
Tiresias: A Demonstration of How-To Queries∗

Alexandra Meliou Yisong Song Dan Suciu

Computer Science & Engineering
University of Washington

Seattle, WA, USA
{ameli,titanium,suciu}@cs.washington.edu

ABSTRACT
In this demo, we will present Tiresias, the first how-to
query engine. How-to queries represent fundamental data
analysis questions of the form: “How should the input change
in order to achieve the desired output”. They exemplify
an important Reverse Data Management problem: solv-
ing constrained optimization problems over data residing
in a DBMS. Tiresias, named after the mythical oracle of
Thebes, has complex under-workings, but includes a sim-
ple interface that allows users to load datasets and interac-
tively design optimization problems by simply selecting ac-
tions, key performance indicators, and objectives. The user
choices are translated into a declarative query, which is then
processed by Tiresias and translated into a Mixed Integer
Program: we then use an MIP solver to find a solution.
The solution is then presented to the user as an interactive
data instance. The user can provide feedback by rejecting
certain tuples and/or values. Then, based on the user feed-
back, Tiresias automatically refines the how-to query and
presents a new set of results.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Constrained
Optimization; H.2.3 [Database Management]: Languages

General Terms
Languages, Algorithms

Keywords
Constrained Optimization, Tiresias, TiQL

1. INTRODUCTION
We will demonstrate Tiresias, the first system to support

how-to queries. A how-to query tells the user what changes

∗This work was partially funded by NSF IIS-0911036 and
IIS-0915054

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

to make to a database in order to achieve a desired effect
on one or several query indicators, while satisfying several
global constraints. Such queries are important today in cor-
porate planning. A Key Performance Indicator (KPI), is a
standard industry term for a measure that evaluates a com-
pany’s performance according to some metric [5]; for exam-
ple, “percentage increase of customer base”. A how-to query
proposes hypothetical updates to the database in order to
achieve certain effects on such indicators. How-to queries
are the inverse of, and should not be confused with, what-if
queries. In a What-if query [4, 3] a user describes some hypo-
thetical changes in the database, and the system computes
the effect on the indicators: for example, what would the av-
erage number of suppliers per product be if we were willing
to pay an extra 5% per each part? A what-if query requires
the decision maker to specify the hypothetical change, and
the query will compute the effect on the indicator. How-to
queries are the opposite: the decision maker specifies the de-
sired effect on the indicators, and the system proposes some
hypothetical updates to the database that achieve that ef-
fect.

Example 1. A manufacturing company that designs wire-
less chips maintains a list of required parts that they fre-
quently order from various suppliers. Each order request
specifies a part and a supplier that can provide the part.

As a strategic decision, the company decides that they
should diversify their list of suppliers as much as possible
(i.e., order parts from as many different suppliers as possi-
ble). To achieve that, they can reassign an ordered item to
a different supplier, as long as that supplier can supply the
part. The question is, how can they determine the optimal
arrangement?

Tiresias presents users with a simple interface (Fig. 3),
where they can choose among three lists: a set of actions
that are allowed on the EDB (existing DB instance) in order
to achieve the how-to query, a set of KPIs together with
constraints, and a set of possible objective functions to be
optimized. The user chooses from these lists. For example,
possible actions include:

• “orders may be split into multiple orders”

• “choose new suppliers for ordered items”

• “change the item quantity in orders”

• “cancel (delete) orders”

Possible KPIs include customizable options, for example:

• “Every order needs to have at least [. . .] items”

• “The total items in an order cannot exceed [. . .]”

1

• “At least [. . .]% of all orders from each client should
contain items from a local supplier”

Finally, some possible objective functions:

• “Inflict the minimum change in total quantities”

• “Minimize the number of ordered items that are as-
signed to a new supplier”

• “Minimize the number of canceled orders”

Once the user is happy with their selection they submit
their query for execution. Tiresias generates a program
in a declarative query language, called TiQL [6], designed
for specifying how-to queries. In TiQL a programmer de-
fines hypothetical relations, or hypothetical tables, by us-
ing non-deterministic transformations on the input database
(EDB). Together, the hypothetical relations form the hypo-
thetical database, or HDB. Thus, the HDB is derived from
the current database using the allowed actions, satisfying the
constraints on the indicators, and optimizing the objective
function requirements.

