%

unibz T .

?
(G o

(v]
E— R6 yive

Enabling Completeness-aware
Querying in SPARQL

Luis Galarraga, Katja Hose, Simon Razniewski

May 14*, 2017
WebDB, Chicago

Outline

Completeness in RDF knowledge bases
Completeness oracles

Our vision
— Representations for completeness oracles
— Reasoning with completeness oracles

— Enabling completeness in SPARQL

Summary & conclusions

Outline

Completeness in RDF knowledge bases

Outline

RDF knowledge bases

RDF Knowledge Bases (KBs)

Collection of structured knowledge

. officialLanguage
family Fra ais etias

koc Cr 7~7- fey /
RS, ~ officialLanguage
ita no =

Romance family

Switzerland

citizenOf

Leonhard
Euler

Plenty of KBs out there!

Publications

—|ncoming Links
ms==outgoing Links

/

]
7

/

2

Plenty of KBs out there!

Legend

‘Government

Publications

—|ncoming Links @
ms==outgoing Links

Lk

select knowledge

WIKIDATA

Y :
@ @ k“ ¥ Y, 2 { y

o - \ o ©g®

02006 % Ga eE 09 o1 ®

KBs In action

official languages of switzerland

All Shopping Mews Images Maps Maore

H Switzerland » Official languages

French Romansh

German Italian

Settings

Q

Tools

Outline

Completeness in RDF knowledge bases

Completeness in RDF KBs

 KBs are highly incomplete
- 1% of people have a citizenship in YAGO

10

Completeness in RDF KBs

 KBs are highly incomplete
- 1% of people have a citizenship in YAGO

 We do not know where the incompleteness lies

11

Completeness in RDF KBs

 KBs are highly incomplete
- 1% of people have a citizenship in YAGO

 We do not know where the incompleteness lies

— A single person in the KB could be actually single or the
KB may be incomplete

12

Completeness in RDF KBs

 KBs are highly incomplete
- 1% of people have a citizenship in YAGO

 We do not know where the incompleteness lies

— A single person in the KB could be actually single or the
KB may be incomplete

* Problems for data producers and consumers

13

Completeness in RDF KBs

 KBs are highly incomplete
- 1% of people have a citizenship in YAGO

 We do not know where the incompleteness lies

— A single person in the KB could be actually single or the
KB may be incomplete

* Problems for data producers and consumers
— Consumers: no completeness guarantees for queries.

— Producers: which parts of the KB need to be populated?

14

Completeness

e Defined with respect to a query q via a complete
hypothetical KB K*,

15

Completeness

e Defined with respect to a query q via a complete
hypothetical KB K*,

- A query q is complete in K, iff q(K*) < q(K).

16

Completeness

e Defined with respect to a query q via a complete
hypothetical KB K*,

- A query q is complete in K, iff q(K*) < q(K).

SELECT 7?x WHERE { Switzerland officialLang 7x }

. officialLanguage
Fra ais « sHag

officialLanguage
Ita no =

Switzerland

17

Completeness

e Defined with respect to a query q via a complete
hypothetical KB K*,

- A query q is complete in K, iff q(K*) < q(K).

SELECT 7?x WHERE { Switzerland officialLang 7x }

Fra ais - officialLanguage Are these all the official
. languages of
officialLanguage Swi land?
Ita no <= witzerland!

Switzerland

.22,

Completeness

e Defined with respect to a query q via a complete
hypothetical KB K*,

- A query q is complete in K, iff q(K*) < q(K).

SELECT 7?x WHERE { Switzerland officialLang 7x }

Fra ais - officialLanguage Are these all the official
. languages of
officialLanguage Swi land?
Ita no <= witzerland!

