

Enabling Completeness-aware
Querying in SPARQL

1

Luis Galárraga, Katja Hose, Simon Razniewski

May 14th, 2017

WebDB, Chicago

Outline

● Completeness in RDF knowledge bases
● Completeness oracles
● Our vision

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL

● Summary & conclusions

2

Outline

● Completeness in RDF knowledge bases
● Completeness oracles
● Our vision

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL

● Summary & conclusions

3

Outline

● Completeness in RDF knowledge bases
● Completeness oracles
● Our vision

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL

● Summary & conclusions

4

RDF Knowledge Bases (KBs)

Collection of structured knowledge

5

Français officialLanguage

Switzerland

Romance

family

citizenOf

Leonhard
Euler

officialLanguage
Italianofamily

Plenty of KBs out there!

6

Plenty of KBs out there!

7

KBs in action

8

Outline

● Completeness in RDF knowledge bases
● Completeness oracles
● Our vision

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL
● Summary & conclusions

9

Completeness in RDF KBs

● KBs are highly incomplete
– 1% of people have a citizenship in YAGO

10

Completeness in RDF KBs

● KBs are highly incomplete
– 1% of people have a citizenship in YAGO

● We do not know where the incompleteness lies

11

Completeness in RDF KBs

● KBs are highly incomplete
– 1% of people have a citizenship in YAGO

● We do not know where the incompleteness lies
– A single person in the KB could be actually single or the

KB may be incomplete

12

Completeness in RDF KBs

● KBs are highly incomplete
– 1% of people have a citizenship in YAGO

● We do not know where the incompleteness lies
– A single person in the KB could be actually single or the

KB may be incomplete

● Problems for data producers and consumers

13

Completeness in RDF KBs

● KBs are highly incomplete
– 1% of people have a citizenship in YAGO

● We do not know where the incompleteness lies
– A single person in the KB could be actually single or the

KB may be incomplete

● Problems for data producers and consumers
– Consumers: no completeness guarantees for queries.

– Producers: which parts of the KB need to be populated?

14

Completeness

● Defined with respect to a query q via a complete
hypothetical KB K*.

15

Completeness

● Defined with respect to a query q via a complete
hypothetical KB K*.
– A query q is complete in K, if q(K*) q(K).⊆

16

Completeness

● Defined with respect to a query q via a complete
hypothetical KB K*.
– A query q is complete in K, if q(K*) q(K).⊆

SELECT ?x WHERE { Switzerland officialLang ?x }

17

Français
officialLanguage

Switzerland

officialLanguage
Italiano

Completeness

● Defined with respect to a query q via a complete
hypothetical KB K*.
– A query q is complete in K, if q(K*) q(K).⊆

SELECT ?x WHERE { Switzerland officialLang ?x }

18

 Are these all the official
languages of
Switzerland?

Français
officialLanguage

Switzerland

officialLanguage
Italiano

Completeness

● Defined with respect to a query q via a complete
hypothetical KB K*.
– A query q is complete in K, if q(K*) q(K).⊆

SELECT ?x WHERE { Switzerland officialLang ?x }

19

 Are these all the official
languages of
Switzerland?

Français
officialLanguage

Switzerland

officialLanguage
Italiano

[Incomplete query]

Completeness in RDF data

● Wikidata provides no value annotations

20

Completeness in RDF data

● Wikidata provides no value annotations

SELECT ?x WHERE { USA officialLang ?x }

21

officialLanguage

Completeness in RDF data

● Wikidata provides no value annotations

SELECT ?x WHERE { USA officialLang ?x }

22

officialLanguage

[Complete query]

Completeness in RDF data

● Wikidata provides no value annotations

SELECT ?x WHERE { USA officialLang ?x }

23

officialLanguage

● Not applicable if we know some official language

[Complete query]

Completeness in RDF data

● Wikidata provides no value annotations

SELECT ?x WHERE { USA officialLang ?x }

24

officialLanguage

● Not applicable if we know some official language

[Complete query]

Français
officialLanguage

Switzerland

officialLanguage
Italiano

Outline

● Completeness in RDF knowledge bases
● Completeness oracles
● Our vision

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL
● Summary & conclusions

25

Completeness oracle

● Boolean function ɷ(q, K) that guesses the
completeness of a query q in a KB K.

