
WHY SO? or WHY NO?
Functional Causality for Explaining Query Answers

Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu

University of Washington
{ameli,gatter,kfm,suciu}@cs.washington.edu

Abstract. In this paper, we propose causality as a unified framework to explain
query answers and non-answers, thus generalizing and extending several previously
proposed definitions of provenance and missing query result explanations.
Starting from the established definition of actual causes by Halpern and Pearl [12],
we propose functional causes as a refined definition of causality with several de-
sirable properties. These properties allow us to apply our notion of causality in a
database context and apply it uniformly to define the causes of query results and
their individual contributions in several ways: (i) we can model both provenance as
well as non-answers, (ii) we can define explanations as either data in the input rela-
tions or relational operations in a query plan, and (iii) we can give graded degrees
of responsibility to individual causes, thus allowing us to rank causes. In particular,
our approach allows us to explain contributions to relational aggregate functions and
to rank causes according to their respective responsibilities, aiding users in identi-
fying errors in uncertain or untrusted data. Throughout the paper, we illustrate the
applicability of our framework with several examples.
This is the first work that treats “positive” and “negative” provenance under the
same framework, and establishes the theoretical foundations of causality theory in a
database context.

1 Introduction

When analyzing uncertain data sets, users are often interested in explanations for their
observations. Explaining the causes of surprising query results allows users to better un-
derstand their data, and identify possible errors in data or queries. In a database context,
explanations concern results returned by explicit or implicit queries. For example, “Why
does my personalized newscast have more than 20 items today?” Or, “Why does my fa-
vorite undergrad student not appear on the Dean’s list this year?” Database research that
addresses these or similar questions is mainly work on lineage of query results, such as
why [8] or where provenance [3], and very recently, explanations for non-answers [15,4].
While these approaches differ over what the response to questions should be, all of them
seem to be linked through a common underlying theme: understanding causal relation-
ships in databases.

Humans usually have an intuition about what constitutes a cause of a given effect. In this
paper, we define the foundational notion of functional causality that can model this intu-
ition in an exact mathematical framework, and show how it can be applied to encode and
solve various causality related problems. In particular, it allows us to uniformly model the
questions of WHY SO? and WHY NO? with regards to query answers. It also allows us to
represent different previous approaches, thus illustrating causality to be a critical element
unifying prior work in this field.



N(ewsFeeds)
nid story tag
1 ... share lead in Singapore championship ... Golf

2 ... economic downturn affected sensitive ... Business
3 ... with sequences shot in Singapore ... Movies

4 ... when President Obama meets former ally ... Obama
5 ... Singapore slow down hiring ... Business

6 ... Oscars 2010: Academy’s ‘best’ choice ... Movies
7 ... HP launches cloud lab in Singapore ... Technology

8 ... struggles to corral votes for health bill ... Health
9 ... VLDB conference this year in Singapore ... DB conf

10 ... at the the Indianapolis Motor Speedway ... Indy 500
11 ... Indianapolis host to SIGMOD 2010 ... DB conf
12 ... VLDB in Singapore promises to be ... DB conf

13 ... more people in Indianapolis this year ... Indy 500
14 ... Gatorade drops Tiger woods ... Golf

R(outing)
tag
Obama
DB conf
Golf
Technology
Health

Query answer:
P(ersonalized alerts)
cities
Paris
Singapore
Athens
Vancouver

Fig. 1: Example of a personalized alert-feed (P ) as a result of a query filtering all news (N )
based on a carefully constructed routing table (R).

Example 1. A major travel agency monitors a large number of news feeds in order to
identify trends, opportunities, or alerts about various cities. Central to this activity is a
carefully personalized routing table and query, which filters what information to forward
to each specialized travel agent by carefully chosen keywords. Fig. 1 shows the routing
table for one user R, as well as a sample news feed. The query issuing alerts to this user is:

select C.name

from NewsFeeds N, Routing R, City C

where C.name substring N.story and N.tag = R.tag

group by C.name

having count(*) > 20

The result is a list of cities that are drawn to the attention of this particular agent, shown
in Fig. 1. As popular destinations, Paris and Athens are predictable answers, and so is
Vancouver because of the recent Olympics. But this agent believes Singapore is an error,
and wants to know what entries in the Routing table caused it to appear on her watch list.
She wants to ask “Why am I being alerted about Singapore?”. The system should answer
that the keywords DB conf, technology, and golf are causes with various degrees of
responsibility.

As illustrated in Example 1, we want to allow users to ask simple questions based on the
results they receive, and hence, allow them to learn what may be the cause of any surprising
or undesirable answer. Such questions can refer to either presence (WHY SO?) or absence
(WHY NO?) of results. Furthermore, the user should be provided with a ranking of causes
based on their individual contribution or responsibility. Unexpected results are often an
indication of errors, and tracking their causes is a crucial step in repairing faulty data, or
mistakes in queries. Our ultimate goal is to define a language that allows users to specify
causal queries for given results. In this paper, we (i) lay the theoretical groundwork and de-
fine a formal model that allows us to capture such causality-related questions in a uniform
framework, and (ii) illustrate the applicability of our scheme through various examples.

