
EXstream: Explaining Anomalies in Event Stream
Monitoring

Haopeng Zhang, Yanlei Diao, Alexandra Meliou
College of Information and Computer Sciences, University of Massachusetts Amherst

{haopeng, yanlei, ameli}@cs.umass.edu

ABSTRACT
In this paper, we present the EXstream system that pro-

vides high-quality explanations for anomalous behaviors that
users annotate on CEP-based monitoring results. Given
the new requirements for explanations, namely, conciseness,
consistency with human interpretation, and prediction power,
most existing techniques cannot produce explanations that
satisfy all three of them. The key technical contributions of
this work include a formal definition of optimally explaining
anomalies in CEP monitoring, and three key techniques for
generating sufficient feature space, characterizing the con-
tribution of each feature to the explanation, and selecting a
small subset of features as the optimal explanation, respec-
tively. Evaluation using two real-world use cases shows that
EXstream can outperform existing techniques significantly
in conciseness and consistency while achieving comparable
high prediction power and retaining a highly efficient imple-
mentation of a data stream system.

1. INTRODUCTION
Complex Event Processing (CEP) extracts useful infor-

mation from large-volume event streams in real-time. Users
define interesting patterns in a CEP query language (e.g,.
[3, 4]). With expressive query languages and high perfor-
mance processing power, CEP technology is now at the core
of real-time monitoring in a variety of areas, including the
Internet of Things [16], financial market analysis [16], and
cluster monitoring [26].

However, today’s CEP technology supports only passive
monitoring by requesting the monitoring application (or user)
to explicitly define patterns of interest. There is a recent re-
alization that many real-world applications demand a new
service beyond passive monitoring, that is, the ability of the
monitoring system to identify interesting patterns (includ-
ing anomalous behaviors), produce a concrete explanation
from the raw data, and based on the explanation enable a
user action to prevent or remedy the effect of an anomaly.
We broadly refer to this new service as proactive monitoring.

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

We present two motivating applications as follows.

1.1 Motivating Applications
Production Cluster Monitoring. Cluster monitoring

is crucial to many enterprise businesses. For a concrete ex-
ample, consider a production Hadoop cluster that executes
a mix of Extract-Transform-Load (ETL) workloads, SQL
queries, and data stream tasks. The programming model
of Hadoop is MapReduce, where a MapReduce job is com-
posed of a map function that performs data transformation
and filtering, and a reduce function that performs aggre-
gation or more complex analytics for all the data sharing
the same key. During job execution, the map tasks (called
mappers) read raw data and generate intermediate results,
and the reduce tasks (reducers) read the output of mappers
and generate final output. Many of the Hadoop jobs have
deadlines because any delay in these jobs will affect the en-
tire daily operations of the enterprise business. As a result,
monitoring of the progress of these Hadoop jobs has become
a crucial component of the business operations.

However, the Hadoop system does not provide sufficient
monitoring functionality by itself. CEP technology has been
shown to be efficient and effective for monitoring a variety
of measures [26]. By utilizing the event logs generated by
Hadoop and system metrics collected by Ganglia[12], CEP
queries can be used to monitor Hadoop job progress; to find
tasks that cause cluster imbalance; to find data pull strag-
glers; and to compute the statistics of lifetime of mappers
and reducers. Consider a concrete example below, where
the CEP query monitors the size of intermediate results that
have been queued between mappers and reducers.

Example 1.1 (Data Queuing Monitoring). Collect all the
events capturing intermediate data generation/consumption
for each Hadoop job. Return the accumulative intermediate
data size calculated from those events (Q1).

Figure 1(a) shows the data queuing size of a monitored
Hadoop job. The X-axis stands for the time elapsed since
the beginning of the job, while the Y-axis represents the size
of queued data. In this case, the job progress turns out to
be normal: the intermediate results output by the mappers
start to queue at the beginning and reach a peak after a
short period of time. This is because a number of mappers
have completed in this period while the reducers have not
been scheduled to consume the map output. Afterwards,
the queued data size decreases and then stabilizes for a long
period of time, meaning that the mappers and reducers are
producing and consuming data at constant rates, until the
queued data reduces to zero at the end of the job.

(a) Data queuing size of a normal
Hadoop job

(b) Data queuing size of an abnor-
mal Hadoop job

An Explanation Engine

A CEP-based Monitoring System

CEP

Results

Data source

Data

Annotation

Archive Explanation

Visualization

Explanation

(c) Architecture of EXstream

Figure 1: Hadoop cluster monitoring: examples and system architecture.

Suppose that a Hadoop user sees a different progress plot,
as shown Figure 1(b), for the same job on another day: there
is a long initial period where the data queuing size increases
gradually but continually, and this phase causes the job com-
pletion time to be delayed by more than 500 seconds. When
the user sees the job with an odd shape in Figure 1(b), he
may start considering the following questions:

I What is happening with the submitted job?

I Should I wait for the job to complete or re-submit it?

I Is the phenomenon caused by the bugs in the code or
some system anomalies?

I What should I do to bring the job progress back to
normal?

Today’s CEP technology, unfortunately, does not provide
any additional information that helps answer the above ques-
tions. The best practice is manual exploration by the Hadoop
user: he can dig into the complex Hadoop logs and manually
correlate the Hadoop events with the system metrics such as
CPU and memory usage returned by a cluster monitoring
tool like Ganglia [12]. If he is lucky to get help from the
cluster administrator, he may collect additional information
such as the number of jobs executed concurrently with his
job and the resources consumed by those jobs.