[Incomplete query] Switzerland

.22,

Completeness in RDF data

* Wikidata provides no value annotations

20

Completeness in RDF data

* Wikidata provides no value annotations

SELECT 7?x WHERE { USA officialLang ?x }

officialLanguage

21

Completeness in RDF data

* Wikidata provides no value annotations

SELECT 7?x WHERE { USA officialLang ?x }

officialLanguage

[Complete query]

22

Completeness in RDF data

* Wikidata provides no value annotations

SELECT 7?x WHERE { USA officialLang ?x }

officialLanguage

[Complete query]

* Not applicable if we know some official language

23

Completeness in RDF data

* Wikidata provides no value annotations

SELECT 7?x WHERE { USA officialLang ?x }

officialLanguage

[Complete query]
* Not applicable if we know some official language

. officialLanguage
Fra ais <« —
officialLanguage

Iita no =

Switzerland

24

Outline

Completeness oracles

25

Completeness oracle

* Boolean function @(q, K) that guesses the
completeness of a query g in a KB K

26

SR completeness oracle

e Function ® that guesses the completeness of
queries of the form [Galarraga et. al, 2017]:

SELECT 7x WHERE { subject relation 7x }

27

SR completeness oracle

e Function ® that guesses the completeness of
queries of the form [Galarraga et. al, 2017]:

SELECT 7x WHERE { subject relation 7x }

e We use the notation eo(subject, relation)

28

SR completeness oracle

e Function ® that guesses the completeness of
queries of the form [Galarraga et. al, 2017]:

SELECT 7x WHERE { subject relation 7x }

* We use the notation o(subject, relation)

* ® = pca(s, r) = partial completeness assumption

29

SR completeness oracle

e Function ® that guesses the completeness of
queries of the form [Galarraga et. al, 2017]:

SELECT 7x WHERE { subject relation 7x }

* We use the notation o(subject, relation)
* ® = pca(s, r) = partial completeness assumption

— Query is complete in KB if at least one answer
Is known

30

Evaluating SR oracles

@ = pca(s, r) = partial completeness assumption

Gold standard:
Complete instances in
the domain of
officialLanguage

Fra ais

Fra ais

Ita no

31

Evaluating SR oracles

@ = pca(s, r) = partial completeness assumption

Gold standard:
Complete instances in
the domain of
officialLanguage

PCA oracle

Fra ais

Ita no

32

Evaluating SR oracles

® = american-country-oracle(s, r)

Gold standard:
Complete instances in
the domain of
officialLanguage

PCA oracle

Fra ais

Ita no

American country

oracle 33

Evaluating SR oracles

PCA oracle American country oracle
Precision = 3/5 Precision = 1/2
Recall = 3/4 Recall = 1/4

Gold standard:
Complete instances in
the domain of
officialLanguage

PCA oracle

Fra ais

Ita no

American country

oracle 34

SR completeness oracles

e Closed World Assumption: cwa(s, r) = true
e PCA: pca(s, r) = do:r(s, o)

 Cardinality: card(s, r) = #(o : r(s, 0)) = k
 Popular entities: popularity,,.(s, r) = pop(s)

e No-chg over time: nochange,,(s, r) = ~chg(s, r)

e Star : star, (s, r)=Vi€e{l,..,n}:3o:r(s o)

e Class: class (s, r) = type(s, c)

e Rule mining oracle

35

Rule mining SR oracle

* Based on completeness rules

notype(x, Adult), type(x, Person) = complete(x, hasChild)
dateOfDeath(x, y), lessThan, (x, placeOfDeath)= incomplete(x, placeOfDeath)

36

Rule mining SR oracle

* Based on completeness rules

notype(x, Adult), type(x, Person) = complete(x, hasChild)
dateOfDeath(x, y), lessThan, (x, placeOfDeath)= incomplete(x, placeOfDeath)

 Learned using the AMIE [Galarraga et. al, 2013] rule
mining system

— On gold standard built via crowdsourcing

37

Rule mining SR oracle

* Based on completeness rules

notype(x, Adult), type(x, Person) = complete(x, hasChild)
dateOfDeath(x, y), lessThan,(x, placeOfDeath)= incomplete(x, placeOfDeath)

