

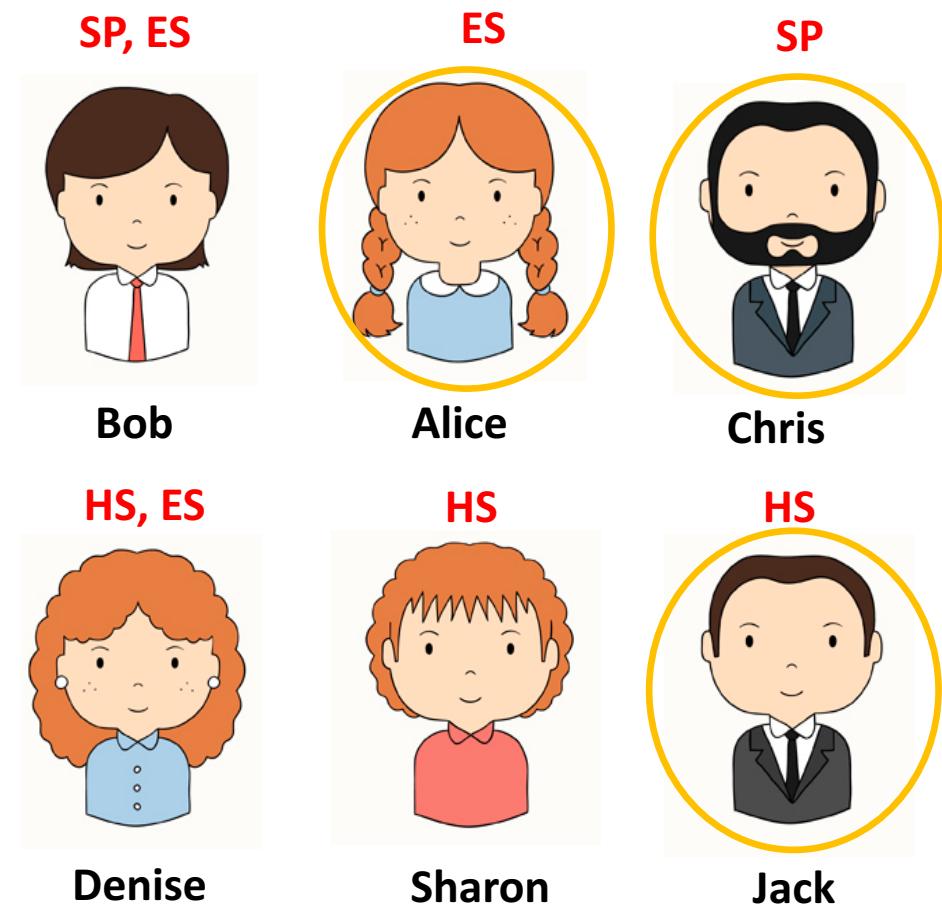
Crowdsourcing with Diverse Groups of Users