For our example query, the odd shape in Figure 1(b) is
due to high memory usage of other programs in the Hadoop
cluster. However, this fact is not obvious from the visualiza-
tion of the user’s monitoring query, Q1. It requires analyzing
additional data beyond what is used to compute Q1 (which
used data relevant only to the user’s Hadoop job, but not
all the jobs in the system). Furthermore, the discovery of
the fact requires new tools that can automatically generate
explanations for the anomalies in monitoring results such
that these explanations can be understood by the human
and lead to corrective / preventive actions in the future.

Supply Chain Management. The second use case is
derived from an aerospace company with a global supply
chain. By talking with the experts in supply chain manage-
ment, we identified an initial set of issues in the company’s
complex production process which may lead to imperfect or
faulty products. For instance, in the manufacturing pro-
cess of a certain product the environmental features must to
be strictly controlled because they affect the quality of pro-
duction. For example, the temperature and humidity need
to be controlled in a certain range, and they are recorded
by the sensors deployed in the environment. However, if
some sensors stop working, the environmental features may
not be controlled properly and hence the products manufac-

tured during that period can have quality issues. When such
anomalies arise, it is a huge amount of work to investigate
the claims from customers given the complexity of manufac-
turing process and to analyze a large set of historical data
to find explanations that are meaningful and actionable.

1.2 Problem Statement and Contributions
The overall goal of EXstream is to provide good explana-

tions for anomalous behaviors that users annotate on CEP
monitoring results. We assume that an enterprise informa-
tion system has CEP monitoring functionality: a CEP moni-
toring system offers a dashboard to illustrate high-level met-
rics computed by a CEP query, such as job progress, network
traffic, and data queuing. When a user observes an abnor-
mal value in the monitoring results, he annotates the value
in the dashboard and requests EXstream to search for an
explanation from the archived raw data streams. EXstream
generates an optimal explanation(formalized in Section 2.2)
by quickly replaying a fraction of the archived data streams.
Then the explanation can be encoded into the system for
proactive monitoring for similar anomalies in the future.

Challenges. The challenges in the design of XStream
arise from the requirements for such explanations. Informed
by the two real-world applications mentioned above, we con-
sider three requirements in this work: (a) Conciseness: The
system should favor smaller explanations, which are easier
for humans to understand. (b) Consistency : The system
should produce explanations that are consistent with hu-
man interpretation. In practice, this means that explana-
tions should match the true reasons for an anomaly (ground
truth). (c) Prediction power : We prefer explanations that
have predictive value for future anomalies.

It is difficult for existing techniques to meet all three re-
quirements. In particular, prediction techniques such as
logistic regression and decision trees [2] suffer severely in
conciseness or consistency as shown in our evaluation re-
sults. This is because these techniques were designed for
prediction, but not for explanations with conciseness and
consistency requirements. Recent database research [25, 20]
seeks to explain outliners in SQL query answers. This line
of work assumes that explanations can be found by search-
ing through various subsets of the tuples that were used to
compute the query answers. This assumption does not suit
real-world stream systems for two reasons: As shown for our
example, Q1, the explanation of memory usage contention
among different jobs cannot be generated from only those
events that produced the monitoring results of Q1. Fur-
thermore, the stream execution model does not allow us to

Event type Meaning Schema

JobStart Recording a Hadoop job starts (timestamp, eventType, eventId, jobId, clusterNodeNumber)
JobEnd Recording a Hadoop job finishes (timestamp, eventType, eventId, jobId, clusterNodeNumber)
DataIO Recording the activities of generation

(positive values) / consumption (nega-
tive values) of intermediate data

(timestamp, eventType, eventId, jobId, taskId, attemptId, clusterN-
odeNumber, dataSize)

CPUUsage Recording the CPU usage for a node
in the cluster

(timestamp, eventType, eventId, clusterNodeNumber, CPUUsage)

MemUsage Recording the memory usage for a
node in the cluster

(timestamp, eventType, eventId, clusterNodeNumber, memUsage)

Figure 2: Example event types in Hadoop cluster monitoring. Event types can be specific to the Hadoop job (e.g.,

JobStart, DataIO, JobEnd), or they may report system metrics (e.g., CPUUsage, FreeMemory).

Q Pattern seq(Component1, Component2 , . . .)
Where [partitionAttribute] ∧ Pred1 ∧ Pred2 ∧ . . .
Return (timestamp, partitionAttribute, derivedA1,

derivedA2, . . .)[]

Q1 Pattern seq(JobStart a, DataIO+ b[], JobEnd c)
Where [jobId]
Return (b[i].timestamp, a.jobId,

sum(b[1· · · i].dataSize))[]

Figure 3: Syntax of a query in SASE (on the left), and an example query for monitoring data activity (on the right).

repeat query execution over different subsets of events or
perform any precomputation in a given database [20].

Contributions. In this work, we take an important step
towards discovering high-quality explanations for anomalies
observed in monitoring results. Toward this goal, we make
the following contributions:

1) Formalizing explanations (Section 2): We provide a
formal definition of optimally explaining anomalies in CEP
monitoring as a problem that maximizes the information
reward provided by the explanation.

2) Sufficient feature space (Section 3): A key insight
in our work is that discovering explanations first requires a
sufficient feature space that includes all necessary features
for explaining observed anomalies. EXstream includes a new
module that automatically transforms raw data streams into
a richer feature space, F, to enable explanations.

3) Entropy-based, single-feature reward (Section 4):
As a basis for building the information reward of an expla-
nation, we model the reward that each feature, f ∈ F, may
contribute using a new entropy-based distance function.

4) Optimal explanations via submodular optimiza-
tion (Section 5): We next model the problem of finding an
optimal explanation from the feature space, F, as a submod-
ular maximization problem. Since submodular optimization
is NP-hard, we design a heuristic algorithm that ranks and
filters features efficiently and effectively.