 Learned using the AMIE [Galarraga et. al, 2013] rule
mining system
— On gold standard built via crowdsourcing

— 100% F1-measure for functional relations, quite good for
relations hasChild, graduatedFrom

38

Outline

Our vision

— Representations for completeness oracles

40

Representing completeness oracles

 Extensional approach [Darari, et. Al, 2013]

— An oracle is a collection of completeness statements
about queries

41

Representing completeness oracles

 Extensional approach [Darari, et. Al, 2013]

— An oracle is a collection of completeness statements
about queries

SELECT DISTINCT ?y WHERE { ?x hasOfficialLang ?y } is
complete in the KB

42

Representing completeness oracles

 Extensional approach [Darari, et. Al, 2013]

— An oracle is a collection of completeness statements
about queries

SELECT DISTINCT ?y WHERE { ?x hasOfficialLang 7y } is

complete in the KB - Variable

o hasPattern S

] ‘\
x
(_statement > pattern

R é: hasOfficialLang
distinct ' -
h g
.a > S ~ a

?

43

Representing completeness oracles

 Extensional approach [Darari, et. Al, 2013]

— A call to the oracle asks for the existence of the query in
the graph
SELECT DISTINCT ?y WHERE { 7x hasOfficialLang ?y } is

complete in the KB . Variable
- hasPattern [

] ‘\
s x
(_statement > pattern

T~ é: hasOfficialLang
distinct h - oé/é,c[I

?

44

Representing completeness oracles

 |ntensional approach

— The oracle logic is embedded as a lambda function or a
link to a program or resource

45

Representing completeness oracles

 |ntensional approach

— The oracle logic is embedded as a lambda function or a
link to a program or resource

- . . RM-Oracle
_ pea-citizenship > SR-Oracle <~ . ~ <
.. - ddress
precision \ @
i hasFormuIa Jdo: r(s, O)

http://example.org/rest/oracle

96%

46

Providing completeness guarantees

official languages of switzerland Q,

All Shopping News Images Maps Maore Settings Tools

H Switzerland » Official languages

French Romansh

German Italian

List of results is complete according to oracle ® with confidence X

47

Providing completeness guarantees

countries with official romance languages Q
Todos Imagenes Moticias \ideos Maps Mas Preferencias Herramientas
Cerca de 13,000,000 resultados (0.67 segundos)

Romance-speaking Europe - Wikipedia
https://en.wikipedia.org/wiki’Romance-speaking_Europe ~ Traducir esta pagina

Pasar a Countries - Countries / Temritories, Romance languages used, Religion, Area ... it has a sole
official language of English even though the vast ...

Providing completeness guarantees

countries with official romance languages Q

Todos magenes Moticias \ideos Maps Mas Preferencias Herramientas

Cerca de 13,000,000 resultados (0.67 segundos

Romance-speaking Europe - Wikipedia
https://en.wikipedia.org/wiki’Romance-speaking_Europe ~ Traducir esta pagina

Pasar a Countries - Countries / Temritories, Romance languages used, Religion, Area ... it has a sole
official language of English even though the vast ...

SELECT ?country WHERE {
?country officialLang ?lang .
?lang family Romance .

h

49

Providing completeness guarantees

countries with official romance languages Q
Todos magenes Moticias \ideos Maps Mas Preferencias Herramientas
Cerca de 13.000.00 resultado 67 segundo

Romance-speaking Europe - Wikipedia
https://en.wikipedia.org/wiki’Romance-speaking_Europe ~ Traducir esta pagina

Pasar a Countries - Countries / Teritories, Romance languages used, Religion, Area ... it has a -
official language of English even though the vast ...