Sara Cohen

Moran Yashinski

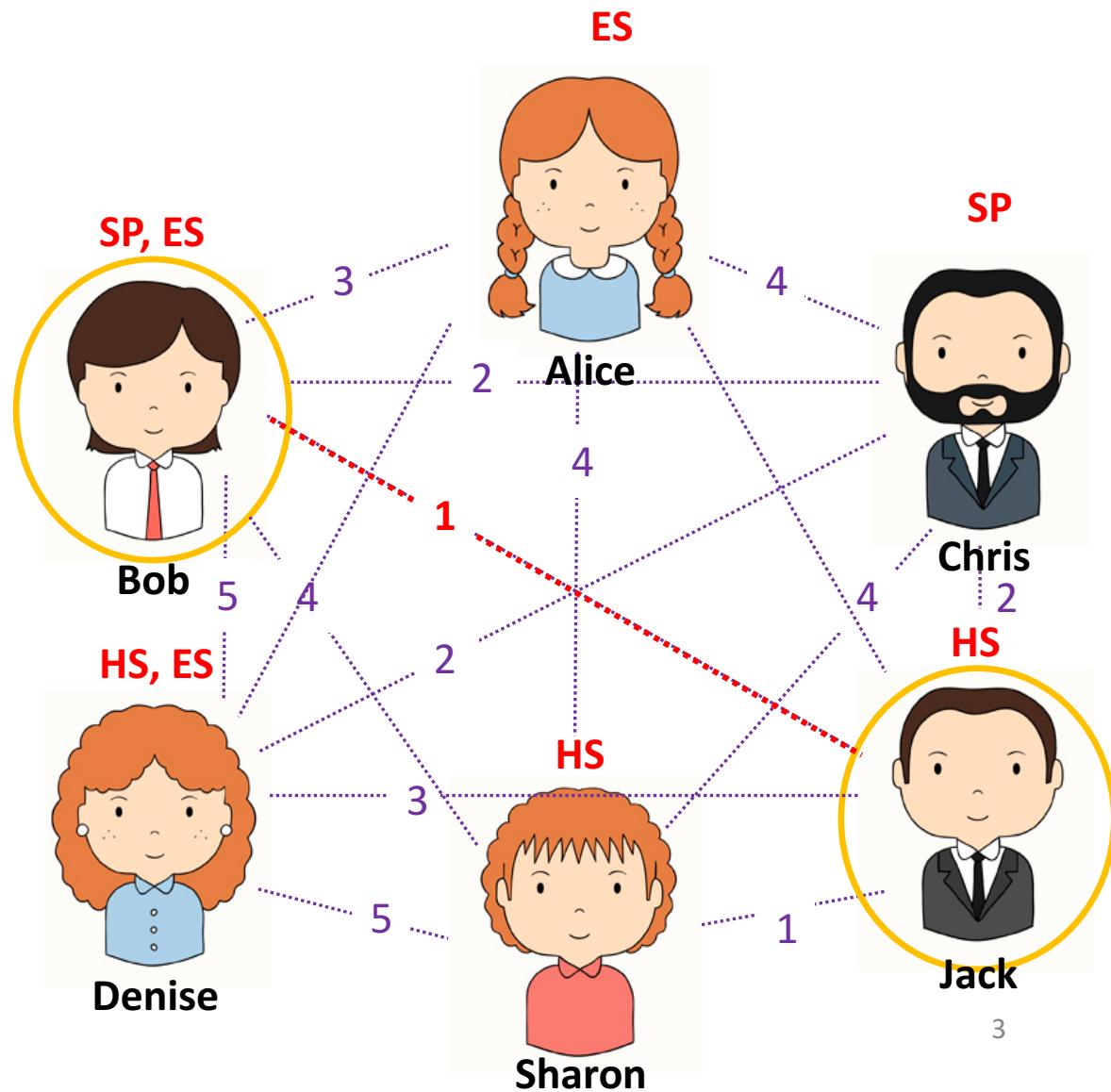
Team Formation problem

- Example: Forming an education board
- Required skills:
 - School Principal (SP)
 - High School teacher (HS)
 - Elementary School teacher (ES)



Team Formation problem with Communication Cost

- Goal: Find a team that has all required skills, while minimizing communication cost
- Examples of communication costs
 - Distance in the social network
 - (An inverse of) the number of papers each 2 experts published together