5) Evaluation (Section 6): We have implemented EXstream
on top of the SASE stream engine [3, 26]. Experiments us-
ing two real-world use cases show promising results: (1) Our
entropy distance function outperforms state-of-the-art dis-
tance functions on time series by reducing the features con-
sidered by 94.6%. (2) EXstream significantly outperforms
logistic regression [2], decision tree [2], majority voting [15]
and data fusion [19] in consistency and conciseness of expla-
nations while achieving comparable, high predication accu-
racy. Specifically, it outperforms others by improving con-
sistency from 10.7% to 87.5% on average, and reduces 90.5%
of features on average to ensure conciseness. (3) Our imple-
mentation is also efficient: with 2000 concurrent monitoring
queries, the triggered explanation analysis returns explana-
tions within half a minute and affects the performance only

slightly, delaying events processing by 0.4 second on average.

2. EXPLAINING CEP ANOMALIES
The goal of EXstream is to provide good explanations

for anomalous behaviors that users annotate on CEP-based
monitoring results. We first describe the system setup, and
give examples of monitoring queries and anomalous obser-
vations that a user may annotate. We then discuss the re-
quirements for providing explanations for such anomalies,
and examine whether some existing approaches can derive
explanations that fit these requirements. Finally, we define
the problem of optimally explaining anomalies in our set-
ting.

2.1 CEP Monitoring System and Queries
In this section, we describe the system setup for our prob-

lem setting. The overall architecture of EXstream is shown
in Figure 1(c). The top dashed rectangle in Figure 1(c) is a
CEP-based monitoring system. We consider a data source S,
generating events of n types, E = {E1, E2, . . . , En}. Events
of these types are received by the CEP-based monitoring
system continuously. Each event type follows a schema,
comprised of a set of attributes; all event schemas share
a common timestamp attribute. The timestamp attribute
records the occurrence time of each event. Figure 2 shows
some example event types in the Hadoop cluster monitoring
use case [26].

We consider a CEP engine that monitors these events
using user-defined queries. For the purposes of this pa-
per, monitoring queries are defined in the SASE query lan-
guage [3], but this is not a restriction of our framework, and
our results extend to other CEP query languages. Figure 3
shows the general syntax of CEP queries in SASE, and an
example query, Q1, from the Hadoop cluster monitoring use
case. Q1 collects all data-relevant events during the lifetime
of a Hadoop job. We now explain the main components of
a SASE query.

Sequence. A query Q may specify a sequence using the
SEQ operator, which requires components in the sequence
to occur in the specified order. One component is either a
single event or the Kleene closure of events. For example,
Q1 specifies three components: the first component is a sin-

gle event of the type JobStart; the second component is a
Kleene closure of a set of events of the type DataIO; and
the third component is a single event of type JobEnd.

Predicates. Q can also specify a set of predicates in its
Where clause. One special predicate among these is the
bracketed partitionAttribute. The brackets apply an equiv-
alence test on the attribute inside, which requires all se-
lected events to have the same value for this attribute. The
partitionAttribute tells the CEP engine which attribute to
partition by. In Q1, jobId is the partition attribute.

Return matches. Q specifies the matches to return in
the Return clause. Matches comprise a series of events with
raw or derived attributes; we assume timestamp and the
partitionAttribute are included in the returned events. We
denote with m a match on one partition and with MQ the
set of all matches. Q1 returns a series of events based on
selected DataIO events, and the returned attributes include
timestamp, jobId, and a derived attribute— the total size
for all selected DataIO events. In order to visualize results
in real time, matches will be sent to the visualization module
as events are collected.

Visualizations and feedback. Our system visualizes matches
from monitoring queries on a dashboard that users can inter-
act with. The visualizations typically display the (relative)
occurrence time on the X-axis. The Y-axis represents one of
the derived attributes in returned events. Users can specify
simple filters to focus on particular partitions. All returned
events of MQ are stored in a relational table TMQ , and the
data to be visualized for a particular partition is specified
as πt,attr i(σpartitionAttribute=v(M)). Figure 1(a) shows the
visualization of a partition, which corresponds to a Hadoop
job for this query. In this visualization, the X-axis displays
the time elapsed since the job started, and the Y-axis shows
the derived sum over the “DataSize” attribute.

Users can interact with the visualizations by annotating
anomalies. For example, the visualization of Figure 1(b)
demonstrates an unexpected behavior, with the queueing
data size growing slowly. A user can drag and draw rect-
angles on the visualization, to annotate the abnormal com-
ponent, as well as reference intervals that demonstrate nor-
mal behavior. We show an example of these annotations
in Figure 4. A user may also annotate an entire period
as abnormal, and choose a reference interval in a different
partition. The annotations will be sent to the explanation
engine of EXstream, which is shown in the bottom dashed
rectangle of Figure 1(c). The explanation engine will be
introduced in detail in following sections. We use IA to
denote the annotated abnormal interval in a partition PA:
IA = (Q, [lower, upper], PA). We use IR to denote the refer-
ence interval, which can be explicitly annotated by the user,
or inferred by EXstream as the non-annotated parts of the
partition. We write IR = (Q, [lower, upper], PR), where PR

and PA might be the same or different partitions.

2.2 Explaining Anomalies
Monitoring visualizations allow users to observe the evolu-

tion of various performance metrics in the system. While the
visualizations help indicate that something may be unusual
(when an anomaly is observed), they do not offer clues that
point to the reasons for the unexpected behavior. In our
example from Figure 4, there are two underlying reasons for

IA IR

Figure 4: Abnormal (IA) and reference (IR) intervals.

the abnormal behavior: (1) the free memory is lower than
normal, and (2) the free swap space is lower than normal.
However, these reasons are not obvious from the visualiza-
tion; rather, a Hadoop expert had to manually check a large
volume of logs to derive this explanation. Our goal is to au-
tomate this process, by designing a system that seamlessly
integrates with CEP monitoring visualizations, and which
can produce explanations for surprising observations.