How to provide
completeness guarantees

SELECT ?country WHERE { for arbitrary queries?
?country officialLang ?lang .
?lang family Romance .

h

50

Outline

e Qur vision

— Reasoning with completeness oracles

51

D completeness oracles

e Oracle @4 for the completeness of queries:

SELECT DISTINCT ?x WHERE { 7x relation 7y }
SELECT DISTINCT ?y WHERE { 7x relation 7y }

52

D completeness oracles

e Oracle @4 for the completeness of queries:

SELECT DISTINCT ?x WHERE { 7x relation 7y }
SELECT DISTINCT ?y WHERE { 7x relation 7y }

» We use the notation e,(relation) or @ (relation)

SELECT DISTINCT ?y WHERE { ?x officialLang ?y }

53

D completeness oracles

e Oracle @4 for the completeness of queries:

SELECT DISTINCT ?x WHERE { 7x relation 7y }
SELECT DISTINCT ?y WHERE { 7x relation 7y }

» We use the notation eo,(relation) or @ (relation)
SELECT DISTINCT ?y WHERE { ?x officialLang ?y }

o If @4 returns true, @, states that the KB knows all
languages that are official in some country

54

Completeness guarantees for arbitrary
queries

* Write completeness annotations for every possible
type of query

- It requires a large amount of effort

55

Completeness guarantees for arbitrary
queries

* Write completeness annotations for every possible
type of query

- It requires a large amount of effort

* Reuse existing SR and D oracles

56

Completeness guarantees for arbitrary
queries

* Write completeness annotations for every possible
type of query

- It requires a large amount of effort

* Reuse existing SR and D oracles

SELECT ?country WHERE {
?country officialLang ?lang .
?lang family Romance .

h

57

Completeness guarantees for arbitrary
queries

* Write completeness annotations for every possible
type of query

- It requires a large amount of effort

* Reuse existing SR and D oracles

SELECT ?country WHERE {
?country officialLang ?lang .
?lang family Romance .

h

58

Completeness guarantees for arbitrary
queries

* Write completeness annotations for every possible
type of query

- It requires a large amount of effort

* Reuse existing SR and D oracles

SELECT ?country WHERE {
?country officialLang ?lang .
?lang family Romance .

h

® = o(Romance, family?)

59

Completeness guarantees for arbitrary

queries

* Write completeness annotations for every possible
type of query

- It requires a large amount of effort

* Reuse existing SR and D oracles

SELECT ?country WHERE {
?country officialLang ?lang .

?lang family Romance .

h

o = o(Romance, family?) A (A , o1, officialLang™))

l:family(l, Romance

60

Completeness guarantees for arbitrary
queries

* Write completeness annotations for every possible
type of query

- It requires a large amount of effort

* Reuse existing SR and D oracles

SELECT ?country WHERE {
?country officialLang ?lang

?lang family Romance .
h

® = ®o(Romance, family') A (A

It will generate
false negatives

) o(l, officialLang™))

l:family(l, Romance

61

Completeness guarantees for arbitrary

queries

* Write completeness annotations for every possible
type of query

- It requires a large amount of effort

* Reuse existing SR and D oracles

[fthe KB misses - SE|ECT ?country WHERE {
SHrtat, T FEr ?country officialLang ?lang .

returns false
?lang family Romance .

h

o = o(Romance, family?) A (A , o1, officialLang™))

l:family(l, Romance

62

Completeness guarantees for arbitrary
queries

* Write completeness annotations for every possible
type of query

- It requires a large amount of effort

* Reuse existing SR and D oracles
Even though this
term does not care,

SELECT ?Country WHERE { because Ligurian is not
?country officialLang ?lang . official in any country
?lang family Romance .

h

o = o(Romance, family?) A (A , o1, officialLang™))

l:family(l, Romance

63

Automatic oracle composition

onarch _ ?monarch >

locatedIn

?country »_ Europe

Offi; famil
al amily
Lang > Romance

= ?lang

SELECT ?country WHERE {
?country monarch ?monarch .
?country locatedln Europe .
?country officialLang ?lang .
?lang family Romance .