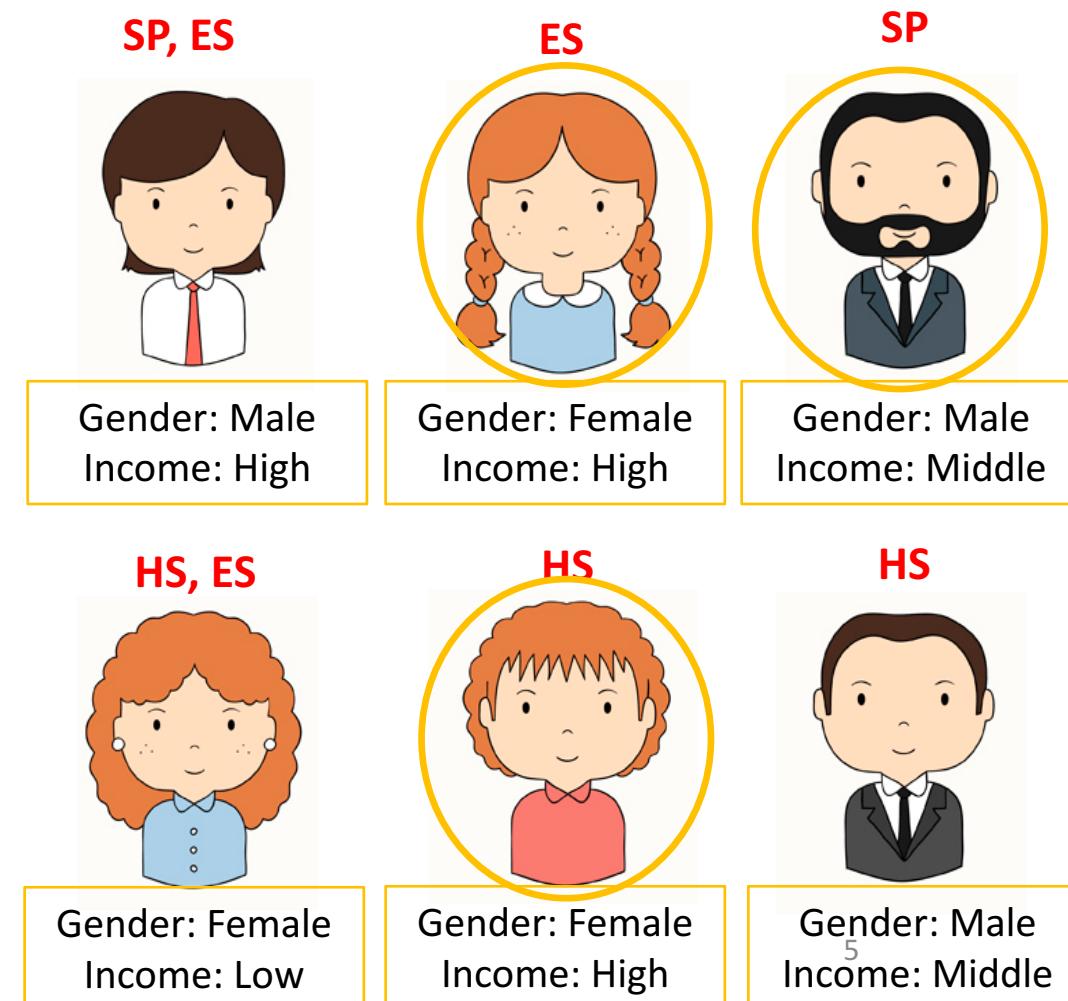
Research Question

- What if we wanted to define diversity based on the properties?
 - Gender, Income, Age, Religion, Location, etc.
- We would like to define target diversity function for the different experts' properties
- Goal: Efficiently find a team that has all required skills, and is as close as possible to the desired target diversity

Team Formation with Target Diversity constraint

- Target Diversity based on **Properties**
- Goal: Efficiently find a team that has all required skills, and is as close as possible to the desired target diversity
- ***Distribution Cost*** = $|Team\ Diversity - Target\ Disversity|_1$

- Example:
 - Gender Target Diversity:
 $[Male, Female] = [1/3, 2/3]$
 - Income Target Diversity :
 $[High, Medium, Low] = [1/2, 1/4, 1/4]$



What are we going to discuss?

- Research Question: diversity based on personal properties ✓
- Advantages of Diversity (or.. why is it interesting?)
- Related work
- Algorithms and computational considerations
 - Fixed Parameters Tractable (Optimal) Algorithm
 - Greedy Approximation Algorithm
- Experimental Results
- Conclusions

Advantages of Diversity (or.. why is it interesting?)

- Advantages in the workplace
 - Increase in productivity and creativity (innovative solutions)
 - Increase morale in workplaces
 - Positive reputation/attraction of quality human resources
- When crowdsourcing, it is important to consider different points of views
- Defining the diversity of a team
 - Program committees
 - Adopting affirmative actions

Related Work

- Team formation with Communication Cost
 - Goal: Find a team that has all required skills, while minimizing communication cost (e.g. Sum of Distances, Diameter)
- Diversity in terms of social influence
 - Depends on the social influences between candidates
 - Low social influence is correlated with high productivity
- Diversity in query answering
 - The goal is to maximize the diversity of the results
 - Diversity based on different criteria (e.g. content, novelty and coverage)

What have we achieved?

- Finding an optimal solution is NP-complete
- Naïve algorithm
 - Check all possible options and finds optimal solution
 - Time complexity: $O(|C|^{|S|} |S| |P|)$
 - Intractable in practice as $|C|$ might be huge
- Fixed Parameter Tractable (Optimal) Algorithm
 - Find an optimal solution in time complexity which is $\text{poly}(|C|)$ times $\exp(|S|, |P|)$
- Greedy Approximation Algorithm
 - Time complexity: $\text{poly}(|S|, |C|)$
 - Guaranteed to return 1/2-approximation of the optimal solution

Fixed Parameter Tractable (Optimal) Algorithm

- Finds optimal solution
- Complexity time: $poly(|C|)$ times $\exp(|S|, |P|)$
- Using preprocessed data structures in order to improve runtime performance
- Use the notion of Abstract (Optimal) Templates and Concrete Templates