Summary and outline. We start by reviewing existing work on causality in AI in Sec-
tion 2, and propose functional causes as a refined notion that mitigates problems of exist-
ing definitions (Sect. 2.1). In Sect. 3 we highlight several desirable properties of functional
causes, which are important for their applicability in a database context. Section 4 gives
several examples of applying our framework to give WHY SO? and WHY NO? explana-
tions to database queries. We show that our unifying approach generalizes provenance
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Fig. 2: (a) Alice (A) and Bob (B) each throw a rock at a bottle, which breaks if it gets hit by
either rock (Y =A ∨ B). (b) Alice’s throw preempts Bob’s (A=1 ⇒ Y1 = 0). (c,d) Expansion
causes problems for the HP definition: Introducing node Y2, which merely repeats the value of
B, does not change the function Y (X), but makes A an actual cause.

as well as non-answers (Sect. 4.1), handles contributions to aggregate functions by rank-
ing causes according to their responsibilities for the result (Sect. 4.2), and can also model
causes other than tuples (Sect. 4.3).

2 Causality Definitions
Due to space limitations, we briefly overview the two most established definitions of cau-
sality from the AI and philosophy literature, and refer the reader to our technical report [20]
for more details, discussion of issues and implications, examples, and proofs of all results.

Counterfactual Causes. With a long tradition in philosophy [16], the argument of cou-
nterfactual causality is that the relationship between cause and effect can be understood
as a counterfactual statement, i.e. an event is considered a cause of an effect if the ef-
fect would not have happened in the absence of the event. We focus on the boolean case,
and in our notion, the variable assignment (event) X = x0 is a cause of expression φ, iff
X = x0 ∧ φ and [X ← ¬x0] ⇒ ¬φ. However, counterfactual causality cannot explain
causality for slightly more complicated scenarios such as for disjunctive causes, i.e. when
there are two potential causes of an event.

Actual Causes. The HP definition of causality [12] is based on counterfactuals, but can
correctly model disjunction and many other complications. It is the most established def-
inition in the field of structural causality, and relies on the use of a causal network (much
like a Bayesian network), representing dependencies between variables (e.g. Fig. 2a). In a
database context, the variables can be tuples, but they can represent in general any element
that may be causally relevant. Every node in the causal network is governed by a structural
equation that determines the node’s assignment based on its input. A causal model is com-
monly denoted as M = (N ,F), where N the set of variables, and F the set of structural
equations. The idea is that X is a cause of Y if Y counterfactually depends on X under
“some” permissive contingency, where “some” is elaborately defined.1 The heart of the
definition is condition AC2 in [12, Def. 3.1], which is effectively a generalization of cou-
nterfactual causes. The requirement is that there exists some assignment of the variables
for which X is counterfactual, and that this assignment does not make any fundamental
changes to the causal path of X (the descendants of X in the causal network). The use of
the causal network makes the HP definition very flexible, allowing it to capture different
scenarios of causal relationships. For example, it correctly handles disjunctive causes and
preemption, i.e. when there are two potential causes of an event and one chronologically
preempts the other (e.g. Fig. 2b).

The HP definition does however have some limitations which make its application to a
database context problematic. In the well studied Shock C example (see [22]), actual cau-

1 Contingencies relate to possible world semantics: “Is there a possible world that makes X counterfactual?”



sality produces unintuitive results; a variable is determined to be a cause of a tautology,
which in a data context is semantically spurious. A less known but equally important is-
sue of the definition is its lack of robustness to minor network variations. The addition
of “dummy” nodes, which do not affect the function or assignments of other nodes, can
change the causality of variables (Fig. 2c,2d). This is problematic in a database setting,
where we care about query semantics rather than syntax. We revisit this issue in Sect. 3.1,
and also refer the reader to our technical report [20] for an extensive discussion.

2.1 Functional Causes

A fundamental challenge in applying causality to queries is that causality is defined over
an entire network: it is not enough to know the dependency of the effect on the input vari-
ables, we also need to reason about intermediate dependent nodes. This requirement is
difficult to carry over to a database setting, where we care about the semantics of a query
rather than a particular query plan. Our approach is to represent a causal network with two
appropriate functions that semantically capture the causal dependencies of a network. The
two key notions we need for that are potential functions and dissociation expressions.

Figure 3 represents a causal network in our framework. In contrast to the HP approach,
only input variables from X can be causes and part of permissive contingencies. As in the
HP approach, every dependent node Y is described by a structural equation FY , which
assigns a truth value to Y based on the values of its parents. The Boolean formula ΦY

of Y defines its truth assignment based on the input variables X , and is constructed
by recursing through the structural equations of Y ’s ancestors. For example, in Fig. 2b,
ΦY (X) = A ∨ (Ā ∧ B), where X = {A,B}. We denote as Φ(X) = ΦYj

(X), where
Yj is the effect node, and we say that the causal network has formula Φ. The potential
function PΦ is then simply the unique multilinear polynomial representing Φ. It is equal to
the probability that Φ is true given the probabilities of its input variables.
Definition 1 (Potential Function). The potential function PΦ(x) of a Boolean formula
Φ(X) with probabilities x = {x1, . . . , xk} of the input variables is defined as follows:

PΦ(x) =
∑

ε→{0,1}k

(
k∏

i=1

xεi
i

)
Φ(ε), xεi

i =
{
xi if εi =1
1− xi if εi =0

The potential function is a sum with one term for each truth assignment ε of variables X .
Each term is a product of factors of the form xi or 1−xi and only occurs in the sum if the
formula is true at the given assignment (Φ(ε) = 1). For example, if Φ = X1 ∧ (X2 ∨X3)
then PΦ = x1x2(1−x3)+x1(1−x2)x3+x1x2x3, which simplifies to x1(x2+x3−x2x3).
We use delta notation to denote changes ∆P in the potential function due to changes
in the inputs: Given an actual assignment x0 and a subset of variables S, we define
∆PΦ(S) := PΦ(x0) − PΦ(x0 ⊕ S), where x0 ⊕ S (denoting XOR) indicates the as-
signment obtained by starting from x0 and inverting all variables in S.