64

Automatic oracle composition

onarch “ ?monarch

locatedIn
» Europe

?country

ffi arnil P
a ami
Lang S Romance

~ Nang

Projection
variable

SELECT ?country WHERE {
?country monarch ?monarch .
?country locatedln Europe .
?country officialLang ?lang .
?lang family Romance .

65

Automatic oracle composition

qonarch “?monarch

locatedIn

?country » Europe

Offc; famil
3 ami
Lang . Romance

~ ?lang

SELECT ?country WHERE {
?country monarch ?monarch .
?country locatedln Europe .
?country officialLang ?lang .
?lang family Romance .

66

Automatic oracle composition

onarch “?monarch

locatedIn

- Euope Selctive graph paten

?country

» Romance

Offic; o
Mang W ?lang

SELECT ?country WHERE {
?country monarch ?monarch .
?country locatedln Europe .
?country officialLang ?lang .
?lang family Romance .

67

Automatic oracle composition

qonarch “?monarch

» Europe = @ = @®(Europe, locatedIn™)

locatedIn

?country

Offc; famil
3 ami
Lang . Romance

~ ?lang

SELECT ?country WHERE {
?country monarch ?monarch .
?country locatedln Europe .
?country officialLang ?lang .
?lang family Romance .

h

68

Automatic oracle composition

Non-selective
e graph pattern
qonarch (\?rmonarc/h)

» Europe = © = o(Europe, locatedIn?)

locatedIn

?country

family Y
» Romance

Offic; o
Mapng —m lang

SELECT ?country WHERE {
?country monarch ?monarch .
?country locatedln Europe .
?country officialLang ?lang .
?lang family Romance .

69

Automatic oracle composition

conarch ?monarch

» Europe = @ = @®(Europe, locatedIn™)

locatedIn

?country

Officis famil o
Lang . Romance

~ ?lang

SELECT ?country WHERE {
?country monarch ?monarch .
?country locatedln Europe .
?country officialLang ?lang .
?lang family Romance .

h

70

Automatic oracle composition

@' = ®,(monarch) A

“?monarch (A ®(country, monarch))

country

» Europe = @ = @®(Europe, locatedIn™)

locatedIn

?country

Officis famil o
Lang . Romance

~ ?lang

SELECT ?country WHERE {
?country monarch ?monarch .
?country locatedln Europe .
?country officialLang ?lang .
?lang family Romance .

h

71

Automatic oracle composition

@' = ®,(monarch) A
mora - ?monarch (M

®(country, monarch))

country

> Europe =@ = o(Europe, IncatedIn™)

locatedIn

?country

family

Ofﬁc,;;/La e
hg > not needed in case of

Set semantics

~ ?ang

SELECT ?country WHERE {
?country monarch ?monarch .
?country locatedln Europe .
?country officialLang ?lang .
?lang family Romance .

72

Automatic oracle composition

@' = ®,(monarch) A

monarc? “?monarch (A ®(country, monarch))

country

» Europe = @ = @®(Europe, locatedIn™)

locatedIn

?country

Offi; il
al amily - ~
La,,g > %Ro mance

~ Nang

SELECT ?country WHERE {
?country monarch ?monarch .
?country locatedln Europe .
?country officialLang ?lang .
?lang family Romance .

73

Automatic oracle composition

@' = ®,(monarch) A

monarc? “?monarch (A ®(country, monarch))

country

> Europe = @ = o(Europe, locatedIn)

locatedIn

?country

Offi; il
al amily - ~
La,,g > %’Ro mance

- flang
®* = ®(Romance, family?)
SELECT ?country WHERE {
?country monarch ?monarch .
?country locatedln Europe .

?country officialLang ?lang .
?lang family Romance .

