
SQuID: Semantic Similarity-AwareQuery Intent Discovery
Anna Fariha Sheikh Muhammad Sarwar Alexandra Meliou

College of Information and Computer Sciences
University of Massachusetts

Amherst, MA, USA
{afariha,smsarwar,ameli}@cs.umass.edu

ABSTRACT

Recent expansion of database technology demands a convenient
framework for non-expert users to explore datasets. Several ap-
proaches exist to assist these non-expert users where they can
express their query intent by providing example tuples for their in-
tended query output. However, these approaches treat the structural
similarity among the example tuples as the only factor specifying
query intent and ignore the richer context present in the data. In
this demo, we present SQuID, a system for Semantic similarity-
aware Query Intent Discovery. SQuID takes a few example tuples
from the user as input, through a simple interface, and consults the
database to discover deeper associations among these examples.
These data-driven associations reveal the semantic context of the
provided examples, allowing SQuID to infer the user’s intended
query precisely and effectively. SQuID further explains its infer-
ence, by displaying the discovered semantic context to the user,
who can then provide feedback and tune the result. We demonstrate
how SQuID can capture even esoteric and complex semantic con-
texts, alleviating the need for constructing complex SQL queries,
while not requiring the user to have any schema or query language
knowledge.

1 INTRODUCTION

Accessing data through traditional database systems requires ex-
pertise in query languages and knowledge of the database schema—
skills that non-expert users typically lack. Query by Example (QBE)
systems [4, 6, 9] assist non-expert users through an alternative
mechanism: users can provide example tuples as representatives of
their expected query output to express their intent [7]. For relational
databases, existing QBE systems [3, 8, 9] focus on the structure and
data content of the provided examples, but they don’t look deeper
into the semantic similarity of these examples. As a result, these
systems typically miss important context and infer queries that are
too general. A few approaches attempt to improve their inference
by requiring additional information beyond the example tuples (e.g.,
labeling proposed tuples as positive or negative [1, 2], providing
join paths for example tuples [3], and providing database-result

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3193548

id title year
100 Inception 2010
101 Interstellar 2014
102 Titanic 1997
103 Forrest Gump 1994
104 Rambo 2008
105 The Matrix 1999
106 Top Gun 1986
107 Terminator 2 1991

(a) Relation: movie

movie_id genre
100 Sci-Fi
100 Thriller
101 Sci-Fi
102 Romance
102 Drama
103 Drama
104 Action
105 Sci-Fi
106 Action
107 Sci-Fi

(b) Relation: movie_to_genre

Figure 1: Excerpt of two relations of the IMDb database

pairs [5, 10]). However this information is often non-trivial and
challenging for non-expert users.

Example 1.1. The IMDb database contains information related
to movies and television programs, such as cast, production crew,
roles, etc.1 Figure 1 shows an excerpt of two relations from this
database: movie and movie_to_genre. A user of a QBE system
over the IMDb database provides the following example tuple set:
{Inception, Interstellar, The Matrix}. The system looks for
candidate queries based only on the structural similarity and data
content of these examples, and produces the generic query Q1:

Q1: SELECT title FROM movie
This query is, however, too general. In fact, any set of titles from the
movie table would lead the QBE system to Q1. Nevertheless, there
is more specific context in the chosen examples: they are all Sci-Fi
movies. Even though this semantic context is present in the data (by
associating titles with genre information in the movie_to_genre
relation), existing QBE systems fail to capture it. The more specific
query that better represents the semantic similarity among the
example tuples is Q2:

Q2: SELECT title FROM movie, movie_to_genre
WHERE movie_to_genre.movie_id = movie.id AND

movie_to_genre.genre = ‘Sci-Fi’

In this demonstration, we present SQuID, a system that exploits
the rich semantic context already present in a dataset, to perform
Semantic similarity-aware Query Intent Discovery. SQuID derives
the semantic similarities in a set of example tuples automatically,
and uses this context to infer query intent more specifically and
more effectively than existing QBE methods. Automatic discovery
of the semantic context, without any additional information, is

1http://www.imdb.com

https://doi.org/10.1145/3183713.3193548
http://www.imdb.com

SIGMOD’18, June 10–15, 2018, Houston, TX, USA A. Fariha et al.

challenging. Some associations are related to attributes directly
linked with the example tuples (e.g., movie year), and are simple to
infer. Other associations require joins with other tables (e.g., movie
genres), which complicate the candidate queries and increase the
search space. And, finally, some associations are esoteric and hard
to express precisely with a structured query; we highlight such a
challenging case in Example 1.2.