To semantically capture differences in causality between networks with logically equiv-
alent boolean formulas (e.g. Fig. 2a,2b), we use Dissociation Expressions (DEs):
Definition 2 (Dissociation Expression). A dissociation expression with respect to a vari-
able X0 is a Boolean expression defined by the grammar:

Ψ ::=X ∈X

Ψ ::=σ(Ψ1, Ψ2, . . . , Ψk), X0 ∈ V (Ψi) ∪ V (Ψj)⇒ V (Ψi) ∩ V (Ψj) ⊆ {X0}
where V (Ψi) is the set of input variables of formula Ψi.
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Fig. 4: A causal network CN (a)
and its dissociation network DN
(b) with respect to B.

Dissociation expressions allow us to semantically capture within a Boolean formula, the
causal dependencies of a variable X0 in a causal network. This is possible by recording
the effect of X0 along different network paths and disallowing any variable from being
combined with X0 in more than one subexpression. We illustrate with a detailed example.

Example 2. In the network of Fig. 4a, variable A contributes to the causal path of B
at two locations. This “independent” influence can be represented by the dissociation
expression Ψ = A1 ∨ (Ā2 ∧ B), which essentially separates A into two variables A1

and A2 (see Fig. 4b). Ψ ′ = A ∨ (Ā ∧ B) is not a valid DE with respect to B be-
cause, for its subexpressions Ψ ′

1 = A and Ψ ′
2 = Ā ∧ B, it is B ∈ V (Ψ ′

1) ∪ V (Ψ ′
2) but

V (Ψ ′
1) ∩ V (Ψ ′

2) = {A}6⊆{B}. We demonstrate how Ψ captures semantically the network
structure: The HP definition checks actual causality of B in the network of Fig. 4a by
determining the value of Y for a setting {A = 0, B = 1}, while forcing Y1 to its original
value. The dissociation expression Ψ(A1, A2, B) = A1∨(Ā2∧B), with potential function
PΨ (a1, a2, b) = a1+b−a1b−a2b+a1a2b, allows us to perform the same check by simply
computing PΨ (0, 1, 1). In this case PΨ (0, 1, 1) = 0 6= PΨ (1, 1, 1), which was the original
variable assignment, meaning that the change altered values on the causal path.

The grammar-based definition of dissociation expressions allows us to identify expressions
that are valid DEs with respect to a variable. We will now define mappings, called foldings,
from DEs to Boolean formulas, which are used to formally define correspondence between
formulas. For instance, Ā∨B is a valid dissociation expression with respect to B but does
not correspond to formula A ∨ (Ā ∧B). A folding basically maps a set of input variables
X ′ to another set X , transforming formula Ψ to Ψ ′. If Ψ ′ is grammatically equivalent to
Φ, then Ψ is a dissociation expression of Φ. For example, f({A1, A2, B}) = {A,A, B}
defines a folding from Ψ =A1∨(Ā2∧B) to the formula Φ=A∨(Ā∧B). In simple terms, a
DE Ψ with a folding to Φ is a representation of Φ with a larger number of input variables.

Definition 3 (Expression Folding). Given f : X′ → X mapping variables X′ to X ,
the folding (F , f) of a dissociation expression Ψ(X ′) defines a formula Φ = F (Ψ), s.t:

Ψ ::=X ′ ⇒ F(X) = f(X ′)
Ψ ::=σ(Ψ1, Ψ2, . . . , Ψk)⇒ F(Ψ) = σ (F(Ψ1),F(Ψ2), . . . ,F(Ψk))

The dissociation of input variables into several new input variables captures the distinct
effect of variables on the causal path, thus providing the necessary network semantics. Us-
ing |Ψ | to denote the cardinality of the input set of Ψ , then |Ψ | ≥ |Φ|, and if |Ψ | = |Φ| then
Ψ = Φ.



Theorem 1 (DE Minimality). If D the set of all DEs w.r.t. X0 ∈ X with a folding to
Φ(X), then ∃ unique Ψi ∈D of minimum size: |Ψi|= min

Ψ∈D
|Ψ | and ∀j 6= i, |Ψj |= |Ψi| ⇒

Ψj =Ψi.

The DE of minimum size replicates those variables, and only those variables, that affect
the causal path at more than one location. It is simply called the dissociation expression of
Φ, with input nodes Xt (Fig. 4b). A folding maps Xt back to the original input variables:
X = f(Xt). The reverse mapping is denoted Xt = [X]t = {Xi | f(Xi) ∈ X}. We
often refer to the dissociation network of Φ, meaning the causal network representing the
DE of Φ (e.g. Fig. 4b).

Definition 4 (Functional Cause). The event Xi =x0
i is a cause of φ in a causal model iff:

FC1. Both Xi =x0
i and φ hold under assignment x0

FC2. Let PΦ and PΨ be the potential functions of Φ and its DE w.r.t. Xi, respectively.
There exists a support S ⊆X\{Xi}, such that:
(a) ∆PΦ(S ∪Xi) 6= 0
(b) ∆PΨ (S′

t) = 0, for all subsets S′
t ⊆ [S]t

Condition FC2(b) is analogous to AC2(b) of the HP definition, which requires checking
that the effect does not change for all possible combinations of setting the dependent nodes
to their original values. Similarly, FC ensures that no part of the changed nodes (the sup-
port S) is counterfactual in the dissociation network.