We define three desirable criteria for producing explana-
tions in EXstream:

1. Conciseness: The system should favor smaller, and thus
simpler explanations. Conciseness follows the Occam’s
razor principle, and produces explanations that are easier
for humans to understand.

2. Consistency: The system should produce explanations
that are consistent with human interpretation. In prac-
tice, this means that explanations should match the true
reasons for an anomaly (ground truth).

3. Prediction power: We prefer explanations that have
predictive value for future anomalies. Such explanations
can be used to perform proactive monitoring.

Explanations through predictive models. The first step
of our study explored the viability of existing prediction
techniques for the task of producing explanations for CEP
monitoring anomalies. Prediction techniques typically learn
a model from training data; by using the anomaly and refer-
ence annotations as the training data, the produced model
can be perceived as an explanation. For now, we will assume
that a sufficient set of features is provided for training (we
discuss how to construct the feature space in Section 3), and
evaluate the explanations produced by two standard predic-
tion techniques for the example of Figure 4.

Logistic regression [2] produces models as weights over a
set of features. The algorithm processes events from the two
annotated intervals as training data, and the trained predic-
tion model — a classifier between abnormal and reference
classes — can be considered an explanation to the anomaly.
The resulting logistic regression model for this example is
shown in Figure 5. While the model has good predictive
power, it is too complex, and cannot facilitate human un-
derstanding of the reported anomaly. The model assigns
non-zero weights to 30 out of 345 input features, and while
the two ground truth explanations identified by the human
expert are among these features (23 and 24), their weights
in this model are low. This model is too noisy to be of use,
and it is not helpful as an explanation.

No. Feature Weight

1 DataIOFrequency -0.01376
2 CPUIdleMean 0.0089
3 PullFinishFrequency -0.00708
4 ProcTotalMean 0.00085
.
23 SwapFreeMean -4.79E-07
24 MemFreeMean -3.28E-07
.
30 BoottimeMean 2.61E-10

Figure 5: Model generated by logistic regression for the

annotated anomaly of Figure 4.

MapFinishNodeNumberMean	

PullFinishNodeNumberMean	 MemFreeMean	

Abnormal	 Normal	 Abnormal	 Normal	

<4.7 ≥4.7

<4.5 ≥4.5 <1684942 ≥1684942

Figure 6: Model Generated by Decision Tree

Decision tree [2] builds a tree for prediction. Each non-leaf
node of the tree is a predicate while leaf nodes are predic-
tion decisions. Figure 6 shows the resulting tree for our
example. The decision tree algorithm selects three features
for the non-leaf nodes, and only one of them is part of the
ground truth determined by our expert. The other two fea-
tures happen to be coincidentally correlated with the two
intervals, as revealed in our profiling. This model is more
concise than the result of logistic regression, but it is not
consistent with the ground truth.

The above analyses showed that prediction techniques are
not suitable for producing explanations in our setting. While
the produced models have good predictive power (as this
is what the techniques are designed for), they make poor
explanations, as they suffer in consistency and conciseness.
Our goal is to design a method for deriving explanations
that satisfies all three criteria (Figure 7).

2.3 Formalizing Explanations
Explanations need to be understandable to human users,

and thus need to have a simple format. EXstream builds
explanations as a conjunction of predicates. In their general
format, explanations are defined as follows.

Definition 2.1 (Explanation). An explanation is a boolean
expression in Conjunctive Normal Form (CNF). It contains
a conjunction of clauses, each clause is a disjunction of pred-
icates, and each predicate is of the form {v o c}, where v is a
variable value, c is a constant, and o is one of five operators:
o ∈ {>,≥,=,≤, <}.

Example 2.1. The formal form of the true explanations for
the anomaly annotated in Figure 4 is (MemFreeMean <
1978482 ∧ SwapFreeMean < 361462), which is a conjunc-
tion of two predicates. It means that the average available
memory is less than 1.9GB and free swap space is less than
360MB. The two predicates indicate that the memory usage
is high in the system (due to resource contention), thus the
job runs slower than normal.

Arriving at the explanation of Example 2.1 requires two

Algorithm Conciseness Consistency Prediction
quality

Logistic regression Bad Bad Good
Decision tree Ok Bad Good
Goal Good Good Good

Figure 7: Performance of prediction methods on our

three criteria for explanations.

non-trivial components. First, we need to identify important
features for the annotated intervals (e.g., MemFreeMean,
SwapFreeMean); these features will be the basis of form-
ing meaningful predicates for the explanations. Second, we
have to derive the best explanation given a metric of op-
timality. For example, the explanation (MemFreeMean
< 1978482) is worse than (MemFreeMean < 1978482 ∧
SwapFreeMean < 361462), because, while it is smaller, it
does not cover all issues that contribute to the anomaly, and
is thus less consistent with the ground truth.

Ultimately, explanations need to balance two somewhat
conflicting goals: simplicity, which pushes explanations to
smaller sizes, and informativeness, which pushes explana-
tions to larger sizes to increase the information content. We
model these goals through a reward function that models
the information that an explanation carries, and we define
the problem of deriving optimal explanations as the problem
of maximizing this reward function.

Definition 2.2 (Optimal Explanation). Given an archive of
data streams D for CEP, a user-annotated abnormal inter-
val IA and a user-annotated reference interval IR, an optimal
explanation e is one that maximizes a non-monotone, sub-
modular information reward R over the annotated intervals:
argmaxeRIA,IR(e)

The reward function in Definition 2.2 is governed by an
important property: rewards are not additive, but submod-
ular. This means that the sum of the reward of two expla-
nations is greater than or equal to the reward of their union:
RIA,IR(e1) + RIA,IR(e2) ≥ RIA,IR(e1 ∪ e2). The intuition
for the submodularity property is based on the observation
that adding predicates to a conjunctive explanation offers
diminishing returns: the more features an explanation al-
ready has, the lower the reward of adding a new predicate
tends to be. Moreover, R is non-monotone. This means
that adding predicates to an explanation could decrease the
reward. This is due to the conciseness requirement that
penalizes big explanations. The optimal explanation prob-
lem (Definition 2.2) is therefore a submodular maximization
problem, which is known to be NP-hard [11].

