB 2017 21

P1 =
2✓

1 + ✓
,m = 2 % = 1� (1� Pm

1)l

Content

• Motivation	&	Problem
• Pruning	of	Inverted	Index
• Query	Processing	on	Pruned	index
• Experimental	Results
• Conclusions

K.	Pal	- WebDB	2017 22

Experimental	Setup	

• Datasets:
– LifeJ: 100,000	profiles	from	Live	Journal;	truncated	to	set	size	=	20.
– Yago: 25,000	top-20	rankings;	Wikipedia	based.

• 5	consecutive	experimental	runs	over	1000	queries.
• Recall	threshold					=	99%
• Baseline	approach: The	plain	LSH	methods	on	the	non-

pruned	index	structures.	
• Full	scan	and	prefix	filtering2 method	in	simple	index	

retrieve	candidates	>	5	times	than	the	baseline	approach.	

K.	Pal	- WebDB	2017 23

%

[2] jiannan Wang, Guoliang Li, and Jianhua Feng. 2012. Can we beat the prefix filtering?: an adaptive
framework for similarity join and search. In SIGMOD.

K.	Pal	- WebDB	2017 24

not
pruned

Horizontal
pruning

Vertical
pruning

Diagonal
pruning

0.1 2 0.8 125 10 0.8 125 10 0.5 95 8.6

0.3 4 0.8 167 20 0.8 167 20 0.5 126 17.4

0.5 8 0.7 112 26.6 0.7 112 26.6 0.4 87 23.5

✓ �⇤ lh ldlv�⇤ �⇤

:	Optimal	pruning	factor.													:	{	h	/	v	/	d	}
:	Number	of	scan	for	probabilistic	query	processing.
:	Expected	number	of	scan	for				successful	scan.

Theoretically	Established	Parameters		
for	LiveJ

E[lv]E[lh] E[ld]l

�⇤

l
lY

E[lY]

Y

Experimental	Results	for	Probabilistic	
Query	Processing	on	LifeJ

K.	Pal	- WebDB	2017 25

✓Pruning
method

Time
(ms) #candidates recall #successful	

scan
Baseline
candidates

Horizontal

0.1 11.17 10031.3 100 24.6 125 5105.3

0.3 11.54 13257.0 100 33.9 167 7360.4

0.5 13.39 14452.2 100 33.6 112 9059.5

Vertical

0.1 14.0 11252.9 100 125 125 5105.3

0.3 9.8 12208.7 100 167 167 7360.4

0.5 11.0 14001.9 100 112 112 9059.5

Diagonal

0.1 10.38 10378.3 99.5 79.69 95 5105.3

0.3 11.06 11512.7 100 104.58 126 7360.4

0.5 11.32 13003.1 99.7 76.84 87 9059.5

✓ lY

Experimental	Results	for	Ad-hoc	Query	
Processing	on	LifeJ

Pruning
method

Time
(ms) #candidates recall #Total	

scan
Baseline
candidates

Horizontal

0.1 3.4 3806.7 100 9.45 10 5105.3

0.3 4.4 5163.3 100 19.39 20 7360.4

0.5 7.4 7822.5 99.9 26.29 26.6 9059.5

Vertical

0.1 1.03 1142.2 51.3 2 10 5105.3

0.3 1.67 1926.9 64.3 4 20 7360.4

0.5 4.08 3998.9 93.6 8 26.6 9059.5

Diagonal

0.1 1.24 1309.1 37.3 2.63 8.6 5105.3

0.3 1.99 2098.4 47.3 4.94 17.4 7360.4

0.5 3.52 3938.9 61.0 9.61 23.5 9059.5

K.	Pal	- WebDB	2017 26

✓ E[lY]

Content

• Motivation	&	Problem
• Pruning	of	Inverted	Index
• Query	Processing	on	Pruned	index
• Experimental	Results
• Conclusions

K.	Pal	- WebDB	2017 27

Conclusions
• Saving	upto 80%	index	pruning	for	small	distance	
threshold,				⩽ 0.3

• Probabilistic	query	processing	ensures	recall	
requirement.

• Ad-hoc	query	processing	in	horizontal	pruning	
outperforms.

• Future	directions:
– Combining	the	proposed	approach	with	compression	
techniques.

– Analysis	over	non-randomized,	application	driven	pruning.

K.	Pal	- WebDB	2017 28

✓

Thank	you

K.	Pal	- WebDB	2017 29

K.	Pal	- WebDB	2017 30

not
pruned

Horizontal
pruning

Vertical
pruning

Diagonal
pruning

0.1 2 0.8 125 10 0.8 125 10 0.5 95 8.6

0.3 4 0.8 167 20 0.8 167 20 0.5 126 17.4

0.5 8 0.7 112 26.6 0.7 112 26.6 0.4 87 23.5

✓ �⇤ lh ldlv�⇤ �⇤

:	Optimal	pruning	factor.													:	{	h	/	v	/	d	}
:	Number	of	scan	for	probabilistic	query	processing.
:	Expected	number	of	scan	for				successful	scan.

Theoretically	Established	Parameters		
for	Yago

E[lv]E[lh] E[ld]l

�⇤

l
lY

E[lY]

Y

Extra	slides	for	more	experimental	data

Experimental	Results	for	Probabilistic	
Query	Processing	on	Yago

K.	Pal	- WebDB	2017 31

✓Pruning
method

Time
(ms) #candidates recall #successful	

scan
Baseline
candidates

Horizontal

0.1 11.17 10031.3 100 24.6 125 5105.3

0.3 11.54 13257.0 100 33.9 167 7360.4

0.5 13.39 14452.2 100 33.6 112 9059.5

Vertical

0.1 14.0 11252.9 100 125 125 5105.3

0.3 9.8 12208.7 100 167 167 7360.4

0.5 11.0 14001.9 100 112 112 9059.5

Diagonal

0.1 10.38 10378.3 99.5 79.69 95 5105.3

0.3 11.06 11512.7 100 104.58 126 7360.4

0.5 11.32 13003.1 99.7 76.84 87 9059.5

✓ lY

Extra	slides	for	more	experimental	data

Experimental	Results	for	Ad-hoc	Query	
Processing	on	Yago

Pruning
method

Time
(ms) #candidates recall #Total	

scan
Baseline
candidates

Horizontal

0.1 3.4 3806.7 100 9.45 10 5105.3

0.3 4.4 5163.3 100 19.39 20 7360.4

0.5 7.4 7822.5 99.9 26.29 26.6 9059.5

Vertical

0.1 1.03 1142.2 51.3 2 10 5105.3

0.3 1.67 1926.9 64.3 4 20 7360.4

0.5 4.08 3998.9 93.6 8 26.6 9059.5

Diagonal

0.1 1.24 1309.1 37.3 2.63 8.6 5105.3

0.3 1.99 2098.4 47.3 4.94 17.4 7360.4

0.5 3.52 3938.9 61.0 9.61 23.5 9059.5

K.	Pal	- WebDB	2017 32

✓ E[lY]

Extra	slides	for	more	experimental	data