Intuition. The definition of functional causes captures three main points: (i) a counter-
factual cause is always a cause, (ii) if a variable is not counterfactual under any possible
assignment of the other variables, then it cannot be a cause, and (iii) if X = x0 is a cou-
nterfactual cause under some assignment that inverts a subset S of the other variables, then
no part of S should be by itself counterfactual.

We use the rock thrower example from [12], depicted in Fig. 2a and 2b, to demonstrate
how functional causes (like actual causes) can handle preemption.

Example 3. The two different models of the problem, with and without preemption (Fig. 2b
and 2a respectively) are characterized by logically equivalent Boolean expressions: A ∨
ĀB = A ∨B. However, B is not a cause (actual or functional) in Fig. 2b, because Bob’s
throw is preempted by Alice’s. The minimal dissociation expression for Φ = A ∨ (Ā ∧B)
with respect to B is Ψ = A1 ∨ (Ā2 ∧B), and is depicted in Fig. 4b. Then:

PΦ = a + b− ab and PΨ = a1 + b− a1b− a2b + a1a2b

For S = {A}, ∆PΦ(B,S) 6= 0. If (F, f) the folding of Ψ into Φ, then [S]t = {A1, A2},
and ∆PΨ (A1) 6= 0, so B is not a functional cause.

Hence, the definition of functional causes effectively captures the difference between the
two networks for the two thrower example (Fig. 2a,2b) while only focusing on the input
nodes, as opposed to the HP definition that requires the inspection of the values of all the
dependent nodes under all assignments. In the case of the simple network, PΦ = PΨ and
for S = {A}, B can be shown to be a cause. However, in the more complicated net-
work, the potential function of the dissociation expression gives priority to A’s throw and
determines that B is not a cause of the bottle breaking.

If the causal network is a tree, then the causal formula is itself a dissociation expression
with potential PΦ. Then, (FC2) simplifies to: (a) ∆PΦ(S, Xi) 6= 0 and (b) ∀S′ ⊆ S :
∆PΦ(S′) = 0. Causal networks which are trees form an important category of causality



problems as they model many practical cases of database queries, and they are character-
ized by desirable properties, as we show in Sect. 3.3.

Responsibility. Responsibility is a measure for degree of causality, first introduced by
Chockler and Halpern [6]. We redefine it here for functional causes.
Definition 5 (Responsibility). Responsibility ρ of a causal variable Xi is defined as

1
|S|+1 where S the minimum support for which Xi is a functional cause of an effect under
consideration. ρ := 0 if Xi is not a cause.
Responsibility ranges between 0 and 1. Non-zero responsibility (ρ > 0) means that the
variable is a functional cause, ρ = 1 means it is also a counterfactual cause.

3 Formal Properties

Functional causality encodes the semantics of causal structures with the help of potential
functions which are dependent only on the input variables. Functional causes are a refined
notion of actual causes. Even though the definition of AC does not exclude dependent
variables, functional causality does not consider them as possible causes, as their value is
fully determined from the input variables. The relationship of functional causality of input
variables to actual and counterfactual causality is demonstrated in the following theorem.
Theorem 2. Every X = x0 that is a counterfactual cause is also a functional cause, and
every X = x0 that is a functional cause is also an actual cause.
Actual causes are more permissive than functional causes, as indicated by the limitations
mentioned in Sect. 2. The issue is analyzed extensively in [20]. In this section we demon-
strate that functional causality provides a more powerful and robust way to reason about
causes than actual causality. In addition, we give a transitivity result and use it to derive
complexity results for certain types of causal network structures.

3.1 Causal Network Expansion

Functional, as well as actual causes, rely on the causal network to model a given problem.
The two different models of the thrower example displayed in Fig. 2(a,b) demonstrate that
changes in the network structure can help model priorities of events, which in turn can
redefine causality of variables.

In Fig. 2b, B is removed as a cause by the addition of an intermediate node in the causal
network structure that models the preemption of the effect by node A (Alice’s rock is
the one that breaks the bottle). This change is also visible in the causal Boolean formula,
which is transformed from Φ = A ∨B to Φ1 = A ∨ (Ā ∧B). As we know from Boolean
algebra, the two formulas are equivalent as they have the same truth tables. However,
they are not causally equivalent, as they yield different causality results. Therefore, the
grammatical form of the Boolean expression is important in determining causality, and
the functional definition captures that through dissociation expressions. It is important to
understand how changes in the causal network affect causality, and whether we can state
meaningful properties for those changes.

We define causal network expansion in a standard way by the addition of nodes and/or
edges to the causal structure. A network CNe with formula Φe is a node expansion (respec-
tively edge expansion) of CN with formula Φ if it can be created by the addition of a node
(respectively edge) to CN, while Φe ≡ Φ. CNe is a single-step expansion if it is either a
node or an edge expansion of CN.



Definition 6 (Expansion). A causal network CNe is an expansion of network CN iff ∃ set
{CN1, CN2, . . . , CNk} with CN1 = CN and CNk = CNe, such that CNi+1 is a single step
expansion of CNi, ∀i ∈ [1, k].

Networks represented by the formulas Φ1 = A∨ (Ā∧B) and Φ2 = (A∧ B̄)∨B are both
expansions of Φ = A ∨ B, but note that Φ1 and Φ2 are not expansions of one another. As
shown by the thrower example, network expansion can remove causes. As the following
theorem states, it can only remove, not add causes.