26

SR completeness oracle

● Function ɷ that guesses the completeness of
queries of the form [Galárraga et. al, 2017]:

27

SELECT ?x WHERE { subject relation ?x }

SR completeness oracle

● Function ɷ that guesses the completeness of
queries of the form [Galárraga et. al, 2017]:

28

SELECT ?x WHERE { subject relation ?x }

● We use the notation ɷ(subject, relation)

SR completeness oracle

● Function ɷ that guesses the completeness of
queries of the form [Galárraga et. al, 2017]:

29

SELECT ?x WHERE { subject relation ?x }

● We use the notation ɷ(subject, relation)
● ɷ = pca(s, r) = partial completeness assumption

SR completeness oracle

● Function ɷ that guesses the completeness of
queries of the form [Galárraga et. al, 2017]:

30

● We use the notation ɷ(subject, relation)
● ɷ = pca(s, r) = partial completeness assumption

– Query is complete in KB if at least one answer
is known

SELECT ?x WHERE { subject relation ?x }

Evaluating SR oracles

ɷ = pca(s, r) = partial completeness assumption

31

Gold standard:
Complete instances in

the domain of
officialLanguage

Français

Italiano

Français

Italiano

Dansk
Français

Evaluating SR oracles

ɷ = pca(s, r) = partial completeness assumption

32

Français

Italiano

Français

Italiano

Dansk
Français

PCA oracle

Gold standard:
Complete instances in

the domain of
officialLanguage

Evaluating SR oracles

ɷ = american-country-oracle(s, r)

33

Français

Italiano

Français

Italiano

Dansk
Français

American country
oracle

PCA oracle

Gold standard:
Complete instances in

the domain of
officialLanguage

Evaluating SR oracles

34

Français

Italiano

Français

Italiano

Dansk
Français

American country
oracle

PCA oracle

PCA oracle
Precision = 3/5
Recall = 3/4

American country oracle
Precision = 1/2
Recall = 1/4

Gold standard:
Complete instances in

the domain of
officialLanguage

SR completeness oracles

● Closed World Assumption: cwa(s, r) = true
● PCA: pca(s, r) = o : r(s, o)∃
● Cardinality: card(s, r) = #(o : r(s, o)) k ≥
● Popular entities: popularitypop(s, r) = pop(s)

● No-chg over time: nochangechg(s, r) = chg(s, r)∼

● Star : starr1,..,rn
(s, r) = i {1,..,n} : o : r∀ ∊ ∃ i(s, o)

● Class: classc(s, r) = type(s, c)

● Rule mining oracle
35

Rule mining SR oracle

36

● Based on completeness rules

notype(x, Adult), type(x, Person) complete(x, hasChild)⇒

dateOfDeath(x, y), lessThan1(x, placeOfDeath) incomplete(x, placeOfDeath)⇒

Rule mining SR oracle

37

● Based on completeness rules

notype(x, Adult), type(x, Person) complete(x, hasChild)⇒

dateOfDeath(x, y), lessThan1(x, placeOfDeath) incomplete(x, placeOfDeath)⇒

● Learned using the AMIE [Galárraga et. al, 2013] rule
mining system
– On gold standard built via crowdsourcing

Rule mining SR oracle

38

● Based on completeness rules

notype(x, Adult), type(x, Person) complete(x, hasChild)⇒

dateOfDeath(x, y), lessThan1(x, placeOfDeath) incomplete(x, placeOfDeath)⇒

● Learned using the AMIE [Galárraga et. al, 2013] rule
mining system
– On gold standard built via crowdsourcing

– 100% F1-measure for functional relations, quite good for
relations hasChild, graduatedFrom