Example 1.2. A user accessing the IMDb database using SQuID,
provides the following set of example tuples: {Adam Sandler,
Eddie Murphy, Jim Carrey}. A human with basic awareness of
the works of these actors would easily identify them as comedians;
in fact, these actors appear in most “Funny Actors” lists2. However,
there is no explicit attribute in the IMDb database that identifies
these actors as “comedians” or “funny”; expressing a query to re-
trieve all “funny actors” is not straightforward, even for someone
with knowledge of the schema and query language expertise.

Nevertheless, relevant information exists in the database, though
the semantic context is now implicit, derived through deeper asso-
ciations with other entities. In this case, SQuID makes connections
with several other relations (castinfo, movie, movie_to_genre,
and genre) and automatically discovers a trend in the number of
Comedy movies that each of the example actors has appeared in.
This semantic context is complex, as the similarity among the ac-
tors is based on an aggregate trend of a different entity (movies
each actor appeared in). SQuID automatically derives and explores
explicit and implicit semantic properties and contrasts them with
overall statistics of the data to infer the most probable semantic
context for the provided examples.

In our demonstration, participants will observe how SQuID cap-
tures the semantic similarity of example tuples through a scenario
based on Example 1.2. We proceed to discuss, at a high level, the
inner workings of SQuID and its architecture, and we conclude
with a detailed outline of our demonstration.

2 SOLUTION SKETCH

In this section, we use the IMDb dataset as our running example
to describe, at a high-level, how SQuID works. SQuID assumes that
queries focus on the entities of a dataset; in our running example,
these entities are person and movie. The dataset contains informa-
tion on semantic properties for these entities (e.g., the year of a
movie). Basic semantic properties are properties that are associated
with an entity directly, even if the association requires joins across
tables (e.g., the genre of a movie). Derived semantic properties of
an entity are aggregates over basic semantic properties of an asso-
ciated entity. For example, genre is a basic semantic property of
movie; the total number of comedy movies is a derived semantic
property of person. Figure 2 shows example basic and derived se-
mantic properties for person entities. We call the value of a derived
semantic property its association strength to indicate how strongly
an entity is associated with a property. For example, Adam Sandler
is strongly associated with comedies.

SQuID models queries as a collection of basic and derived filters
over the entities’ basic and derived semantic properties. We denote
a filter with the notation ϕP,V , where P stands for a semantic

2For example: http://www.imdb.com/list/ls051583078

Basic property Derived property

name gender country #comedy #drama
Adam Sandler M USA 114 36
Al Pacino M USA 11 38
Hugh Jackman M Australia 12 10
Jim Carrey M Canada 68 21
Jonah Hill M USA 60 13
Leonardo DiCaprio M USA 9 35
Tom Cruise M USA 13 12

Figure 2: Entities with computed semantic properties

Case A
ϕ#comedy, [30,∞)

ϕ#drama, [25,∞)

ϕ#thriller, [3,∞)

ϕ#action, [2,∞)

ϕ#mystery, [1,∞)

Case B
ϕ#comedy, [12,∞)

ϕ#drama, [10,∞)

ϕ#thriller, [10,∞)

ϕ#action, [9,∞)

ϕ#mystery, [9,∞)

Figure 3: Two cases for derived semantic property filters

property and V is a set or range of allowed values for P . The filter
ϕP,V retrieves tuples from a relation that satisfy the filter condition
P ∈ V . For example, Adam Sandler passes the filter ϕcountry, {USA}
but Hugh Jackman does not.

Given a set of semantic properties, SQuID creates filters based
on the values of the user’s examples for each property. For example,
given the properties of Figure 2 and the set {Adam Sandler, Jonah
Hill} as example tuples, SQuID will create the filters ϕgender, {M} ,
ϕcountry, {USA} , ϕ#comedy,[60,114], and ϕ#drama,[13,36]. SQuID then
identifies the filters that better distinguish the chosen examples
from the rest of the data, using the notion of selectivity. Roughly,
a filter that many entities satisfy has low selectivity; this is the
case for ϕgender, {M} , ϕcountry, {USA} , and ϕ#drama,[13,36]. In contrast,
ϕ#comedy,[60,114] is the most selective of the filters, as only 3 of
the example entities satisfy it. Finally, SQuID constructs the query
using the selected filters as predicates.

Offline Preprocessing: Many of the basic semantic properties
of an entity are readily available within a single relation, but others
require joins, and derived properties require more complex queries
and aggregations. While these can be expensive operations, they
only need to be computed once. SQuID’s offline precomputation
module builds relations similar to the one in Figure 2, along with an
inverted column index for fast reverse look-up of example tuples,
database statistics, and selectivity information. These allow SQuID
to achieve real-time performance.

