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RDF Knowledge Bases (KBs)

Collection of structured knowledge
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Français officialLanguage

Switzerland

Romance

family

citizenOf

Leonhard 
Euler 

officialLanguage
Italianofamily



  

Plenty of KBs out there! 
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KBs in action 
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Completeness in RDF KBs

● KBs are highly incomplete
– 1% of people have a citizenship in YAGO

● We do not know where the incompleteness lies
– A single person in the KB could be actually single or the 

KB may be incomplete

● Problems for data producers and consumers
– Consumers: no completeness guarantees for queries.

– Producers: which parts of the KB need to be populated?
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Completeness
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hypothetical KB K*. 
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● Defined with respect to a query q via a complete 
hypothetical KB K*.
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  Are these all the official
languages of 
Switzerland? 

Français
officialLanguage

Switzerland

officialLanguage
Italiano

[Incomplete query]



  

Completeness in RDF data

● Wikidata provides no value annotations
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Completeness oracle

● Boolean function ɷ(q, K) that guesses the 
completeness of a query q in a KB K. 
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SR completeness oracle

● Function ɷ that guesses the completeness of 
queries of the form [Galárraga et. al, 2017]:  
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SR completeness oracle

● Function ɷ that guesses the completeness of 
queries of the form [Galárraga et. al, 2017]:
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● We use the notation ɷ(subject, relation)
● ɷ = pca(s, r) = partial completeness assumption

– Query is complete in KB if at least one answer 
is known

SELECT ?x WHERE { subject relation ?x }



  

Evaluating SR oracles

ɷ = pca(s, r) = partial completeness assumption
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Gold standard: 
Complete instances in 

the domain of 
officialLanguage
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Evaluating SR oracles

ɷ = pca(s, r) = partial completeness assumption
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Français

Italiano

Français

Italiano

Dansk
Français

PCA oracle

Gold standard: 
Complete instances in 

the domain of 
officialLanguage



  

Evaluating SR oracles

ɷ = american-country-oracle(s, r)
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Français

Italiano

Français

Italiano

Dansk
Français

American country 
oracle

PCA oracle

Gold standard: 
Complete instances in 

the domain of 
officialLanguage



  

Evaluating SR oracles
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Français

Italiano

Français

Italiano

Dansk
Français

American country 
oracle

PCA oracle

PCA oracle
Precision = 3/5
Recall = 3/4

American country oracle
Precision = 1/2
Recall = 1/4

Gold standard: 
Complete instances in 

the domain of 
officialLanguage



  

SR completeness oracles

● Closed World Assumption: cwa(s, r) = true
● PCA: pca(s, r) =  o : r(s, o)∃
● Cardinality: card(s, r) = #(o : r(s, o))  k ≥
● Popular entities: popularitypop(s, r) = pop(s)  

● No-chg over time: nochangechg(s, r) = chg(s, r)∼

● Star : starr1,..,rn
(s, r) =  i  {1,..,n} :  o : r∀ ∊ ∃ i(s, o)

● Class: classc(s, r) = type(s, c)

● Rule mining oracle
35



  

Rule mining SR oracle
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● Based on completeness rules 

notype(x, Adult), type(x, Person)  complete(x, hasChild)⇒

dateOfDeath(x, y), lessThan1(x, placeOfDeath)  incomplete(x, placeOfDeath)⇒
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Rule mining SR oracle

38

● Based on completeness rules 

notype(x, Adult), type(x, Person)  complete(x, hasChild)⇒

dateOfDeath(x, y), lessThan1(x, placeOfDeath)  incomplete(x, placeOfDeath)⇒

● Learned using the AMIE [Galárraga et. al, 2013] rule 
mining system
– On gold standard built via crowdsourcing

– 100% F1-measure for functional relations, quite good for 
relations hasChild, graduatedFrom   
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SELECT DISTINCT ?y WHERE { ?x hasOfficialLang ?y } is 
complete in the KB
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a

distinct
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SELECT DISTINCT ?y WHERE { ?x hasOfficialLang ?y } is 
complete in the KB



  

Representing completeness oracles

● Extensional approach [Darari, et. Al, 2013]
– A call to the oracle asks for the existence of the query in 

the graph 
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statement
hasPattern

pattern
subje

ct ?x

a

predicate hasOfficialLang

hasProjectionVariable

object

?y
a

distinct

Variable

true

SELECT DISTINCT ?y WHERE { ?x hasOfficialLang ?y } is 
complete in the KB



  

Representing completeness oracles

● Intensional approach
– The oracle logic is embedded as a lambda function or a 

link to a program or resource   
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Representing completeness oracles

● Intensional approach
– The oracle logic is embedded as a lambda function or a 

link to a program or resource   
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pca-citizenship
a SR-Oracle amie-oracle

a

hasFormula

RM-Oracle

 ∃ o : r(s, o)
precision

96%
http://example.org/rest/oracle

address

a



  

Providing completeness guarantees

List of results is complete according to oracle ɷ with confidence X
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Providing completeness guarantees
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SELECT ?country WHERE {  
    ?country officialLang ?lang .
    ?lang family Romance .
}