TiQL does not compute the HDB directly. Instead, it
generates a set of linear constraints that describe the HDB,
and submits them to a Mixed Integer Programming solver
to generate a solution. The numerical solution is then trans-
lated back into relations, and they form the HDB; the hy-
pothetical tables are stored in the relational database.

At this point, a second interface Fig. 4 allows the users to
interact with the HDB. Updated tuples are indicated cor-
respondingly: they may be obtained through changes to
the old tuples, or may have been freshly inserted. Users
can select tuples, and also select values and indicate fur-
ther constraints on those values. Then a user has several
options. She can delete the selected tuples from the hypo-
thetical database, she can accept the selected tuples (hence
they will be propagated to the real database), or she may
ask Tiresias to refine the hypothetical database by avoiding
the selected tuples and satisfying the additional constraints.

Tiresias also allows user interaction through various data
visualization options. The system automatically selects ag-
gregates relevant to the optimization problem, and displays
them as pie charts and/or bar graphs. Users can select data
points in the visualizations (e.g., a piece of a pie chart) in
order to update or create a new constraint.

Our system was named from the mythical oracle of Thebes,
in ancient Greece. He was so wise, that the gods blinded him
for accessing and revealing their secrets. The Tiresias sys-
tem serves as an oracle on top of a database: it empowers
users to ask for hypothetical, major changes to the data-
base, in order to achieve a certain outcome for some key
performance indicators, while satisfying global constraints.

2. TIRESIAS ARCHITECTURE
We show the architecture of Tiresias in Fig. 1. A detailed

description of the system can be found in [6], but we also
provide a high-level description here. Users can enter in-
put directly as a TiQL query, or select various optimization
options from the input screens. These options are actions
(e.g. “change the supplier of ordered items”), key perfor-
mance indicators (e.g. “each supplier should have at most
100 orders”), and requirements (e.g. “minimize the number
of individual suppliers in all orders”). The system gener-
ates the corresponding TiQL program, which is then stat-
ically analyzed to construct helper relations (core tables),
and partitioning information to be stored in the database.

TiQL
parser

Database

schema
information

CORE tables
generator

Partitioning
optimizer

partition
data

read
partition

problem
files

solution
files

Solution
processor

M
IP

 o
pt

im
iz

er

Pre-processing

C
O

R
E

 t
ab

le
s

MIP constructor

MIP
solver

MIP
mapper

retrieve CORE tables

input screen output screen

TiQL
generator

actions
KPIs

requirements
feedback

Tiresias GUI

Figure 1: The Tiresias system architecture.

HTABLES:

HChooseS(ok,pk,sk,sk’) KEY:(ok,pk,sk),(ok,pk,sk’)

HLineItem(ok,pk,sk,q) KEY:(ok,pk,sk)

HDistinctSup(sk) KEY:(sk)

RULES:

HChooseS(ok,pk,sk,sk’) :- PartSupp(pk,sk’)

& LineItem(ok,pk,sk,qnt)

HLineItem(ok,pk,sk’,qnt) :- HChooseS(ok,pk,sk,sk’)

& LineItem(ok,pk,sk,qnt)

HDistinctSup(sk’) :- HLineItem(ok,pk,sk’,q)

MAXIMIZE(count(*)) :- HDistinctSup(sk’)

Figure 2: A TiQL program that implements Exam-
ple 1 over a simplified TPC-H schema.

The MIP1 constructor retrieves the partitioning informa-
tion and queries the core tables to construct MIP problems.
The MIP mapper follows sophisticated translation rules to
transform the declarative input to linear constraints. After
applying several size optimizations, the MIP problem is send
to a black-box MIP solver. The current implementation of
Tiresias interfaces with Postgres as the underlying DBMS,
and the GLPK [2] solver as its black-box MIP solver.

The solution processor parses the solution and generates a
new hypothetical instance which is send to the output screen
for the user to evaluate. The user can accept the solution as
is, or denote their disagreement with certain tuples, values,
or aggregates. The collected feedback is used to refine the
how-to query which is resubmitted to the system.