Theorem 3. If CNe with formula Φe is an expansion of CN with formula Φ and Xi = x0
i

is a cause in φe then Xi = x0
i is also a cause in φ.

Specifically in the case where no negation of literals is allowed, changes to the structure
do not affect the causality result:

Theorem 4. If CNe with formula Φe is an expansion of CN with formula Φ that does not
contain negated variables then φ and φe have the same causes.

The properties of formula expansion are important, as they prevent unpredictability due
to causal structure changes. Note that the Halpern and Pearl definition does not handle
formula expansion as gracefully. Figure 2 demonstrates with an example that the HP def-
inition allows introducing new causes with expansion. A = 1 is not a cause in the simple
network of Fig. 2c but becomes causal after adding node Y2 in Fig. 2d. Therefore, network
expansion is unpredictable for actual causes, as there are examples where it can both re-
move (Fig. 2b) or introduce new causes (Fig. 2d). This is a strong point for our definition,
as causality is tied to the network structure, and erratic behavior due to minor structure
changes, as is the case in this example, is troubling.

3.2 Functional causes and transitivity

Functional causality only considers input nodes in the causal network as permissible causes
for events. Under this premise, the notion of transitivity of causality is not well-defined,
since dependent variables are never considered permissible causes of events in their de-
scendants. In order to ask the question of transitivity, we allow a dependent variable Y1

to become a possible cause in a modified causal model M ′ with Y1 as additional input
variable. We achieve this with the help of an external intervention [Y1 ← y0

1 ], setting the
variable to its actual value y0

1 . The new model is then M ′ = (N ,F ′) with modified struc-
tural equations F ′ = F \ {FY1}∪ {F ′

Y1
}, where F ′

Y1
= y0

1 , and hence new input variables
X ′ = (X, Y1) with original assignment x′0 = (x0, y0

1).
We can now ask the question of transitivity as follows: Assume that an assignment X =

x0 is a cause of Y1 = y0
1 in a causal model M . Further assume that Y1 = y0

1 is a cause of
Y2 = y0

2 in the modified network [Y1 ← y0
1 ]. Is then X = x0 a cause of Y2 = y0

2 in the
original network M? In agreement with recent prevalent (yet not undisputed) opinion in
causality literature [14,22], functional causality is not transitive, in general.

Intransitivity of causality is not uncontroversial [17] and humans generally feel a strong
intuition that causality should be transitive. It turns out that functional causality is actually
transitive in an important type of network structure that relates to this intuition: Transitivity
holds if there is no causal connection between the original cause (X) and the effect (Y2)
except through the intermediate node (Y1). This property allows us to deduce a lower
complexity for determining causality in restricted settings in Sect. 3.3.



Definition 7 (Markovian). A node N is Markovian in a causal network CN iff there is no
path from any ancestor of N to any descendent of N that does not pass through N .

Proposition 5 (Markovian transitivity). Given a causal model M in which X =x0 is a
cause of Y1 =y0

1 with responsibility ρ1, and Y1 is Markovian. Further assume that Y1 =y0
1

is a cause of Y2 =y0
2 with responsibility ρ2 in the modified causal model [Y1 ← y0

1 ]. Then
X =x0 is a cause of Y2 =y0

2 in M with responsibility ρ = (ρ−1
1 + ρ−1

2 − 1)−1

3.3 Complexity

Analogous to Eiter and Lukasiewicz’s result that determining actual causes for Boolean
variables is NP-hard [9], determining functional causality is also NP-hard, in general.

Theorem 6 (Hardness). Given a Boolean formula Φ on causal network CN and assign-
ment x0 of the input variables, determining whether Xi = x0

i is a cause of φ = Φ(x0) is
NP-hard.

Even though determining functional causality is hard, there are important cases that can
be solved in polynomial time.

If the causal network is a tree, then the dissociation network is the same as the causal
network and there is a single potential function. Determining causality on a tree can be
simplified, as a result of the Markovian transitivity property (Proposition 5) and the fact
that all nodes in a tree are Markovian.

Lemma 7 (Causality in Trees). If Xi = x0
i is a cause of the output node Y in a tree

causal network, and p = {X, Y1, Y2, . . . , Y } the unique path from X to Y , then every
node in p is a functional cause of all of its descendants in p. Consequently, X is a cause
of all Yi ∈ p.

Following from Lemma 7, causality in cases of tree-shaped causal structures with bounded
arity (number of parents per node) is decidable in polynomial time.

Theorem 8 (Trees with arity ≤ k). Given a tree-shaped causal network with formula Φ
and bounded arity and actual assignment x0 of the input variables, determining whether
Xi = x0

i is a cause of φ = Φ(x0) is in P.

An even better result is given by Theorem 9, that covers the case of causal structures
where the function at every node is a primitive boolean operator (AND, OR, NOT), without
any restrictions on the arity.

Theorem 9 (Trees with Primitive Operators). Given a tree causal network with formula
Φ where the function of every node is a primitive boolean operator, i.e. AND, OR, NOT,
and assignment x0 of the input variables, determining whether Xi = x0

i is a cause of
φ = Φ(x0) is in P.

As demonstrated by Olteanu and Huang in [25], the lineage expressions of safe queries
do not have repeated tuples. Lineage expressions for conjunctive queries with no repeated
tuples correspond to causal networks that are trees. Following directly from Theorem 9,
we get complexity results for safe queries.