74

Automatic oracle composition

@' = ®,(monarch) A

monarc? “?monarch (A ®(country, monarch))

country

> Europe = @ = o(Europe, locatedIn)

locatedIn

?country

Offi; il
al amily - ~
Lang > %’Ro mance

- Tlang
®* = ®(Romance, family?)
SELECT ?country WHERE {
?country monarch ?monarch .
?country locatedln Europe .

?country officialLang ?lang .
?lang family Romance .

75

Automatic oracle composition

@' = ®,(monarch) A

monarc? “?monarch (A ®(country, monarch))

country

> Europe = @ = o(Europe, locatedIn)

locatedIn

?country

Offic; Earmil
al amily - ~
Lang > %’Ro mance

~ ?lang

o** = AI : family(l, Romance) ®(|1 OfﬁCia”‘ang-l))

®* = ®(Romance, family?)

SELECT ?country WHERE {
?country monarch ?monarch .
?country locatedln Europe .
?country officialLang ?lang .
?lang family Romance .

76

Automatic oracle composition

@' = ®,(monarch) A
monarc? “?monarch (A ®(country, monarch))

country

> Europe = @ = o(Europe, locatedIn)

locatedIn

?country

Offi; il
al amily - ~
Lang > %’Ro mance

~ ?lang

o** = AI : family(l, Romance) ®(|1 OfﬁCia”‘ang-l))

®* = ®(Romance, family?)

SELECT ?country WHERE {
?country monarch ?monarch .
?country locatedln Europe .
?country officialLang ?lang .
?lang family Romance .

h

Completeness veredict = @** A @* A @' A @]

Automatic oracle composition

@' = ®,(monarch) A

monarc? “?monarch (A ®(country, monarch))

country

» Europe = @ = @®(Europe, locatedIn™)

locatedIn

?country

Offig; famil
al amily
Lang » Romance

~ Nang

o** = AI : family(l, Romance) ®(|1 OfﬁCia”‘ang-l))

®* = ®(Romance, family?)

SELECT ?country WHERE {
?country monarch ?monarch .
?country locatedln Europe .
?country officialLang ?lang .
?lang family Romance .

h

Completeness veredict = @** A @* A @' A @)

Confidence = prec(@**) x prec(o®) x prec(o’) x prec(a’)

Automatic oracle composition

@' = ®,(monarch) A

monarc? “?monarch (A ®(country, monarch))

country

» Euope = @ = o(Europe, locatedIn)

locatedIn

?country

~ family

- N

~ Nang » Romance -

off ficiy /
Lan
g

o** = AI : family(l, Romance) ®(|1 OfﬁCia”‘ang-l))

®* = ®(Romance, family?)

SELECT ?country WHERE {
?country monarch ?monarch .
?country locatedln Europe .
?country officialLang 7lar It could easily lead to
?lang family Romance . false negatives

h

Completeness veredict = @** A @* A @' A @)

Confidence = prec(@**) x prec(o™) x prec(o’) x prec(o’’)

Automatic oracle composition

@' = ®,(monarch) A

monarc? “?monarch (A ®(country, monarch))

country

> Europe = ® = o(Europe, locatedIn™)

s

locatedIn

?country

al ~ ~ amily — ~
Lang ™ lang » Romance

o** = AI : family(l, Romance) ®(|1 OfﬁCia”‘ang-l))

®* = ®(Romance, family?)

SELECT ?country WHERE {
’country monarch ?monarch . .
?country locatedIn Europ inimize the number
?country officialLang ?lan_ of used oracles
?lang family Romance .

h

Completeness veredict = @** A @* A @' A @ .

Confidence = prec(@**) x prec(o™) x prec(o’) x prec(o’’)

Automatic oracle composition

@' = ®,(monarch) A

monarch “?monarch (A @(country, monarch))

country

locatedIn o

Europe =~ @ = o(Europe, locatedIn™)

?country

5y family — —
~?lang » Romance

Off/cla/
Lan
4

N\

o** = AI : family(l, Romance) @(l, OfﬁCia”—ang-l))

®* = ®(Romance, family?)