  How to provide 
completeness guarantees 

for arbitrary queries? 
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D completeness oracles

● Oracle ɷd for the completeness of queries:

SELECT DISTINCT ?x WHERE { ?x relation ?y }

SELECT DISTINCT ?y WHERE { ?x relation ?y }
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D completeness oracles

● Oracle ɷd for the completeness of queries:

● We use the notation ɷd(relation) or ɷd(relation-1)
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SELECT DISTINCT ?y WHERE { ?x relation ?y }
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SELECT DISTINCT ?y WHERE { ?x officialLang ?y }



  

D completeness oracles

● Oracle ɷd for the completeness of queries:

● We use the notation ɷd(relation) or ɷd(relation-1)

SELECT DISTINCT ?x WHERE { ?x relation ?y }

SELECT DISTINCT ?y WHERE { ?x relation ?y }
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SELECT DISTINCT ?y WHERE { ?x officialLang ?y }

● If ɷd returns true, ɷd states that the KB knows all 
languages that are official in some country 



  

Completeness guarantees for arbitrary 
queries

● Write completeness annotations for every possible 
type of query 
– It requires a large amount of efort
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SELECT ?country WHERE {  
    ?country officialLang ?lang .
    ?lang family Romance .
}



  

Completeness guarantees for arbitrary 
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ɷ’ = ɷ(Romance, family-1)  (∧ ∧l:family(l, Romance) ɷ(l, officialLanguage))

SELECT ?country WHERE {  
    ?country officialLang ?lang .
    ?lang family Romance .
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ɷ’ = ɷ(Romance, family-1)  (∧ ∧l:family(l, Romance) ɷ(l, officialLang-1))

SELECT ?country WHERE {  
    ?country officialLang ?lang .
    ?lang family Romance .
}

  It will generate 
false negatives 



  

Completeness guarantees for arbitrary 
queries

● Write completeness annotations for every possible 
type of query 
– It requires a large amount of efort

● Reuse existing SR and D oracles 
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ɷ’ = ɷ(Romance, family-1)  (∧ ∧l:family(l, Romance) ɷ(l, officialLang-1))

SELECT ?country WHERE {  
    ?country officialLang ?lang .
    ?lang family Romance .
}

  If the KB misses 
Ligurian, this term

returns false 



  

Completeness guarantees for arbitrary 
queries

● Write completeness annotations for every possible 
type of query 
– It requires a large amount of efort

● Reuse existing SR and D oracles 
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ɷ’ = ɷ(Romance, family-1)  (∧ ∧l:family(l, Romance) ɷ(l, officialLang-1))

SELECT ?country WHERE {  
    ?country officialLang ?lang .
    ?lang family Romance .
}

  Even though this 
term does not care, 

because Ligurian is not 
official in any country



  

Automatic oracle composition

SELECT ?country WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country officialLang ?lang .
    ?lang family Romance .
}

?country
locatedIn

Europe

officialLang ?lang
family

Romance

64

monarch ?monarch



  

Automatic oracle composition
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  Projection 
variable 

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country officialLang ?lang .
    ?lang family Romance .
}



  

Automatic oracle composition
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Automatic oracle composition
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?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country officialLang ?lang .
    ?lang family Romance .
}

  Selective graph pattern 



  

Automatic oracle composition

68

?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country officialLang ?lang .
    ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)



  

Automatic oracle composition
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?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country officialLang ?lang .
    ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

  Non-selective 
graph pattern 



  

Automatic oracle composition
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Automatic oracle composition
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?country
locatedIn

Europe

officialLang ?lang
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    ?country officialLang ?lang .
    ?lang family Romance .
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ɷ’ = ɷ(Europe, locatedIn-1)
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Automatic oracle composition
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?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country officialLang ?lang .
    ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

ɷ’’ = ɷd(monarch)  ∧

(∧country ɷ(country, monarch))

not needed in case of 
Set semantics



  

Automatic oracle composition
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Automatic oracle composition
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Automatic oracle composition
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Automatic oracle composition
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Automatic oracle composition
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?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
    ?country monarch ?monarch .  
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}
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Automatic oracle composition
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?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country officialLang ?lang .
    ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

ɷ’’ = ɷd(monarch)  ∧

(∧country ɷ(country, monarch))

ɷ* = ɷ(Romance, family-1)ɷ** = ∧l : family(l, Romance) ɷ(l, officialLang-1))

Completeness veredict = ɷ**  ɷ*  ɷ’  ɷ’’∧ ∧ ∧
Confidence = prec(ɷ**)  prec(ɷ*)   prec(ɷ’)  prec(ɷ’’)⨉ ⨉ ⨉



  

Automatic oracle composition
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?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country officialLang ?lang .
    ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

ɷ’’ = ɷd(monarch)  ∧

(∧country ɷ(country, monarch))

ɷ* = ɷ(Romance, family-1)ɷ** = ∧l : family(l, Romance) ɷ(l, officialLang-1))