2.4 Existing Approximation Methods
Submodular optimization problems are commonly addressed

with greedy approximation techniques. We next investigate
the viability of these methods for our problem setting.

For this analysis, we assume a reward function for ex-
planations based on mutual information. Mutual informa-
tion is a measure of mutual dependence between features.
This is important in our problem setting, as features are
often correlated. For example, PullStartFrequency and
PullF inishFrequency are highly correlated, because they
always appear together for every pull operation. For this
precise reason, Definition 2.2 demands a submodular reward
function. Mutual information satisfies the submodularity
property. Greedy algorithms are often used in mutual infor-

Figure 8: Accumulative mutual information gain under

greedy and random strategies.

mation maximization problems. The way they would work
in this setting is the following: given an explanation e, which
is initially empty, at each greedy step, we select the feature
f that maximizes the mutual information of e ∪ f .

Figure 8 shows the performance of the greedy algorithm
for maximization of mutual information, with a strawman
alternative. Random algorithms selects a random feature at
each step. The greedy strategy clearly outperforms the al-
ternative by reaching higher mutual information gains with
fewer features, but it still selects a large number of features
(around 20-30 features before it levels off). This means that
this method produces explanations that are too large, and
unlikely to be useful for human understanding.

2.5 Overview of the EXstream Approach
Since standard approaches for solving the optimal expla-

nation problem are insufficient for our problem setting, we
develop a new heuristic method based on good intuitions to
address the problem. We next provide a high-level overview
of our approach in building EXstream.

1. Sufficient feature space (Section 3): A key insight in
our work is that discovering optimal explanations first re-
quires a sufficient feature space that includes all necessary
features for explaining observed anomalies. Our work differs
fundamentally from existing work on discovering explana-
tions from databases [25, 20]: First, EXstream operates on
raw data streams, as opposed to the data carefully curated
and stored in a relational database. Second, EXstream does
not assume that the raw data streams carry all necessary fea-
tures for explaining anomalous behaviors. In our above ex-
ample, the feature, SwapFreeMean, captures average free
swap space and it does not exist in Hadoop event logs or
Ganglia output. Our system includes a module that auto-
matically transforms raw data streams into a richer feature
space, F, to enable the discovery of optimal explanations.

2. Entropy-based, single-feature reward (Section 4):
As a basis for building the information reward defined in
Definition 2.2, we consider the reward that each feature,
f ∈ F, may contribute. To capture the reward in such a base
case, we propose a new, entropy-based distance function that
is defined on a single feature across the abnormal interval,
IA, and the reference interval, IR. The larger the distance,
the more differentiating power over the two intervals that
the feature contributes, and hence more reward produced.

3. Optimal explanations via submodular optimiza-
tion (Section 5): The next task is to find an optimal ex-
planation from the feature space, F, that maximizes the in-
formation reward provided by the explanation. The reward
function in Definition 2.2 is non-monotone and submodu-
lar, resulting in a submodular maximization problem. Since

timestamp node usagePercent

4 2 35
5 5 49
6 8 99
7 1 86
8 2 61
9 6 43

Figure 9: Sample events in the type of CPUUsage.

submodular optimization is NP-hard, our goal is to design
a heuristic to solve this problem. Our heuristic algorithm
first uses the entropy-based, single-feature reward to rank
features, subsequently identifies a cut-off to reject features
with low reward, and finally uses correlation-based filtering
to eliminate features with information overlap (emulating
the submodularity property). Our evaluation shows that
our heuristic method is extremely effective in practice.

3. DISCOVERING USEFUL FEATURES
Explanations comprise of predicates on measurable prop-

erties of the CEP system. We call such properties features.
Some features for our running example are DiskFreeMean,
MemFreeMean, DataIOFrequency, etc. In most existing
work on explanations, features are typically determined by
the query or the schema of the data (e.g., the query predi-
cates in Scorpion [25]). In CEP monitoring, using as features
the query predicates or data attributes is not sufficient, be-
cause many factors that impact the observed performance
are due to other events and changes in the system. This
poses an additional challenge in our problem setting, as the
set of relevant features is non-trivial. In this section, we dis-
cuss how EXstream derives the space of features as a first
step to producing explanations.

In an explanation problem, we are given an anomaly inter-
val IA and a reference interval IR; the relevant features for
this explanation problem are built from events that occurred
during these two intervals. To support the functionality of
providing explanations, the CEP system has to maintain an
archive of the streaming data. The system has the ability
to purge archived data after the relevant monitoring queries
terminate, but maintaining the data for longer can be useful,
as the reference interval can be specified on any past data.

Formally, the events arriving in a CEP system in input
streams and the generated matches compose the input to
the feature space construction problem. We assume that
the CEP system maintains a table for each event type, such
as the one depicted in Figure 9. That is, for each event type
Ei, logically there is a relational table R(Ei) to store all
events of this type in temporal order. There is also a table
R(M) to archive all match events, denoted as type M . Let
D denote the database for EXstream, which is composed
of those tables. So, D is defined as D = {R(Ei)|1 ≤ i ≤
n} ∪R(M).

Each attribute in event type Ei, except the timestamp,
forms a time series in a given interval (which can be an
anomaly interval IA or a reference interval IR). Such time
series as features are called raw features.