Corollary 10 (Causes of Safe Queries). Determining the functional causes of safe queries
can be done in polynomial time.



N(ews feeds)
nid story source
1 ... doing utmost to prevent more floods ... AsiaOne
2 ... economic downturn affected ... NYTimes
3 ... with sequences shot in Singapore ... AsiaOne
4 ... BP’s chief executive apologizes ... NYTimes
5 ... apology for oil disaster ... AsiaOne
6 ... VLDB held in Singapore ... NYTimes
7 ... discussed in a recent talk the ... NYTimes
8 ... European stimulus measures ... NYTimes
9 ... Singapore welcomes VLDB ... AsiaOne

F(iltered feed)
story
... doing utmost to prevent more floods ...
... economic downturn affected ...
... sequences shot in Singapore ...
... BP’s chief executive apologizes ...
... VLDB held in Singapore ...
... discussed in a recent talk the ...
... European stimulus measures ...

Fig. 5: News feed with aggregated data from different sources (left), and filtered feed (right).

In these tractable cases, due to the transitivity property, responsibility can also be computed
in polynomial time, using the formula of Proposition 5.

Another important category of tractable networks are those that correspond to DNF
and CNF formulas with no negated literals. This category covers important cases of join
queries in a database context.

Theorem 11 (Positive DNF/CNF). Given a positive DNF (or CNF) formula Φ and as-
signment x0 of the input variables, determining whether Xi = x0

i is a cause of φ = Φ(x0)
is in PTIME.

4 Explaining Query Results

In this section, we show how causality can be applied to address examples from the
database literature, like provenance and “Why Not?” queries, as well as examples show-
casing causality of aggregates. We also demonstrate how our causality framework can
model different types of elements that can be considered contributory to a query result,
like query operations instead of tuples.

4.1 WHY SO? and WHY NO?

We revisit our motivating example (Example 1), but introduce a slight variation that ag-
gregates data from different news sources to demonstrate how functional causality can be
used to answer WHY SO? and WHY NO? questions.

Example 4 (News aggregator). A user has access to the News feed relation N, depicted in
Fig. 5. N contains news articles from two different sources, the NY Times and the Singapore
Press holdings portal, Asia One. The user, who resides in Singapore, likes to read more
local news from Asia One, but she prefers the NY Times with regards to global interest
news. Hence, she does not want to read on topics from Asia One that are also covered by
the NY Times. Her filtered feed is constructed by the query:

select N.story

from N

where N.source=‘NYTimes’ or

not exists ( select *

from N as N1

where topic(N1.story)=topic(N.story)

and N1.source=‘NYTimes’)



where topic() is a topic extractor modeled as a user-defined function. The user’s filtered
feed will contain stories from NY Times, and only those stories from Asia One that NY
Times does not cover. Simply, if SNY is an article in NY Times covering a topic, and
SA an article in Asia One about the same topic, whether the user will see this topic in
her feed or not follows a causal model similar to that of Fig. 4a, with boolean formula
Φ = SNY ∨ (S̄NY ∧ SA). The topic appears in F if it appears in either NY Times or Asia
One, but the first gets priority.

When asking what is the cause of getting an article on the Orchard Rd floods, the user
gets tuple 1 from relation N, as it is counterfactual. When asking what is the cause of
seeing an article on VLDB, she gets the NY Times article (tuple 6), even though Asia One
also had a story about it (tuple 9). The analysis is equivalent to the rock thrower example.

The framework can be used in a similar fashion to respond to “Why No?” questions. As-
sume tuple t10 =(10,’... immigration officials arrest 300...’,NYTimes),
which was present in yesterday’s news feed, but was since then removed. Tuple t10 is a
functional cause to the WHY NO? question: “Why do I not see news on immigration”, as
it is counterfactual. Its removal from the feed caused the absence of immigration topics in
the user’s filtered view.

4.2 Aggregates

We next show how functional causality can be applied to determine causes and responsi-
bility for aggregates. We focus here only on positive integers and give complexity results
for WHY SO? and WHY NO? for WHY IS SUM ≥ c? and WHY IS SUM 6≥ c?. In the fol-
lowing we denote with Ω ∈ {SUM, MAX, AVG, MIN, COUNT} an aggregate function evaluated
over a multiset of values (Ω(V )), X is a vector of boolean values representing presence
of absence of tuples, and op is an operator from the set {≥, >,≤, <, =, 6=}.

Definition 8 (Why so? and Why no?). Let ω0 = Ω(x0) be the value of an aggregate
function for current assignment x0. The question of WHY SO? (respectively, WHY NO?)
for a condition ω0 op c that is true (respectively, false) under the current assignment
corresponds to the question of which set of tuples {ti} from the tuple universe with orig-
inal assignment x0

i = 1 (respectively, 0) is a cause of the event φ =
(
ω0 op c = true

)
(respectively, false) with responsibility ρi.

Example 5 (Sum example). Consider a tuple universe T = [(10), (20), (30), (50), (100)]
and a view R(A) with the subset of tuples R = {(20), (30), (100)}. Now consider the
query select SUM(R.A) from R executed over the view R which returns 150. In our
notation, this is represented with a vector V = [10, 20, 30, 50, 100], current assignment
x0 = [0, 1, 1, 0, 1], and SUM(x0) = 150 (see Fig. 6a).