Outline

● Completeness in RDF knowledge bases
● Completeness oracles
● Our vision

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL
● Summary & conclusions

40

Representing completeness oracles

● Extensional approach [Darari, et. Al, 2013]
– An oracle is a collection of completeness statements

about queries

41

Representing completeness oracles

● Extensional approach [Darari, et. Al, 2013]
– An oracle is a collection of completeness statements

about queries

42

SELECT DISTINCT ?y WHERE { ?x hasOfficialLang ?y } is
complete in the KB

Representing completeness oracles

● Extensional approach [Darari, et. Al, 2013]
– An oracle is a collection of completeness statements

about queries

43

statement
hasPattern

pattern
subje

ct ?x

a

predicate hasOfficialLang

hasProjectionVariable

object

?y
a

distinct

Variable

true

SELECT DISTINCT ?y WHERE { ?x hasOfficialLang ?y } is
complete in the KB

Representing completeness oracles

● Extensional approach [Darari, et. Al, 2013]
– A call to the oracle asks for the existence of the query in

the graph

44

statement
hasPattern

pattern
subje

ct ?x

a

predicate hasOfficialLang

hasProjectionVariable

object

?y
a

distinct

Variable

true

SELECT DISTINCT ?y WHERE { ?x hasOfficialLang ?y } is
complete in the KB

Representing completeness oracles

● Intensional approach
– The oracle logic is embedded as a lambda function or a

link to a program or resource

45

Representing completeness oracles

● Intensional approach
– The oracle logic is embedded as a lambda function or a

link to a program or resource

46

pca-citizenship
a SR-Oracle amie-oracle

a

hasFormula

RM-Oracle

 ∃ o : r(s, o)
precision

96%
http://example.org/rest/oracle

address

a

Providing completeness guarantees

List of results is complete according to oracle ɷ with confidence X

47

Providing completeness guarantees

48

Providing completeness guarantees

49

SELECT ?country WHERE {
 ?country officialLang ?lang .
 ?lang family Romance .
}

Providing completeness guarantees

50

SELECT ?country WHERE {
 ?country officialLang ?lang .
 ?lang family Romance .
}

 How to provide
completeness guarantees

for arbitrary queries?

Outline

● Completeness in RDF knowledge bases
● Completeness oracles
● Our vision

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL

51

D completeness oracles

● Oracle ɷd for the completeness of queries:

SELECT DISTINCT ?x WHERE { ?x relation ?y }

SELECT DISTINCT ?y WHERE { ?x relation ?y }

52

D completeness oracles

● Oracle ɷd for the completeness of queries:

● We use the notation ɷd(relation) or ɷd(relation-1)

SELECT DISTINCT ?x WHERE { ?x relation ?y }

SELECT DISTINCT ?y WHERE { ?x relation ?y }

53

SELECT DISTINCT ?y WHERE { ?x officialLang ?y }

D completeness oracles

● Oracle ɷd for the completeness of queries:

● We use the notation ɷd(relation) or ɷd(relation-1)

SELECT DISTINCT ?x WHERE { ?x relation ?y }

SELECT DISTINCT ?y WHERE { ?x relation ?y }

54

SELECT DISTINCT ?y WHERE { ?x officialLang ?y }

● If ɷd returns true, ɷd states that the KB knows all
languages that are official in some country

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

55

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

● Reuse existing SR and D oracles

56

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

● Reuse existing SR and D oracles

57

SELECT ?country WHERE {
 ?country officialLang ?lang .
 ?lang family Romance .
}

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

● Reuse existing SR and D oracles

58

ɷ’ = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, officialLanguage))

SELECT ?country WHERE {
 ?country officialLang ?lang .
 ?lang family Romance .
}

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

● Reuse existing SR and D oracles

59

ɷ’ = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, officialLanguage))

SELECT ?country WHERE {
 ?country officialLang ?lang .
 ?lang family Romance .
}

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

● Reuse existing SR and D oracles

60

ɷ’ = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, officialLang-1))

SELECT ?country WHERE {
 ?country officialLang ?lang .
 ?lang family Romance .
}

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

● Reuse existing SR and D oracles

61

ɷ’ = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, officialLang-1))