Example 3.1. The table of Figure 9 records events of type
CPUUsage in a given time interval [4, 9], and forms two raw
features, from two time series. The first one is CPUUsage.Node,
and its values are ((4, 2), (5,5), (6,8), (7,1), (8,2), (9,6));
the other is CPUUsage.UsagePercent with values ((4,35),

0

10

20

30

40

50

60

70

0 1 2 3 4 5

SO
RT

ED
 R

A
N

K

FEATURE ID
Normal Abnormal Mixed

Figure 10: Visualization of the separating power of four

features: (1) free memory size, (2) idle CPU percentage,

(3) CPU percentage used by IO, and (4) system load.

This visualization is not part of EXstream, but we show

it here for exposition purposes.

(5,49), (6,99), (7,86), (8,61), (9,43)).

We found that the raw feature space is not good for deriv-
ing explanations due to noise. Instead, we need higher-level
features, which we construct by applying aggregation func-
tions to features at different granularities. We apply sliding
windows over the time series features and over each win-
dow, aggregate functions including count and avg to gener-
ate new time serious features. The EXstream system has an
open architecture that allows any window size and any new
aggregate functions to be used in the feature generation pro-
cess. Features produced this way are“smoothed”time series;
they demonstrate more general trends than raw features,
and outliers are smoothed. Example high-level features that
we produce by applying aggregations over windows on the
raw features are DataIOFrequency and MemFreeMean.

4. SINGLE-FEATURE REWARD
In this section, we present the core of our technique: an

entropy-based distance function that models the reward of
a single feature. We first discuss the intuition and require-
ments for this function, we then discuss existing, state-of-
the-art distance functions and explain why they are not
effective in this setting, and, finally, we present our new
entropy-based distance metric.

4.1 Motivation and Insights
In seeking explanations for CEP monitoring anomalies,

users contrast an anomaly interval with a reference interval.
An intuitive way to think about the different behaviors in
the two intervals is to consider the differences in the events
that occur within each interval. We can measure this dif-
ference per feature: how different is each feature between
the reference and the anomaly. Each feature is a vector of
values, a time series, and our goal is to measure the distance
between the time series of a feature during the abnormal
interval and the time series of the same feature during the
normal interval.

To explain one of the desirable properties of the distance
function, we visualize a feature as follows: We order the
values of a feature in increasing order and assign a color
to each value; red for values that appear in the abnormal
interval only, yellow for values that appear in the normal
interval only, and blue for values that appear in both normal
and abnormal intervals. Figure 10 shows this visualization

for 4 different features. In this figure, we note that the first
2 features show a clear separation of values between the
normal and abnormal periods. The third feature has less
clear separation, but still shows the trend that lower values
are more likely to be abnormal. Finally, the fourth feature
is mixed for a significant portion of values.

Intuitively, the first two features in Figure 10 are better
explanations for the anomaly, and thus have higher reward.
The first feature means when the anomalies occur, the free
memory size is relatively low, while during the reference in-
terval the free memory size is relatively high. The second
feature means that during the abnormal interval, idle CPU
percentage is low while it is high during the reference in-
terval. The unclear separation of the other two features, in
particular the blue segments, indicate randomness between
the two intervals, making them less suitable to explain the
annotated anomalies.

This example provides insights on the properties that we
need from the distance function: it should favor clear separa-
tion of normal and abnormal values, and it should penalize
features with mixed segments (values that appear in both
normal and abnormal periods). Therefore, the reward of a
feature is high if the feature has good separating power, and
it is lower with more segmentation in its values.

4.2 Existing State of the Art
Distance functions measuring similarities of time series

have been well studied [24], and there is over a dozen dis-
tance functions in the literature. However, these metrics
were designed with different goals in mind, and they do not
fit our explanation problem well. We discuss this issue for
the two major categories of distance functions [24].

Lock-step measure. In the comparison of two time se-
ries, lock-step measures compare the ith point in one time
series to exactly the ith point in another. Such measures
include the Manhattan distance (L1), Euclidean distance
(L2) [9], other Lp-norms distances and approximation based
DISSIM distance. Those distance functions treat each pair
of points independently, but in our case, we need to compare
the time series holistically. For example, assume four simple
time series: TS1 = (1, 1, 1), TS2 = (0, 0, 0), TS3 = (1, 0, 1)
and TS4 = (0, 1, 0). Based on our separating power crite-
rion, D(TS1, TS2) should be larger than D(TS3, TS4) be-
cause there is a clear separation between the values of TS1

and TS2, while the values of TS3 and TS4 are conflicting.
However, applying any of the lock-step measures produces
D(TS1, TS2) = D(TS3, TS4).

Elastic measure. Elastic measures allow comparison of
one-to-many points to find the minimum difference between
two time series. These measures try to compare time series
on overall patterns. For example, Dynamic Time Warping
(DTW) tries to stretch or compress one time series to better
match another time series; while Longest Common SubSe-
quence(LCSS) is based on the longest common subsequence
model. Although these measures also take value difference
into account, the additional emphasis on pattern matching
makes them ill-suited for our problem.

Both lock-step and elastic measures fall in the category
of sequence-based metrics. This means that they consider
the order of values. Lock-step functions perform strict step-
by-step, or event-by-event comparisons; such rigid measures
cannot find similarities in the flexible event series of our
problem setting. Elastic measures allow more flexibility, but

the emphasis on matching the microstructure of sequences
introduces too much randomness in the metric.

In our case, temporal ordering is not important, because
we assume the sample points in time series are independent.
This makes set-based functions a better fit (as opposed to
sequence-based). Set-based functions measure the macro
trend while smoothing low-level details.