WHY SUM ≥ c?: t3 is a cause of SUM(x0) ≥ 30 with responsibility 1
2 . FC2(a): SUM(x1) 6≥

30 for x1 = [0, 1, 0, 0, 0]. FC2(b): SUM(x1∗) ≥ 30 for every assignment x1∗ with x1∗
3 = 1

and any subset of {x1
5 = 0} inverted to its original assignment. In contrast, t2 is not a

cause: While FC2(a) holds for x1 = [0, 0, 0, 1, 0] with SUM(x1) 6≥ 30 (and then t2 would
be counterfactual), FC2(b) is not fulfilled for x1∗ = [0, 1, 0, 0, 0].

WHY SUM 6≥ c?: t4 is a cause of
(
SUM(x0) ≥ 180

)
= false, as both x4 and the condi-

tion are false under current assignment, but would hold for x1 = [0, 1, 1, 1, 1].



R

A

t2 20 x2 =1

t3 30 x3 =1

t5 100 x5 =1

SUM 150

T − R

A

t1 10 x1 =0

t4 50 x4 =0

(a)

WHY SUM(x0)≥ WHY SUM(x0) 6≥
ti x0

i 20 30 40 60 130 160 180 210 220

t1 0 − − − − − 1 − 1
2 −

t2 1 1
3 − 1

2 − − − − − −
t3 1 1

3
1
2

1
2 − 1 − − − −

t4 0 − − − − − 1 1 1
2 −

t5 1 1
3

1
2

1
2 1 1 − − − −

(b)

Fig. 6: Sum example. (a): Relation R with tuples from tuple domain T . (b): Responsibility ρi

of ti for WHY SO? (SUM(x0)≥c) and WHY NO? (SUM(x0) 6≥c).

Figure 6b shows responsibility for different values of constant c in Example 5 and illus-
trates that responsibility for SUM is not monotone. In order to compute responsibility for
a tuple ti, one must find the smallest set of tuples that, when inverted (i.e. either inserted
or deleted) make tuple ti counterfactual for the condition. Determining the causes of an
aggregate is in general NP-complete. We refer the reader to our technical report [20] for
further theoretical analysis of aggregate causality and more examples.

4.3 Causes beyond tuples

Provenance and non-answers commonly focus on tuples as discrete units that have contri-
bution to a query result. Our causality framework is not restricted to tuples, but can model
any element that could be considered contributory to a result. To showcase this flexibility,
we pick an example from Chapman and Jagadish [4] that models operations in workflows
as possible answers to “Why not?” questions.

Example 6 (Book Shopper [4], Ex. 1). A shopper knows that all “window display books”
at Ye Olde Booke Shoppe are around $20, and wishes to make a cheap purchase. She issues
the query: Show me all window books. Suppose the result from this query is (Euripides,
“Medea”). Why is (Hrotsvit, “Basilius”) not in the result set? Is it not a book in the book
store? Does it cost more than $20? Is there a bug in the query-database interface such that
the query was not correctly translated?

Chapman and Jagadish consider a discrete component of a workflow, called manipula-
tion, as an explanation of a “Why not?” query. The workflow describing the query of the
example is shown in Fig. 7b. Roughly, a manipulation is considered picky for a non-result
if it prunes the tuple. For example, manipulation 1 of Fig. 7b is picky for “Odyssey”, as it
costs more than $20. Equivalently, a manipulation is frontier picky for a set of non-results,
if it is the last in the workflow to reject tuples from the set. In this framework, the cause of
a non-answer will be a frontier picky manipulation.

In Example 6, tuple t =(Hrotsvit, “Basilius”) passes the price test, but is cut by manip-
ulation 2 as it doesn’t satisfy the seasonal criteria. The causal network representing this
example is presented in Fig. 7c. Input nodes model the events: M1: manipulation 1 is not
potentially picky with respect to t, and M2: manipulation 2 is not potentially picky with
respect to t. At the end, the tuple appears only if neither manipulation is picky: M1 ∧M2.
Intermediate node Y1 encodes the precedence of the manipulations in the workflow. A tu-
ple will be stopped at point Y1 of the workflow if M2 is picky but M1 was not: M1∧M̄2. It
will pass this point if the opposite holds, so Y1 = M1 ∧ M̄2 = M̄1∨M2, and Y = M1∧Y1.



Author Title Price Publisher
Epic of Gilgamesh $150 Hesperus

Euripides Medea $16 Free Press
Homer Iliad $18 Penguin
Homer Odyssey $49 Vintage
Hrotsvit Basilius $20 Harper
Longfellow Wreck of the Hesperus $89 Penguin
Shakespeare Coriolanus $70 Penguin
Sophocles Antigone $48 Free Press
Virgil Aeneid $92 Vintage

(a)

Ye Olde 
Books 

Select Books 
<=$20 

Apply Season 
Criteria 

Window 
Books 

Workflow input Workflow output 
MANIPULATION 1 MANIPULATION 2 

(b)

5	
  

Fig_WhyNotExample1	
   12-­‐10-­‐2009	
  

M2

M1

Y =M1∧Y1

Y1 =M̄1∨M2

(c)

6	
  

Fig_WhyNotExample2	
   12-­‐10-­‐2009	
  

M1,1

M1,2

Y =M1,1∧Y1

M2 Y1 =M̄1,2∨M2

(d)
Fig. 7: (a) Books in “Ye Olde Booke Shoppe” [4]. (b) Variation of the query workflow from [4].
The causal network of Example 6 (c), and its DN with respect to M2 (d).