3. TiQL
The central piece in Tiresias is a novel declarative lan-

guage for expressing how-to queries. End users do not have
to write directly in TiQL: this is left to the database ad-
ministrator. Instead, the Tiresias interface uses a program
file consisting of several TiQL rules to present the list of
actions, constraints, and objective functions.

1Mixed Integer Programming

2

Figure 3: The Tiresias demo input screen. The users can design a how-to query by selecting from multiple
actions, KPIs, and requirements. Once they are satisfied with their selection, they submit the query for
evaluation.

Following datalog terminology, we call a database an EDB,
for extensional database. In Tiresias, users write how-to
queries in a declarative language called TiQL. The central
concept in TiQL is that of a hypothetical table; the collec-
tion of all hypothetical tables forms the Hypothetical Data-
base, or HDB. The TiQL program defines a set of HDB
predicates, which are derived non-deterministically from the
EDB, as well as a set of constraints that the hypothetical
tables must satisfy. The HDB predicates are not uniquely
defined. Instead, the user merely expresses what actions on
the database she allows in order to satisfy the how-to query.
In addition, there are several constraints in a TiQL program,
which encode business constraints, or desired outcomes for
the KPI’s that the user is trying to improve.

Figure 2 shows the representation of Example 1 in TiQL.
The main HDB predicate is HLineItem; the other two HDB
predicates (HChooseS and HDistinctSup) are auxiliary, and
are used for clarity.

The semantics of a TiQL program is the collection of all
possible worlds on the hypothetical relations that satisfy the
constraints and achieve the desired changes to the KPI’s.
The main part of the system is a translator from TiQL into
linear (LP) or Mixed Integer Program2 (MIP). The tuples
and/or the attributes of the hypothetical relation become
integer or real variables in a LP/MIP, and the datalog rules
in TiQL become linear constraints. Most importantly, the
system performs several optimizations on the TiQL and the
resulting MIP program before submitting it to the solver:
these optimizations are necessary in order to scale to large
databases, otherwise today’s solvers would not be able to
handle the resulting MIP problems. Finally, the results
from the solver are translated back into relational format
and presented to the user. In addition to its own compiler
and optimizer, Tiresias uses a relational database system
for accessing the data (we used Postgres), and an LP/MIP
solver for solving the optimization problem (we used the
GLPK solver [2]).

Tiresias makes use of declarative modeling languages to

2A MIP is a LP where some of the variables are restricted
to integer values.

communicate with the MIP solver. Our current implementa-
tion uses MathProg, which is a subset of AMPL [1]. AMPL
adds a level of declarativeness to the definition of constrained
optimization problems through abstractions that can gen-
eralize the definition of variables and constraints. For ex-
ample, a long list of constraints “x1 < 5, x2 < 5, . . . xn <
5” is abstracted to “{i in S}:x[i]<5, S :=[1,2,..., n]”.
Languages like AMPL only offer weak DBMS interfaces, and
they don’t provide the same level of declarativeness as TiQL,
since variables and constraints still need to be explicitly de-
fined.

4. DEMONSTRATION OUTLINE
We will demonstrate the construction and execution of

how-to queries in Tiresias, by guiding users through the
manufacturing company scenario. Our goal is to show that
Tiresias provides functionality that so far has not been
present in database systems, and that how-to queries fa-
cilitate the definition of optimization problems over large
datasets. Moreover, we will demonstrate the scalability of
our system through examples over large datasets.

4.1 Optimization Problems in TIRESIAS
We will demonstrate the following use cases:
Defining a basic How-to Query. Our first demon-

stration will impersonate a manager of the manufacturing
company of Example 1, who uses the Tiresias graphical
user interface (Fig. 3) to submit a basic how-to query. As
specified in Example 1, the manager would like to diversify
the list of suppliers in the company’s order table. The user
will load the corresponding dataset from the File menu, and
then will have to select from various possible options in or-
der to build the how-to query. She first needs to determine
the action to take: that is to change the supplier for some
ordered items. Then she will select from a drop-down list
the requirement that the list of individual suppliers in the
orders is maximized. When the user has all the appropriate
selections, she will click “Submit query” in the File menu.

