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1 The Case for How-To Queries

Informally, a data transformation consists of a function
from an input data source to a target output. The natural
evolution of data follows the directionality of the trans-
formations, i.e., from source to target. Database research
mainly focuses on forward-moving data flows: Source
data is subjected to transformations and evolves through
queries, aggregations, and view definitions to form a new
target instance, possibly with a different schema. This
forward paradigm underpins most data management tasks
today, such as querying, data integration, data mining, etc.
In contrast, in reverse data management [11], one needs
to act on the input data in order to achieve a desired effect
in the output. Some data management tasks already fall
under this paradigm. Examples include updating through
views [7], data generation [5], causality computation [10],
data cleaning [2]. All these problems share a common
premise: They essentially reverse-engineer a transforma-
tion in order to achieve a desired target instance, or target
properties.

In this talk, I will discuss a new database operator
that falls under the reverse processing paradigm: How-to
queries [11]. A how-to query computes hypothetical up-
dates to the database that achieve a desired effect on one
or several indicators, while satisfying some global con-
straints. For example, in the business domain, Key Perfor-
mance Indicators (KPI) are measures of a company’s per-
formance according to some metric [4]. Consider a ship-
ping company that fills orders by contracting with several
suppliers. One KPI is the total number of orders per
supplier: the smaller the indicator, the less the company’s
exposure to order delays due to delivery delays from the
suppliers. The KPIs can be computed using standard SQL
queries on the relational database. However, company
planners are constantly looking for ways to improve these
indicators. In What-if queries [9, 3] the user describes
hypothetical changes to the database, and the system com-
putes the effect on the KPIs. This scenario requires the
decision maker to specify the hypothetical change, and
the query will compute the effect on the indicator. How-to

queries are the inverse: The decision maker specifies the
desired effect on the indicators, and the system proposes
some hypothetical updates to the database that achieve
that effect. How-to queries are important in business
modeling and strategic planning, and are computationally
very expensive. For example, to answer the query “How
do I diversify my inventory without incurring additional
costs?” the system must propose major updates to the
database of outstanding orders, and present it to the user.

EXAMPLE 1 (PORTFOLIO ANALYSIS). An analyst
at a brokerage company wants to investigate strategies
to achieve better returns on customer portfolios, based
on the company’s recommendations during the last three
years. He wants to receive a list of possible modifications
to the company’s stock recommendations that would
achieve the desired output in the customer’s portfolios
(e.g., 10% return). Out of the possible scenarios, the
analyst wants to give preference to those closest to the
company’s current strategy, as they would require fewer
trades.

Example 1 is a modification of an example from [3].
Note the fundamental difference between this example
and the one geared towards hypothetical queries: In
contrast to [3], where the analyst manually selects
relevant hypotheses for testing, in the how-to setting, the
relevant scenarios are automatically selected based on the
specifications on the target data. Along with the target
restrictions on the portfolio returns, optimization criteria
can also restrict the solution space (e.g., minimize the
number of trades). These criteria define a distance metric
from the initial input, and select the solution closest to it.

EXAMPLE 2 (INVENTORY DIVERSIFICATION). A
manufacturing company orders parts from multiple
suppliers around the world. To reduce its dependence
on any single country, the company wants to limit the
number of parts ordered from any particular country, to
no more than 10% of the total orders. The company can
revise the current inventory by reassigning some orders
to different suppliers. Ideally, it would like to achieve this
with the minimum number of changes.
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2 Evaluation of How-To Queries
Traditional database systems cannot model how-to
queries. How-to queries are a special case of constrained
optimization, and in particular, linear programming
(LP), and integer programming (IP) [6]. Several mature
LP/IP tools exists, and are used extensively. However,
mapping a how-to query to a linear or integer program
is non-trivial. The program needs to model the data in
terms of integer and/or real variables, and the constraints
(both database constraints and constraints on the KPIs)
as inequalities. There exists a semantic gap between the
relational data model, where the data is stored, and the
linear algebra model of the LP tools. For that reason,
strategic planning in enterprises today is done outside of,
and separate from the operational databases that support
such planning.

In this talk, I will discuss and demonstrate TIRE-
SIAS [12], the first how-to query engine, which integrates
relational database systems with a linear programming
engine. In TIRESIAS, users write a declarative query
in the TIRESIAS query language (TiQL), which is a
datalog-based language for how-to queries. The key con-
cept in TiQL is that of hypothetical tables, which form a
hypothetical database, HDB. The rules in TiQL are like
datalog rules, but have a non-deterministic semantics,
and express the actions the system has to consider while
answering the how-to query, as well as the constraints
that the system needs to meet. A user can specify through
TiQL possible actions, required constraints, and desired
objectives. While users write TiQL programs, they are
only exposed to the relational data model and to familiar
query constructs, such as selections, joins, aggregates,
etc. However, TiQL was designed such that everything
it can express can be mapped into an linear program,
or, more precisely, into a mixed integer program (MIP),
which has both real and integer variables.

The translation of TiQL into MIP is complex, and
is an important technical contribution of this system.
At a high level, the translation proceeds by mapping
each tuple in a hypothetical relation to one or several
integer variables, and mapping each unknown attribute
in a tuple of a hypothetical relation to a real variable.
The translation needs to take into account the lineage
(provenance) of each tuple, and first represent it as a
Boolean expression over the Boolean variables that
encode the non-deterministic choices made by TiQL,
and then covert it into integer variables and constraints.
Similarly, it needs to trace all unknown real variables,
and compute aggregates correspondingly. Dealing with
duplicate elimination and with key constraints further add
to the complexity of the translation. To overcome these

challenges, TIRESIAS uses provenance semi-rings [8],
and the recently introduced semi-modules for aggregation
provenance [1]. The number of integer and real variables
created by the translation is large, and needs to be
managed inside the relational database system.

Even robust MIP solvers cannot scale to typical
database sizes. Another key contribution of this work is a
suite of optimizations that reduce the MIP problem suffi-
ciently in order to be within reach of today’s standard MIP
solvers; these optimizations enabled TIRESIAS to scale
up to millions of tuples. The most powerful optimization
is a technique that splits the input problem into several
independent problems. Partitioning splits one TiQL
query into several, relatively small MIP problems, which
can be solved independently by the MIP solver. I will also
discuss other optimizations, such as variable and matrix
elimination: While some of these are also done by the
MIP solver, I found that by performing them early (at the
TiQL query level, as opposed to the MIP level), each such
optimization results in a ten-fold performance increase.

TIRESIAS offers an example of the power reverse data
management can yield for database systems, and identifies
new research questions for exploration.
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