4.3 Entropy-Based Single-Feature Reward
Since existing distance functions are not suitable to model

single-feature rewards, we design a new distance function
that emphasizes the separation of feature values between
normal and abnormal intervals (Section 4.1). Our distance
function is inspired by an entropy-based discretization tech-
nique [10], which cuts continuous values into value intervals
by minimizing the class information entropy. The segmen-
tation visualized in Figure 10, shows an intuitive connection
with entropy: The more mixed the color segments are, the
higher the entropy (i.e., more bits are needed to describe
the distribution). We continue with some background defi-
nitions, and then define our entropy-based distance function,
which we will use to model single-feature rewards.

Definition 4.1 (Class Entropy). Class entropy is the infor-
mation needed to describe the class distributions between
two time series. Given a pair of time series, TSA and TSR,
belonging to the abnormal and reference classes, respec-
tively. Let |TSA| and |TSR| denote the number of points

in the two time series, let pA = |TSA|
|TSA|+|TSR|

, and let pR =
|TSR|

|TSA|+|TSR|
. Then, the entropy of the class distribution is:

HClass(f) = pA ∗ log(
1

pA
) + pR ∗ log(

1

pR
) (1)

Definition 4.2 (Segmentation Entropy). Segmentation en-
tropy is the information needed to describe how merged
points are segmented by class labels. If there are n segmen-
tations, and pi represents the ratio of data points included
in the ith segmentation, the segmentation entropy is:

HSegmentation =

n∑
i=1

pi ∗ log(
1

pi
) (2)

Complicated segmentations in a feature result in more en-
tropy. When there is a clear separation of the two classes,
as in the first two features of Figure 10, the segmentation
entropy is the same as the class entropy. Otherwise, the
segmentation entropy is more than the class entropy.

Penalizing for mixed segments. Segmentation en-
tropy captures the segmentation of the normal and abnormal
classes, but does not penalize mixed segments with values
that appear in both classes (blue segments in the visualiza-
tion). Take an extreme case, where all values appear in both
classes (single mixed segment). This is the scenario with the
worst separation power, but its segmentation entropy is 0,
because it is treated as a single segment. This indicates that
we need special treatment for mixed (blue) segments.

We assume the worst case distribution of normal and ab-
normal data points within the segment. This is the uniform
distribution, which leads to most segmentation and highest
entropy. For example, if a mixed segment c consists of 5
data points, 3 contributed from the normal class (N) and 2
contributed from the abnormal class (A), distributing them
uniformly leads to 5 segments: (N,A,N,A,N). We denote this

worst-case ordering of segment c as c∗. We assign a penalty
term for each segment c, which is equal to the segmentation
entropy of its worst-case ordering, c∗: HSegmentation(c∗).
We thus define the regularized segmentation entropy:

H+
Segmentation = HSegmentation+

m∑
j=1

HSegmentation(c∗j) (3)

The first term in this formula is the segmentation entropy
of the feature, and the second term sums the regularization
penalties of all mixed segments (m).

Accounting for feature size. Features may be of differ-
ent sizes, as different event types may occur more frequently
than others. The segmentation entropy is only comparable
between two features f1, f2, if |f1.TSA| = |f2.TSA| and
|f1.TSR| = |f2.TSR|. However this does not hold for most
features. To make these metrics comparable, we normalize
segmentation entropy using class entropy and get the follow-
ing definition for our entropy-based feature distance:

D(f) =
HClass(f)

H+
Segmentation(f)

(4)

We use this distance function as a measure of single-feature
reward. Features with perfect separation, such as the first
two features of Figure 10, have reward equal to 1. Features
with more complex segmentation have lower rewards. For
the 4 features displayed in Figure 10, the rewards are 1, 1,
0.31, and 0.18, respectively.

5. CONSTRUCTING EXPLANATIONS
The entropy-based single-feature reward identifies the fea-

tures that best distinguish the normal and abnormal peri-
ods. However, ranking the features based on this distance
metric is not sufficient to generate explanations. We need
to address three additional challenges. First, it is not clear
how to select a set of features from the ranked list. There
is no specific constant k for selecting a set of top-k features,
and moreover, such a set would likely not be meaningful as a
top-k set is likely to contain highly-correlated features with
redundant information. Second, there are cases where large
distances are coincidental, and not associated with anoma-
lies. Third, the rewards are computed for each feature indi-
vidually, and due to submodularity, they are not additive.
Determining how to combine features into an explanation re-
quires eliminating redundancies due to feature correlations.

We proceed to describe the EXstream approach to con-
structing explanations by addressing these challenges in three
steps. Each step filters the feature set to eliminate features
based on intuitive criteria, until we are left with a high-
quality explanation.

5.1 Step 1: reward leap filtering
The single-feature distance function produces a ranking of

all features based on their individual rewards. Sharp changes
in the reward between successive features in the ranking in-
dicate a semantic change: Features that rank below a sharp
drop in the reward are unlikely to contribute to an explana-
tion. Therefore, features whose distance is low, relatively to
other features, can be safely discarded.

5.2 Step 2: false positive filtering
It is possible for features to have high rewards due to rea-

sons unrelated to the investigated anomaly. For example, a

IA IR

(a) Temporal alignment
IA IR

(b) Point-based alignment

Figure 11: Two ways of alignment

feature that measures system uptime can have strong sepa-
rating power between the annotated anomaly and reference
regions (e.g., the anomaly is before the reference), but this
is simply due to the nature of the particular feature, and it
is not related to the anomaly. We call these features false
positives. Our method for identifying and purging such false
positives leverages other partitions (e.g., other Hadoop jobs
in our running example). The intuition is that if a feature is
a false positive, the feature will demonstrate similar behav-
ior in other partitions without an indication of anomaly.