“™' ECT ?country WHERE {

Use more complex oracles jntry monarch ?monarch
that cover larger parts of

the query graph at once

We would like to
antry locatedIn Europ inimize the number

’country officialLang ?lan_ of used oracles
?lang family Romance .

Completeness veredict = @** A @* A @' A @)

Confidence = prec(@**) x prec(o™) x prec(o’) x prec(o’’)

Outline

Our vision

— Enabling completeness in SPARQL

82

Enabling completeness in SPARQL

e Calls to completeness oracles could be embedded
in the query language

83

Enabling completeness in SPARQL

e Calls to completeness oracles could be embedded
in the query language

- Example: aggregated number of Spanish speakers in a

county per state, only for those states with complete
information

84

Enabling completeness in SPARQL

e Calls to completeness oracles could be embedded
in the query language

- Example: aggregated number of Spanish speakers in a
county per state, only for those states with complete
information

SELECT 7state sum(?nspeak) WHERE {
?county inState ?state .
?county spanishSpeakers ?nspeak .

} GROUP BY 7state HAVING (complete(?nspeak))

85

Enabling completeness in SPARQL

e Calls to completeness oracles could be embedded
in the query language

- Example: aggregated number of Spanish speakers in a
county per state, only for those states with complete
information

Boolean aggregation
function on sets of bindings

SELECT 7state sum(?nspeak) WHERE {
?county inState ?state .
?county spanishSpeakers ?nspeak .

} GROUP BY 7state HAVING (complete(?nspeak))

86

Enabling completeness in SPARQL

* For each value of 7state check if the bindings

for 7nspeak are complete

?state ?county ?nspeak
New Castle 2000
Delaware Kent 4300
Sussex 1200
Hawaii Hawaii 30000
Kalawao 1200

Complete list?

SELECT 7state sum(?nspeak) WHERE {
?county inState ?state .

?county spanishSpeakers ?nspeak .

} GROUP BY 7state HAVING (complete(?nspeak))

87

Enabling completeness in SPARQL

* For each value of 7state check if the bindings

for 7nspeak are complete

?state ?county ?nspeak
New Castle 2000
Delaware Kent 4300
Sussex 1200
Hawaii Hawaii 30000
Kalawao 1200

/

N

SELECT complete(?nspeak) WHERE {

?county inState Delaware .
?county spanishSpeakers ?nspeak .

¥

SELECT 7state sum(?nspeak) WHERE {
?county inState ?state .
?county spanishSpeakers ?nspeak .

} GROUP BY 7state HAVING (complete(?nspeak))

88

Enabling completeness in SPARQL

e For each value of 7state check f Completeness oracles

for 7nspeak are complete

?state ?county ?nspeak
New Castle 2000
Delaware Kent 4300
Sussex 1200
Hawaii Hawaii 30000
Kalawao 1200

/

N

to the rescue!

SELECT complete(?nspeak) WHERE {

?county inState Delaware .
?county spanishSpeakers ?nspeak .

¥

SELECT 7state sum(?nspeak) WHERE {
?county inState ?state .
?county spanishSpeakers ?nspeak .

} GROUP BY 7state HAVING (complete(?nspeak))

89

Outline

Summary & conclusions

90

Summary

e Completeness is a dimension of data quality
— It determines the value and reliability of the data

— Existing work provides only completeness statements and
oracles for simple queries

 Semantic Web is not completeness-aware
— Vision

e Use completeness oracles for simpler queries to infer
completeness for arbitrary queries

 Embed completeness in the SPARQL query language

— Goal: Increase the value of the results delivered by
queries

91

Future work

 Augment existing RDF data with completeness
statements and oracles

* Implement reasoning with completeness oracles in
SPARQL query engines

- Extend the SPARQL query language to support the
complete aggregation function

92

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92