Abstract (Optimal) Templates, Concrete Templates: Example

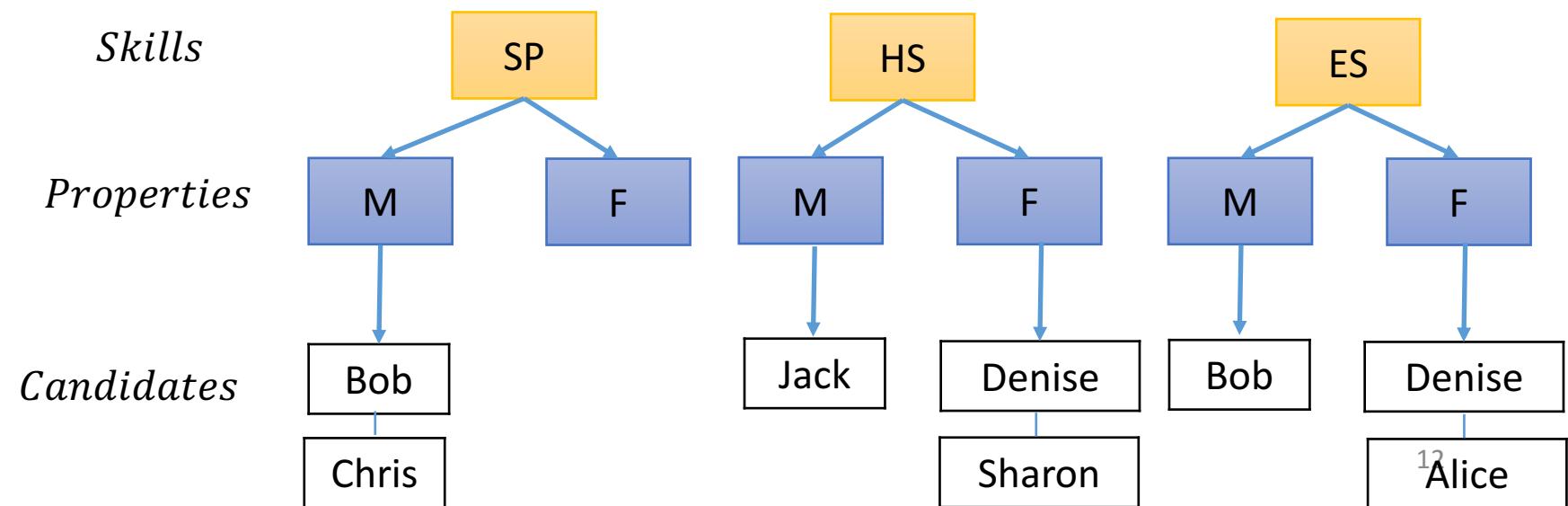
- One property (Gender):
 - $[Male, Female] = [2/3, 1/3]$
- $S = \{SP, HS, ES\}$
- Abstract Optimal Template
 - Achieves **minimum distribution cost**
 - There could be many Abstract Optimal Templates
- Abstract Template (non optimal)
- Concrete Templates:
 - $gender(SP) = F, gender(HS) = M, gender(ES) = M$
 - $gender(SP) = M, gender(HS) = F, gender(ES) = M$
 - $gender(SP) = M, gender(HS) = M, gender(ES) = F$