Filter Pruning and Tuning: SQuID employs four main heuris-
tics to refine and prune filters: (1) It sets a selectivity threshold to
reject filters that are too general. (2) It sets a threshold on the as-
sociation strength to reject filters that map to loose associations
of the example tuples with a particular property. (3) It relaxes fil-
ter bounds (e.g., transforms ϕ#comedy,[60,114] to ϕ#comedy,[60,∞)); the
initial bounds, derived from the values of the examples, are in a way
arbitrary and loosening them better represents the target trends.
(4) It groups derived filters of the same attribute (e.g., genre) and

http://www.imdb.com/list/ls051583078

SQuID: Semantic Similarity-AwareQuery Intent Discovery SIGMOD’18, June 10–15, 2018, Houston, TX, USA

evaluates the skewness of the distribution of the filters’ values. A
distribution that is close to uniform (e.g., Case B in Figure 3) means
that, intuitively, this property is not significant. In contrast, if some
filters of the set are outliers, this indicates a significant property of
the example set (e.g., the top two filters of Case A in Figure 3).

3 THE SQUID ARCHITECTURE

Figure 4 illustrates the architecture of SQuID. The system con-
sists of two main modules: offline precomputation and online intent
discovery. The offline precomputation module uses information
about the database schema and admin-provided metadata to com-
pute derived relations, semantic properties, and related statistics.
The function of the online intent discovery module is to discover
the query intent from the user-provided example tuples, provide
explanations for the discovered query intent, and translate it to
a SQL query. This module consults the augmented database and
the precomputed semantic property relations to identify semantic
similarities among the example tuples. The module then uses the
precomputed statistics to infer the most likely query intent and dis-
plays the chosen filters as an explanation to the user. The user can
provide feedback directly on the explanation to tune the predicted
query. SQuID executes the final SQL query to generate the result
tuples and presents them to the user.

4 DEMONSTRATION OUTLINE

We will demonstrate the effectiveness of SQuID in query intent
discovery using the real-world IMDb dataset. We expect that most
participants will be familiar with the domain of the data (actors,
directors, and films), allowing them to interact with the system
more freely. We aim to show that SQuID can understand the user-
provided example tuples semantically and infer the query intent
insightfully. Moreover, we will demonstrate how SQuID improves
its prediction with additional and more diverse examples.

4.1 Online Intent Discovery

The online intent discovery module of SQuID presents a simple
interface consisting of three panels. Figure 5 shows screenshot of
the system. The leftmost panel is the Input Panel where the user
provides the example tuples. The center panel is the Explanation
Panel, which is responsible for explaining the query intent that
SQuID discovers. The rightmost panel is the Result Panel, which
presents the result tuples to the user after executing the query
corresponding to the predicted intent. Our demonstration will guide
the participants through the scenario of Example 1.2 (search for
funny actors) through five steps. We have annotated each step with
a circle in Figure 5.

Step 1 (Providing example tuples): In the input panel, first
the user specifies the number of columns in the example table. For
our scenario, we only need one column. The user then enters, one
row at a time, three examples of contemporary comedians. For our
guided scenario, we choose Jonah Hill, Steve Carell, and Adam
Sandler (Figure 5).

Step 2 (Intent discovery): Once the user completes entering
the list of example tuples, she can submit a request to SQuID for
query intent discovery. SQuID then presents the basic and derived
semantic property filters that it deems significant in the explanation

Offline
precomputation

SQuID GUI
Input Explanation Result

Database
Semantic
property
statistics

schema
information

derived
relations

Online intent
discovery

Meta-
information

SQL query

Figure 4: SQuID architecture

panel. SQuID infers the best query intent by pre-selecting the most
likely semantic similarities. The explanation panel of Figure 5 illus-
trates the selected semantic similarities observed in the example
tuples. Just from the three examples, the system is able to identify
the semantic similarity of the actors’ being comedians, reflected
in the derived semantic property filter ϕgenrecomedy,[40,114]; this is
the only genre-related filter that SQuID selects. SQuID also iden-
tifies further similarities, reflected in the other selected semantic
properties. Since all of the example tuples are male, contempo-
rary Hollywood actors, the system also selects the property filters:
ϕgender, {Male} , ϕbirth_country, {USA} , and ϕbirth_year, {1962−1983} .