Completeness veredict = ɷ**  ɷ*  ɷ’  ɷ’’∧ ∧ ∧

It could easily lead to 
false negatives

Confidence = prec(ɷ**)  prec(ɷ*)   prec(ɷ’)  prec(ɷ’’)⨉ ⨉ ⨉



  

Automatic oracle composition
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?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country officialLang ?lang .
    ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

ɷ’’ = ɷd(monarch)  ∧

(∧country ɷ(country, monarch))

ɷ* = ɷ(Romance, family-1)ɷ** = ∧l : family(l, Romance) ɷ(l, officialLang-1))

Completeness veredict = ɷ**  ɷ*  ɷ’  ɷ’’∧ ∧ ∧

We would like to 
minimize the number

of used oracles 

Confidence = prec(ɷ**)  prec(ɷ*)   prec(ɷ’)  prec(ɷ’’)⨉ ⨉ ⨉



  

Automatic oracle composition
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?country
locatedIn

Europe

officialLang ?lang
family

Romance

monarch ?monarch

SELECT ?country WHERE {
    ?country monarch ?monarch .  
    ?country locatedIn Europe .
    ?country officialLang ?lang .
    ?lang family Romance .
}

ɷ’ = ɷ(Europe, locatedIn-1)

ɷ’’ = ɷd(monarch)  ∧

(∧country ɷ(country, monarch))

ɷ* = ɷ(Romance, family-1)ɷ** = ∧l : family(l, Romance) ɷ(l, officialLang-1))

Completeness veredict = ɷ**  ɷ*  ɷ’  ɷ’’∧ ∧ ∧

We would like to 
minimize the number

of used oracles 

Confidence = prec(ɷ**)  prec(ɷ*)   prec(ɷ’)  prec(ɷ’’)⨉ ⨉ ⨉

Use more complex oracles
that cover larger parts of
the query graph at once
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Enabling completeness in SPARQL

● Calls to completeness oracles could be embedded 
in the query language
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● Calls to completeness oracles could be embedded 
in the query language
– Example: aggregated number of Spanish speakers in a 

county per state, only for those states with complete 
information  
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Enabling completeness in SPARQL

● Calls to completeness oracles could be embedded 
in the query language
– Example: aggregated number of Spanish speakers in a 

county per state, only for those states with complete 
information  

SELECT ?state sum(?nspeak) WHERE {  
    ?county inState ?state .
    ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))
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Enabling completeness in SPARQL

● Calls to completeness oracles could be embedded 
in the query language
– Example: aggregated number of Spanish speakers in a 

county per state, only for those states with complete 
information  
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Boolean aggregation 
function on sets of bindings

SELECT ?state sum(?nspeak) WHERE {  
    ?county inState ?state .
    ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))



  

Enabling completeness in SPARQL

● For each value of ?state check if the bindings 
for ?nspeak are complete

87

?state ?county ?nspeak

Delaware
New Castle 2000

Kent 4300
Sussex 1200

Hawaii
Hawaii 30000

Kalawao 1200

SELECT ?state sum(?nspeak) WHERE {  
    ?county inState ?state .
    ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))

 Complete list? 



  

Enabling completeness in SPARQL

● For each value of ?state check if the bindings 
for ?nspeak are complete
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?state ?county ?nspeak

Delaware
New Castle 2000

Kent 4300
Sussex 1200

Hawaii
Hawaii 30000

Kalawao 1200

SELECT ?state sum(?nspeak) WHERE {  
    ?county inState ?state .
    ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))

SELECT complete(?nspeak) WHERE {  
    ?county inState Delaware .
    ?county spanishSpeakers ?nspeak .
}



  

Enabling completeness in SPARQL

● For each value of ?state check if the bindings 
for ?nspeak are complete
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?state ?county ?nspeak

Delaware
New Castle 2000

Kent 4300
Sussex 1200

Hawaii
Hawaii 30000

Kalawao 1200

SELECT ?state sum(?nspeak) WHERE {  
    ?county inState ?state .
    ?county spanishSpeakers ?nspeak .
} GROUP BY ?state HAVING (complete(?nspeak))

SELECT complete(?nspeak) WHERE {  
    ?county inState Delaware .
    ?county spanishSpeakers ?nspeak .
}

Completeness oracles 
to the rescue!



  

Outline

● Completeness in RDF knowledge bases
● Completeness oracles
● Our vision

– Representations for completeness oracles

– Reasoning with completeness oracles

– Enabling completeness in SPARQL
● Summary & conclusions
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Summary

● Completeness is a dimension of data quality
– It determines the value and reliability of the data

– Existing work provides only completeness statements and 
oracles for simple queries

● Semantic Web is not completeness-aware
– Vision 

● Use completeness oracles for simpler queries to infer 
completeness for arbitrary queries

● Embed completeness in the SPARQL query language

– Goal: Increase the value of the results delivered by 
queries 
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Future work

● Augment existing RDF data with completeness 
statements and oracles

● Implement reasoning with completeness oracles in 
SPARQL query engines
– Extend the SPARQL query language to support the 

complete aggregation function
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