Tiresias will display within a few seconds the hypothet-
ical table result in the output screen (Fig. 4). The user can

3

0	
 100	
 200	
 300	

2	

3	

4	

5	

6	

7	

Figure 4: The Tiresias output screen allows the user
to interact with the hypothetical database, accept
the answers, or mark tuples or aggregate values as
problematic and resubmit a refinement to the pre-
vious query.

scroll through the data instance, order based on a column,
and interact with different visualizations.

Compare problems with different specifications. In
continuation of the previous scenario, the user notices in the
results that the order table has changed much more than she
expected. She realizes that in selecting the most diverse sup-
plier arrangement, she should give preference when possible
to the supplier originally assigned to each ordered item.

From the input screen, she adds the additional require-
ment that the number of changes in the dataset is mini-
mized. Execution of this query will bring up a new output
screen, where the user can draw comparisons with the earlier
results.

Solution Feedback. The user is satisfied with the hy-
pothetical instance produced by the second query, but there
are still a few particular values that she would like to cor-
rect: for certain important parts she would like to enforce
that no substitutions be made. However, we can’t simply re-
vert those particular tuples to their original values and keep
the rest, as the solution may not be optimal anymore. How-
ever, instead of restarting the query, the user can select the
tuples to be rejected, and click “Refine”. Alternatively, the
user may provide feedback through the graph visualizations
over data aggregates. She can select a portion of a pie chart,
and insert an additional constraint for the corresponding ag-
gregate, or edit an existing one. Tiresias processes the user
feedback and automatically generates the additional needed
constraints before running the optimization again.

Throughout the demo scenario, we will showcase the TiQL
program generated from the user selections in the GUI, as
well as the mixed integer program generated by the MIP
constructor. This will show that Tiresias provides a pow-
erful abstraction for very complex optimization problems.

5. DISCUSSION
Tiresias is the first system that integrates databases with

constrained optimization solvers, which has very important
benefits. The data does not need to be extracted from the

database, where it naturally resides. In fact, users can now
declaratively specify optimization problems as powerful how-
to queries, which are significantly more compact than the
MIP problems they represent. An additional pivotal ben-
efit is that Tiresias can go a step ahead of what modern
solver tools can accomplish: Tiresias uses data-specific in-
formation (e.g. functional dependencies), and analyzes the
declarative TiQL statements to greatly optimize the gener-
ated optimization problem, by eliminating unnecessary con-
straints and variables, and even by splitting the problem into
several independent subproblems. This is a crucial step, as
even state of the art solvers have limitations on the problem
sizes that they can handle.

Our current implementation can in fact handle complex
optimization problems over more than 1M tuples. As part
of the demonstration we will also present these performance
statistics over a variety of queries and data sizes.

6. REFERENCES
[1] AMPL: A modeling language for mathematical

programming. http://www.ampl.com.

[2] GNU Linear Programing Kit. http://www.gnu.org/s/glpk.

[3] L. Antova, C. Koch, and D. Olteanu. From complete to
incomplete information and back. In SIGMOD Conference,
pages 713–724, 2007.

[4] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine,
and P. J. Haas. Mcdb: a monte carlo approach to managing
uncertain data. In SIGMOD Conference, pages 687–700,
2008.

[5] K. Lyytinen, P. Loucopoulos, and J. Mylopoulos. Design
Requirements Engineering: A Ten-Year Perspective: Design
Requirements Workshop, Cleveland, OH, USA, June 3-6,
2007, Revised and Invited Papers. Lecture Notes in Business
Information Processing. Springer, 2009.

[6] A. Meliou and D. Suciu. Tiresias: The database oracle for
how-to queries. In SIGMOD Conference, 2012.

4

http://www.ampl.com
http://www.gnu.org/s/glpk

	1 Introduction
	2 TIRESIAS Architecture
	3 TiQL
	4 Demonstration Outline
	4.1 Optimization Problems in TIRESIAS

	5 Discussion
	6 References