Male	Female
2	1

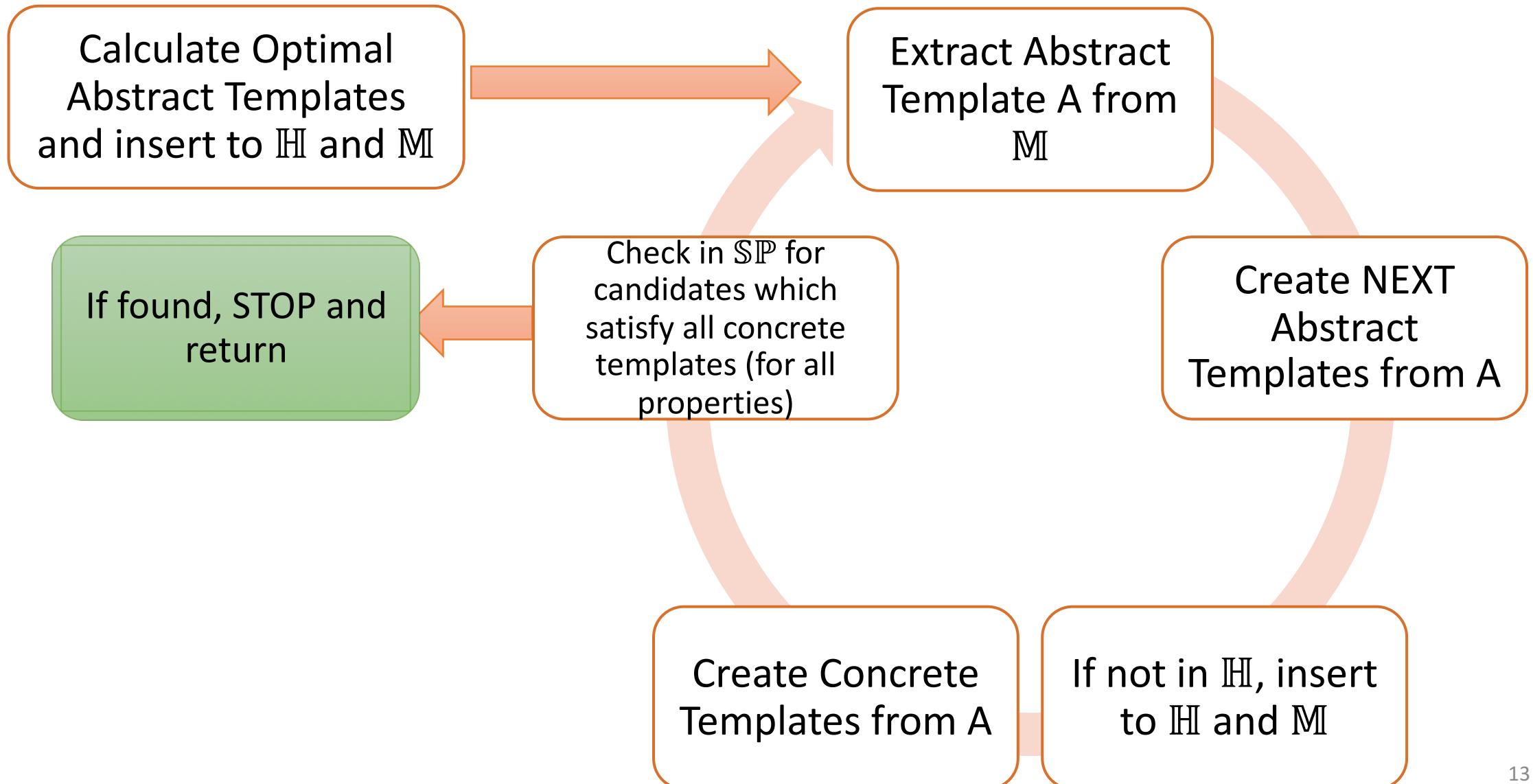
Male	Female
3	0

FPT Optimal Algorithm: Data structures

- Used to optimize runtime performance
- HashSet \mathbb{H} to hold all the abstract templates
 - To avoid evaluating an abstract template more than once (very costly)
- minHeap \mathbb{M} to efficiently return the abstract template which has minimum cost
- Structure \mathbb{SPC}
 - Calculated offline

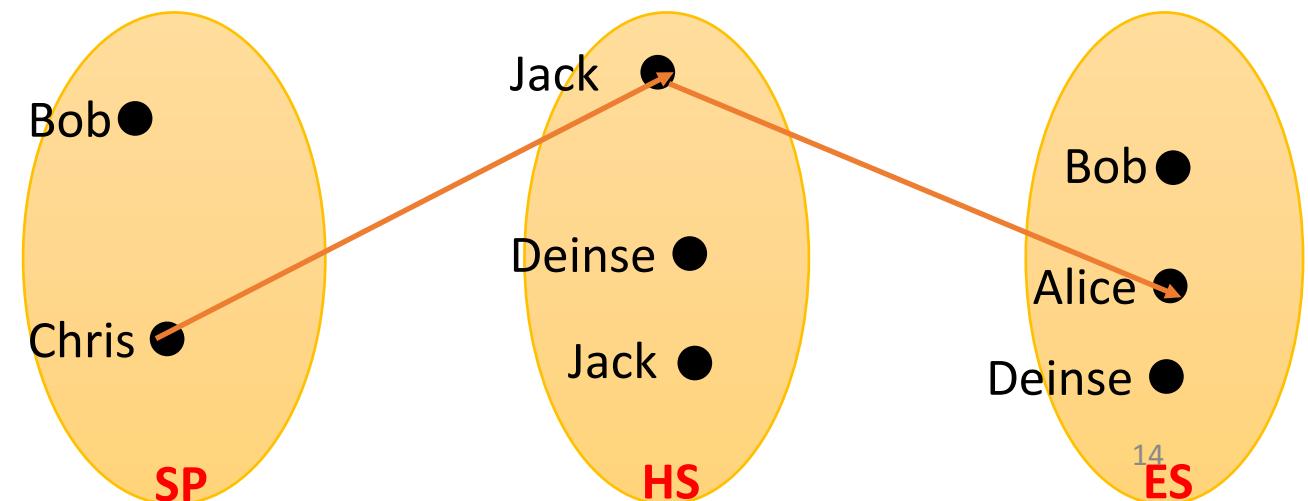


FPT Optimal Algorithm: Workflow



Greedy Approximation Algorithm

- Time complexity: $poly(|S|, |C|)$
- Using sets of candidates per skill
- Greedy solution: in each step chooses an unchosen skill and candidate with that skill which (locally) minimizes the distribution cost