SELECT ?country WHERE {
 ?country officialLang ?lang .
 ?lang family Romance .
}

 It will generate
false negatives

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

● Reuse existing SR and D oracles

62

ɷ’ = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, officialLang-1))

SELECT ?country WHERE {
 ?country officialLang ?lang .
 ?lang family Romance .
}

 If the KB misses
Ligurian, this term

returns false

Completeness guarantees for arbitrary
queries

● Write completeness annotations for every possible
type of query
– It requires a large amount of efort

● Reuse existing SR and D oracles

63

ɷ’ = ɷ(Romance, family-1) (∧ ∧l:family(l, Romance) ɷ(l, officialLang-1))

SELECT ?country WHERE {
 ?country officialLang ?lang .
 ?lang family Romance .
}

 Even though this
term does not care,

because Ligurian is not
official in any country

Automatic oracle composition

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

?country
locatedIn

Europe

officialLang ?lang
family

Romance

64

monarch ?monarch

Automatic oracle composition

65

 Projection
variable

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

Automatic oracle composition

66

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

Automatic oracle composition

67

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

 Selective graph pattern

Automatic oracle composition

68

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

Automatic oracle composition

69

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

 Non-selective
graph pattern

Automatic oracle composition

70

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

Automatic oracle composition

71

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

ɷ’’ = ɷd(monarch) ∧

(∧country ɷ(country, monarch))

Automatic oracle composition

72

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

ɷ’’ = ɷd(monarch) ∧

(∧country ɷ(country, monarch))

not needed in case of
Set semantics

Automatic oracle composition

73

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

ɷ’’ = ɷd(monarch) ∧

(∧country ɷ(country, monarch))

Automatic oracle composition

74

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

ɷ’’ = ɷd(monarch) ∧

(∧country ɷ(country, monarch))

ɷ* = ɷ(Romance, family-1)

Automatic oracle composition

75

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

ɷ’’ = ɷd(monarch) ∧

(∧country ɷ(country, monarch))

ɷ* = ɷ(Romance, family-1)

Automatic oracle composition

76

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

ɷ’’ = ɷd(monarch) ∧

(∧country ɷ(country, monarch))

ɷ* = ɷ(Romance, family-1)ɷ** = ∧l : family(l, Romance) ɷ(l, officialLang-1))

Automatic oracle composition

77

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

ɷ’’ = ɷd(monarch) ∧

(∧country ɷ(country, monarch))

ɷ* = ɷ(Romance, family-1)ɷ** = ∧l : family(l, Romance) ɷ(l, officialLang-1))

Completeness veredict = ɷ** ɷ* ɷ’ ɷ’’∧ ∧ ∧

Automatic oracle composition

78

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

ɷ’’ = ɷd(monarch) ∧

(∧country ɷ(country, monarch))

ɷ* = ɷ(Romance, family-1)ɷ** = ∧l : family(l, Romance) ɷ(l, officialLang-1))

Completeness veredict = ɷ** ɷ* ɷ’ ɷ’’∧ ∧ ∧
Confidence = prec(ɷ**) prec(ɷ*) prec(ɷ’) prec(ɷ’’)⨉ ⨉ ⨉

Automatic oracle composition

79

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

ɷ’’ = ɷd(monarch) ∧

(∧country ɷ(country, monarch))

ɷ* = ɷ(Romance, family-1)ɷ** = ∧l : family(l, Romance) ɷ(l, officialLang-1))

Completeness veredict = ɷ** ɷ* ɷ’ ɷ’’∧ ∧ ∧

It could easily lead to
false negatives

Confidence = prec(ɷ**) prec(ɷ*) prec(ɷ’) prec(ɷ’’)⨉ ⨉ ⨉

Automatic oracle composition

80

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

ɷ’’ = ɷd(monarch) ∧

(∧country ɷ(country, monarch))

ɷ* = ɷ(Romance, family-1)ɷ** = ∧l : family(l, Romance) ɷ(l, officialLang-1))