Step 3 (Explanation feedback): SQuID’s explanation panel
allows users to easily reason about the inferred query and provide
feedback by selecting or de-selecting filters. Naturally, users have
knowledge biases, leading them to provide biased samples of their
intent. In this case, the user is likely more familiar with American
comedians; since the user’s examples demonstrate this bias, SQuID
identified it as a similarity, even though it was not part of the query
intent. The user can easily note and correct this directly on the
explanation panel by unchecking the box that constrains the birth
country to USA.

Step 4 (Additional example): Biases in the provided examples
can affect SQuID’s inference. While the user can correct for these
incorrect inferences due to bias through explanation feedback, we
will demonstrate how diversifying the example set can improve
SQuID’s results. Our initial examples of funny actors happen to
include individuals of similar height. SQuID detects this as a sim-
ilarity and pre-selects the property of the specific height group.
Adding Vince Vaughn to the list of examples, provides a more
diverse example set, allowing SQuID to automatically detect that

SIGMOD’18, June 10–15, 2018, Houston, TX, USA A. Fariha et al.

Figure 5: The SQuID demo: input, explanation, and result panels

Figure 6: SQL query predicted by SQuID to capture intent

the height filter is not significant. (Figure 5 displays the explanation
panel after the addition of the new example.)

Step 5 (Result retrieval): Our demonstration participants will
be able to examine the query that SQuID generates (Figure 6), and
execute and observe its result over the IMDb data. The result panel
of Figure 5 presents the result set, which includes well-known and
popular comedians such as Jim Carrey, Ben Stiller, and Owen
Wilson.

Demo engagement: After our guided demonstration, partici-
pants will have the option to use and test SQuID with their own
example tuples. IMDb is a rich dataset that includes information
about 6 million artists and 1 million movies along with semantic
properties, such as nationality of artists and genre of movies.
We expect that the broad familiarity and appeal of the data domain
will allow participants to engage with ease and little assistance.

Through this demo scenario, we will showcase how SQuID is
effective at capturing the query intent by exploiting the semantic
similarity with very few user-provided example tuples. We will

also demonstrate how quickly SQuID’s inference improves with
the addition of examples or explanation feedback. One of the key
takeaways that the conclusion of our demonstration will highlight,
is that inferring semantic similarity among examples tuples can as-
sist in expressing intent that may be obscure and vague, facilitating
data retrieval for non-expert and expert users alike.

Acknowledgements. This material is based upon work supported
by the National Science Foundation under grants IIS-1421322 and
IIS-1453543.

REFERENCES

[1] A. Bonifati, R. Ciucanu, and S. Staworko. 2014. Interactive Inference of Join
Queries. In EDBT. 451–462.

[2] A. Bonifati, R. Ciucanu, and S. Staworko. 2016. Learning Join Queries from User
Examples. ACM Trans. Database Syst. 40, 4 (2016), 24:1–24:38.

[3] D. Deutch and A. Gilad. 2016. QPlain: Query by explanation. In ICDE. 1358–1361.
[4] G Diaz, M Arenas, and M Benedikt. 2016. SPARQLByE: Querying RDF Data by

Example. Proc. VLDB Endow. 9, 13 (Sept. 2016), 1533–1536.
[5] H. Li, C. Chan, and D. Maier. 2015. Query from Examples: An Iterative, Data-

driven Approach to Query Construction. Proc. VLDB Endow. 8, 13 (Sept. 2015),
2158–2169.

[6] S. Metzger, R. Schenkel, and M. Sydow. 2017. QBEES: query-by-example en-
tity search in semantic knowledge graphs based on maximal aspects, diversity-
awareness and relaxation. J. Intell. Inf. Syst. 49, 3 (2017), 333–366.

[7] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas. 2014. Exemplar Queries:
Give Me an Example of What You Need. Proc. VLDB Endow. 7, 5 (Jan. 2014),
365–376.

[8] F. Psallidas, B. Ding, K. Chakrabarti, and S. Chaudhuri. 2015. S4: Top-k
Spreadsheet-Style Search for Query Discovery. In SIGMOD. ACM, 2001–2016.

SQuID: Semantic Similarity-AwareQuery Intent Discovery SIGMOD’18, June 10–15, 2018, Houston, TX, USA

[9] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik. 2014. Discovering
Queries Based on Example Tuples. In SIGMOD. ACM, 493–504.

[10] C Wang, A Cheung, and R Bodik. 2017. Interactive Query Synthesis from Input-
Output Examples. In SIGMOD. ACM, 1631–1634.

	Abstract
	1 Introduction
	2 Solution Sketch
	3 The SQuID Architecture
	4 Demonstration Outline
	4.1 Online Intent Discovery

	References