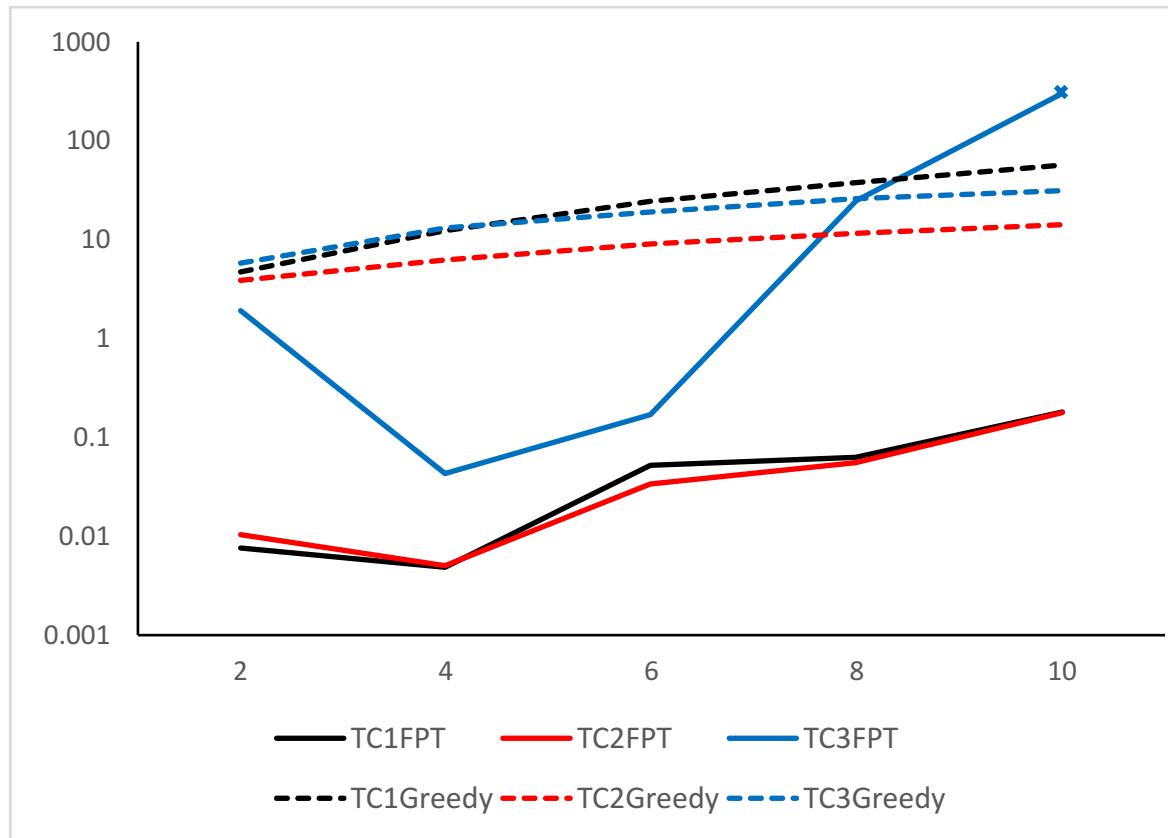
Greedy Approximation Algorithm (cont.)

- Optimizing a function call *benefit*, that is inversely proportional to the *distribution cost*
- The *benefit* function is a monotonic submodular function and therefore guaranteed to return 1/2-approximation of the optimal solution