Completeness veredict = ɷ** ɷ* ɷ’ ɷ’’∧ ∧ ∧

We would like to
minimize the number

of used oracles

Confidence = prec(ɷ**) prec(ɷ*) prec(ɷ’) prec(ɷ’’)⨉ ⨉ ⨉

Automatic oracle composition

81

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
 ?country monarch ?monarch .
 ?country locatedIn Europe .
 ?country officialLang ?lang .
 ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

ɷ’’ = ɷd(monarch) ∧

(∧country ɷ(country, monarch))

ɷ* = ɷ(Romance, family-1)ɷ** = ∧l : family(l, Romance) ɷ(l, officialLang-1))

Completeness veredict = ɷ** ɷ* ɷ’ ɷ’’∧ ∧ ∧

We would like to
minimize the number

of used oracles

Confidence = prec(ɷ**) prec(ɷ*) prec(ɷ’) prec(ɷ’’)⨉ ⨉ ⨉

Use more complex oracles
that cover larger parts of
the query graph at once

Outline

● Completeness in RDF knowledge bases
● Completeness oracles
● Our vision

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL
● Summary & conclusions

82

Enabling completeness in SPARQL

● Calls to completeness oracles could be embedded
in the query language

83

Enabling completeness in SPARQL

● Calls to completeness oracles could be embedded
in the query language
– Example: aggregated number of Spanish speakers in a

county per state, only for those states with complete
information

84

Enabling completeness in SPARQL

● Calls to completeness oracles could be embedded
in the query language
– Example: aggregated number of Spanish speakers in a

county per state, only for those states with complete
information

SELECT ?state sum(?nspeak) WHERE {
 ?county inState ?state .
 ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))

85

Enabling completeness in SPARQL

● Calls to completeness oracles could be embedded
in the query language
– Example: aggregated number of Spanish speakers in a

county per state, only for those states with complete
information

86

Boolean aggregation
function on sets of bindings

SELECT ?state sum(?nspeak) WHERE {
 ?county inState ?state .
 ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))

Enabling completeness in SPARQL

● For each value of ?state check if the bindings
for ?nspeak are complete

87

?state ?county ?nspeak

Delaware
New Castle 2000

Kent 4300
Sussex 1200

Hawaii
Hawaii 30000

Kalawao 1200

SELECT ?state sum(?nspeak) WHERE {
 ?county inState ?state .
 ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))

 Complete list?

Enabling completeness in SPARQL

● For each value of ?state check if the bindings
for ?nspeak are complete

88

?state ?county ?nspeak

Delaware
New Castle 2000

Kent 4300
Sussex 1200

Hawaii
Hawaii 30000

Kalawao 1200

SELECT ?state sum(?nspeak) WHERE {
 ?county inState ?state .
 ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))

SELECT complete(?nspeak) WHERE {
 ?county inState Delaware .
 ?county spanishSpeakers ?nspeak .
}

Enabling completeness in SPARQL

● For each value of ?state check if the bindings
for ?nspeak are complete

89

?state ?county ?nspeak

Delaware
New Castle 2000

Kent 4300
Sussex 1200

Hawaii
Hawaii 30000

Kalawao 1200

SELECT ?state sum(?nspeak) WHERE {
 ?county inState ?state .
 ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))

SELECT complete(?nspeak) WHERE {
 ?county inState Delaware .
 ?county spanishSpeakers ?nspeak .
}

Completeness oracles
to the rescue!

Outline

● Completeness in RDF knowledge bases
● Completeness oracles
● Our vision

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL
● Summary & conclusions

90

Summary

● Completeness is a dimension of data quality
– It determines the value and reliability of the data

– Existing work provides only completeness statements and
oracles for simple queries

● Semantic Web is not completeness-aware
– Vision

● Use completeness oracles for simpler queries to infer
completeness for arbitrary queries

● Embed completeness in the SPARQL query language

– Goal: Increase the value of the results delivered by
queries

91

Future work

● Augment existing RDF data with completeness
statements and oracles

● Implement reasoning with completeness oracles in
SPARQL query engines
– Extend the SPARQL query language to support the

complete aggregation function

92

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92