Applying the FC framework for M1 = 1 (M1 is not picky), and M2 = 0 (M2 is picky),
correctly yields that M2 is the only cause: S = ∅, ∆IΦ(M2) 6= 0. If both manipulations
were potentially picky (M1 = 0 and M2 = 0), the FC definition again correctly picks M1

as the only cause with support S = {M2} (even though M2 is potentially picky, the tuple
never gets to it), which agrees with the WHY NOT? framework that selects as explanation
the last manipulation that rejected the tuple.

5 Related Work

Our work is mainly related and unifies ideas from three main areas: research on causality,
provenance, and missing query result explanations.

Causality. Causality is an active research area mainly in logic and philosophy with their
own dedicated workshops (see e.g. [1]). The most prevalent definitions of causality are
based on the idea of counterfactual causes, i.e. causes are explained in terms of counter-
factual conditionals of the form If X had not occurred, Y would not have occurred. This
idea of counterfactual causality can be traced back to Hume [22]. The best known counter-
factual analysis of causation in modern times is due to Lewis [16]. In a databases setting,
Miklau and Suciu [23] define critical tuples as those which can become counterfactual
under some value assignment of variables. Halpern and Pearl [12] (HP in short) define
a variation they call actual causality. Roughly speaking, the idea is that X is a cause
of Y if Y counterfactually depends on X under “some” permissive contingency, where
“some” is elaborately defined. Later, Chockler and Halpern [6] define the degree of re-
sponsibility as a gradual way to assign causality. Eiter and Lukasiewicz [9] show that the
problem of detecting whether X = x0 is an actual cause of an event is ΣP

2 -complete for
general acyclic models and NP-complete for binary acyclic models. They also give an al-
leged proof showing that actual causality is always reducible to primitive events. However,
Halpern [11] later gives an example for non-primitive actual causes, showing this proof to
ignore some cases under the original definition. Chockler et al. [7] later apply causality
and responsibility to binary Boolean networks, giving a modified definition of cause.

A general overview of various applications of causality in a database context is given in
[19]. The complexity of computing causality and responsibility is studied in [21] for the
case of conjunctive queries, leading to a strong dichotomy result.

Provenance. Approaches for defining data provenance can be mainly divided into three
categories: how, why, and where provenance ([3,5,8,10]). In particular for the “why so”
case, we observe a close connection between provenance and causality, where it is often
the case that tuples in the provenance for the result of a positive query result are causes.



While none of the work on provenance mentions or makes direct connections to causa-
lity, those connections can be found. The work by Buneman et al. [3] makes a distinc-
tion between why and where provenance that can be connected to causality as follows:
why provenance returns all tuples that can be considered causes for a particular result,
and where provenance returns attributes along a particular causal path. Green et al. [10]
present a generalization for all types of provenance as semirings; finding functional causes
in a Boolean tree, if taken in a provenance context, yields degree-one polynomials for
provenance semirings. View data lineage, as presented by Cui et al. [8] also addresses
aggregates but lacks a notion of graded contribution.

In contrast, our approach can rank tuples according to their responsibility, hence our
approach allows to determine a gradual contribution with counterfactual tuples ranked first.
Also, in contrast to our paper, most of the work on provenance has little or no connection
to the philosophical groundwork on causality. We take this work and significantly adapt it
so that it can be applied to databases.

Missing query results. Very recent work has focused on the question “why no”, i.e. why
is a certain tuple not in the result set? The work by Huang et al. [15] presents provenance
for potential answers and never answers. In the case that no insertions or modifications
can yield the desired result - usually for privacy or security reasons - the system declares
that particular tuple a never answer. Both Huang’s work and Artemis [13] handle potential
answers by providing tuple insertions or modifications that would yield the missing tuples.
Alternatively, Chapman and Jagadish [4] focus on which manipulation in the query plan
eliminated a specific tuple, while Tran and Chan [26] show how the query can be modified
in order to include missing results in the answer. Lim et al. [18] adopt a third, explanation-
based, approach. This approach aims to answer questions such as why, why not, how to,
and what if for context-aware applications, but does not address a database setting.

Our work, unifies the above approaches in the sense that we model both, tuples or ma-
nipulations, as possible causes for missing query answers. Also, our approach unifies the
problem of explaining missing query answers (why is a tuple not in the query result) with
work on provenance (why is a tuple in the query result).

Other. Minsky and Papert initiated the study of the computational properties of Boolean
functions using their representation by polynomials and call this the arithmetic instead of
the logical form [24, p.27]. This method was later successfully used in complexity theory
and became known as arithmetization [2].

6 Conclusions and Future Work

In this paper, we defined functional causes, a rigorous and extensible definition of causality
encoding the semantics of causal structures with the help of powerful potential functions.
Through theoretical analysis of its properties, we demonstrated that our definition provides
a more powerful and robust way to reason about causes than other established notions of
causality. Albeit NP-hard in the general case, common categories of causal networks that
correspond to interesting database examples (e.g. safe queries) prove to be tractable. We
presented several database examples that portrayed the applicability of our framework in
the context of provenance, explanation of non-answers, as well as aggregates. We demon-
strated how to determine causes of query results for SUM and COUNT aggregates, and how
these can be ranked according to the causality metric of responsibility.



Providing support for causal queries allows users to better understand the reasons behind
their observations, and is an important tool for identifying potential errors in uncertain or
untrusted data. Overall, with this work we establish the theoretical foundations of causality
theory in the database context, which we view as a unified framework that deals with query
result explanations.
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