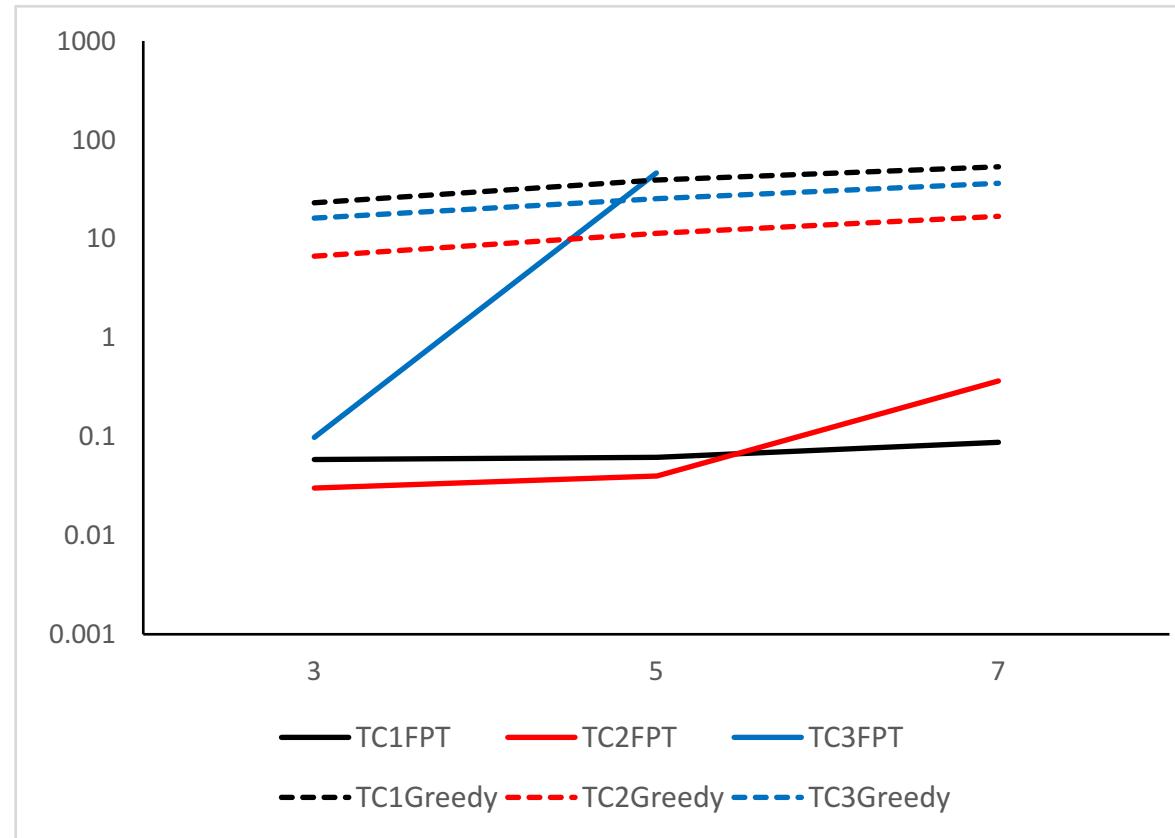
Experimentation

- Tested scalability as a function of $|C|$, $|S|$, $|P|$ and *Property Range*
 - Default values: $|S| = 8$, $|P| = 5$, $|C| = 100K$, *Property Range* = 4
- Types of synthetic datasets:
 - TC1 (random assignment)
 - Property values: assigned randomly using uniform distribution
 - Skills per candidate: randomly choosing between 1 and $|S|$ skills per candidate
 - TC2 (random assignment with 1 skill)
 - Property values: assigned randomly using uniform distribution
 - Skills per candidate: each candidate is given 1 random skill
 - TC3 (skewed distribution with 2 skills)
 - Property values and skills (2 skills per candidate) are assigned using a skewed distribution

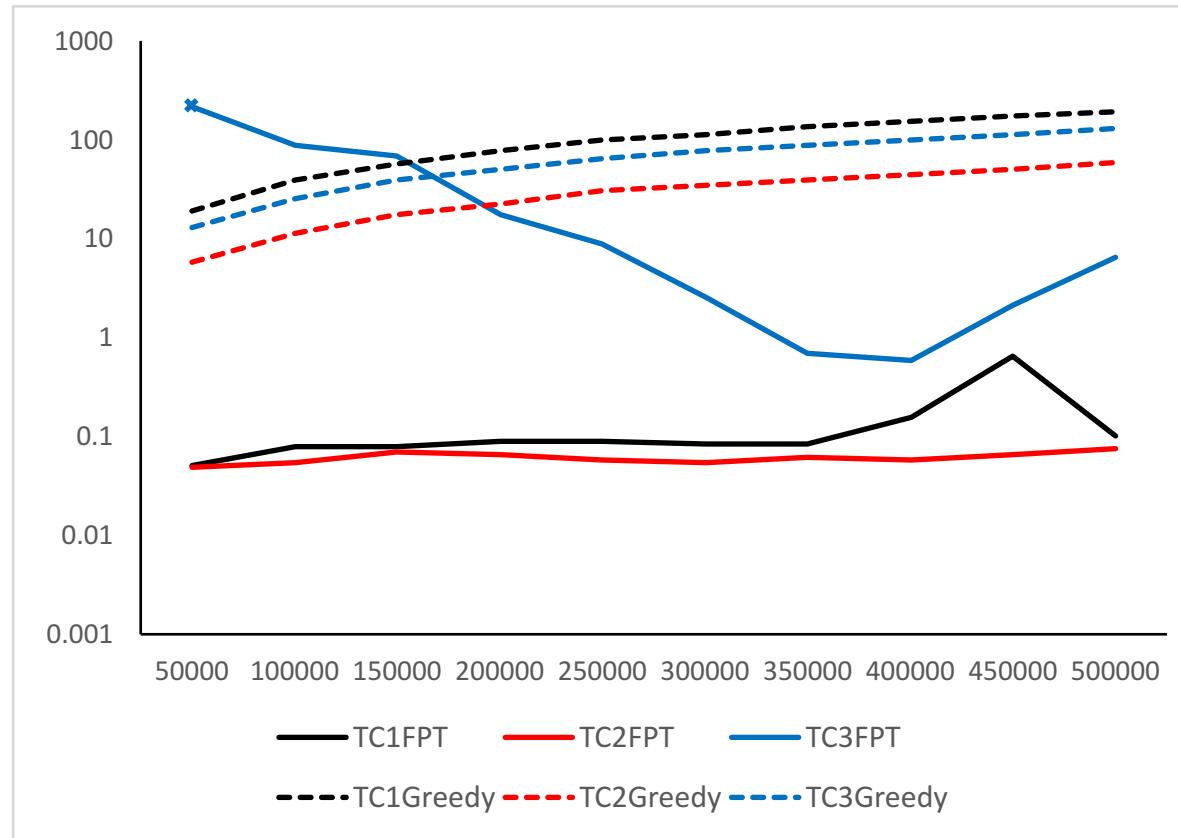
Experimentation: Varying number of skills



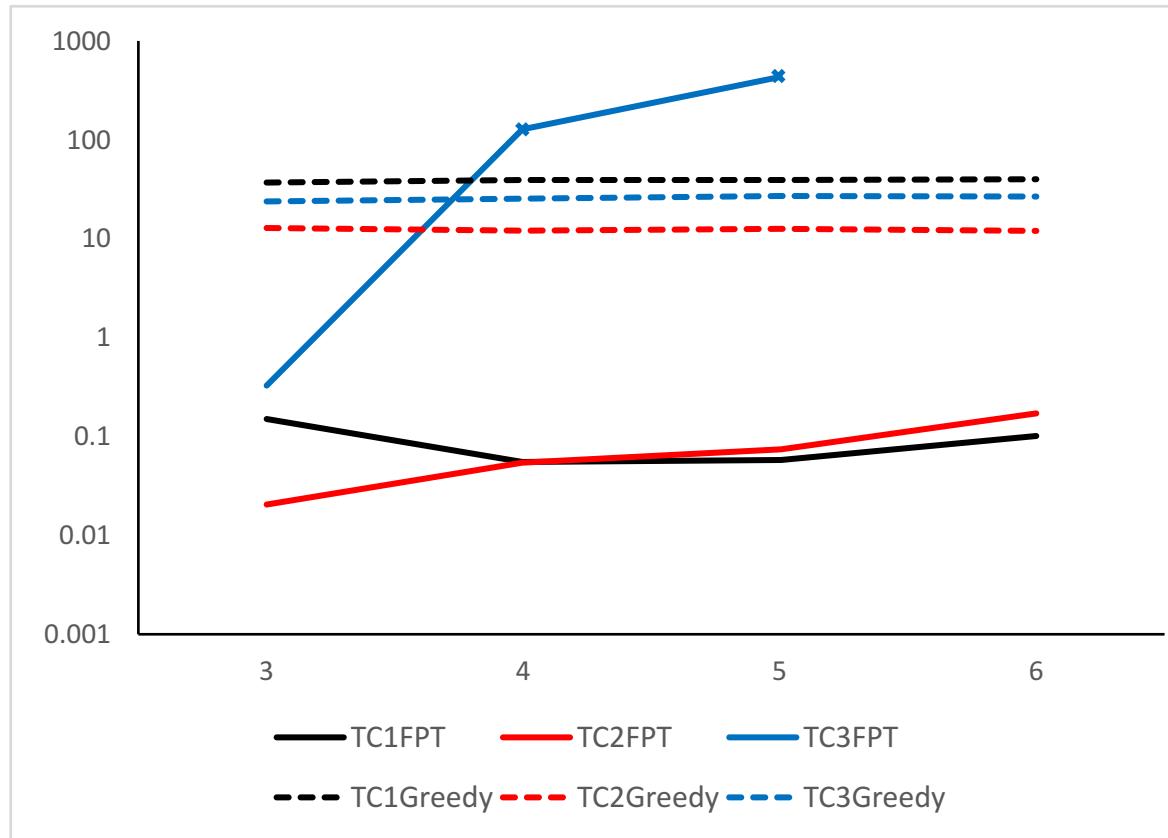
Experimentation: Varying number of properties



Experimentation: Varying number of candidates



Experimentation: Varying property range



Experimentation: Quality of Results (Greedy Vs. FPT)

	TC1	TC2	TC3
Max diff	0	0.25	0.5
Average over all test cases	0	0.01	0.11
Average over test cases in which greedy didn't return optimal result	0	0.25	0.29

Conclusions

- FPT Optimal Algorithm
 - Always returns an optimal result
 - Time increases exponentially with the number of skills, properties and property range
 - Increasing the number of candidates doesn't impact running time (except when the data is skewed)
 - Might take long time to find the optimal solution (especially when the data is skewed)
 - Outperforms the Greedy Algorithm when there is little skew in the data
- Greedy Approximation Algorithm
 - Performs well under all types of data
 - Returns results close to optimal

Questions?