Identifying related partitions. We search the archived
streams to identify similar partitions. Intuitively, such par-
titions should be results generated by the same query, mon-
itoring the same Hadoop program, on the same dataset.
EXstream maintains a record of partitions in a partition
table to facilitate fast retrieval. The partition table con-
tains dimension attributes that record categorical informa-
tion (e.g., CEP − QueryID, HadoopJobName, Dataset)
about the partition, and measure attributes that record par-
tition statistics (e.g., monitoring duration, number of points).
The system identifies related partitions, as those that match
the dimension attributes.

Partition alignment. Once it discovers related partitions,
EXstream needs to map the annotated regions to each re-
lated partition. This alignment can be temporal-based or
point-based. In temporal-based alignment, an annotation is
mapped to a partition based on its temporal length. For
example, in Figure 4, the abnormal period occupies 31%
of temporal length; this annotation will align with the the
first 31% of the temporal length in a related partition (Fig-
ure 11(a)). In point-based alignment an annotation is mapped
to a partition based on the ratio of data points that it occu-
pies in the monitoring graph. For example, the annotated
high-memory usage partition of Figure 4 includes 113,070
points, with 2116 points falling in the abnormal annotation;
this annotation will align with the first equal fraction of
points in a related partition (Figure 11(b)). EXstream se-
lects the alignment for which the two partitions have the
smallest relative difference. For example, if a related parti-
tion has 10% more points, but is 50% longer in time com-
pared to the annotated partition, point-based alignment is
preferred.

Interval labeling. Alignment maps the annotations to all
related partitions. Now, these new annotations need to be
labeled as normal or abnormal. EXstream assigns labels
through hierarchical clustering: a period that is placed in the
same cluster as the annotated anomaly is labeled as abnor-
mal. The clustering uses two distance functions: entropy-
based, and normalized difference of frequencies. Periods
whose cluster is far from the anomaly cluster are labeled
as normal (reference). Finally, periods that cannot be as-
signed with certainty are discarded and not used later for

Feature Reward (annotated) Reward (all)

Free memory size 1 0.77
Hadoop DataIO size 1 0.64
Num. of processes 1 0.64

Free swap size 1 1
Cached memory size 0.81 0.77
Buffer memory size 0.65 0.72

Figure 12: The six validated features after the removal

of false positives.

validation.
In Figure 11(b), both intervals are assigned a “Reference”

label. The left one is “Reference” because its frequency is
significantly different from the annotated one (3.7 vs. 50.1);
while the right one is “Reference” because both its frequency
and value difference are quite small, meaning it is similar to
the annotated “Reference” interval.

Feature validation. The process of partition discovering
and automatic labeling generates a lot more labeled data
that helps EXstream filter out false positives, and improve
the current set of features. Features that have high entropy
reward on the annotated partition will be reevaluated on
the large dataset. If the high reward is validated in the
larger dataset as well, the feature is maintained; otherwise,
it is discarded. In our running example, after the validation
step, only 6 out of 670 features remain. Figure 12 shows
the reward for each of these 6 features for the annotated
partition and the augmented partition set.

5.3 Step 3: filtering by correlation clustering
After the validation step, we are usually left with a small

set of features, which have high individual rewards, and the
high rewards are likely related to the investigated anomaly.
However, it is still possible that several of these features
have information overlap. For example, two identical fea-
tures, are good individually, but putting them together in
an explanation does not increase the information content.
We identify and remove correlated features using clustering.

We use pairwise correlation to identify similar features.
We represent a feature as a node; two nodes are connected, if
the pairwise correlation of the two features exceeds a thresh-
old. We treat each connected component in this graph as a
cluster, and select only one representative feature from each
cluster. In our running example, the final six features are
clustered into two clusters, one cluster with a single node,
and another cluster with five nodes. Based on this result,
the final explanation has two features.

5.4 Building final explanations
Once we make the final selection of features, the construc-

tion of an explanation is straightforward. For each selected
feature, we can build a partial explanation in the format
defined in Section 2.3. The feature name becomes the vari-
able name. The value boundaries for the abnormal intervals
become the constants. If a feature offers perfect separation
during segmentation (Section 4), there is one boundary and
only one predicate is built: e.g., the abnormal value range
of feature f1 is (−∞, 10], then the predicate is f1 ≤ 10. If a
feature has more than one abnormal intervals, then multiple
predicates are built to compose the explanation: e.g., the ab-
normal value ranges of feature f2 are (−∞, 20],[30, 50], and
then the explanations are f2 ≤ 20∨(f2 ≥ 30∧f2 ≤ 50). Then

No. Anomaly Hadoop workload

1 High memory WC-frequent users
2 High memory WC-sessions
3 Busy Disk WC-frequent users
4 High High CPU WC-frequent users
5 High High CPU WC-sessions
6 Busy High CPU Twitter trigram
7 High Busy Network WC-sessions
8 High Busy Network Twitter trigram

Figure 13: Workloads for evaluating the explanations

returned by EXstream.

we simply connect the partial explanations constructed from
different features using conjunction and write the final for-
mula into the conjunctive normal form.

6. EVALUATION
We have implemented EXstream on top of the SASE stream

engine [3, 26]. Due to the space constraints, the implemen-
tation details are left to our technical report [27]. In this
section, we evaluate EXstream on the conciseness, consis-
tency, and prediction power of its returned explanations, and
compare its performance with a range of alternative tech-
niques in the literature. We further evaluate the efficiency
of EXstream when the explanation module is run concur-
rently with monitoring queries in an event stream system.

6.1 Experimental Setup
In our first use case, we monitored a Hadoop cluster of 30

nodes which was used intensively for experiments at the Uni-
versity of Massachusetts Amherst. To evaluate EXstream
for explaining anomalous observations, we used three Hadoop
jobs: (A) Twitter Trigram: count trigrams in a twitter
stream; (B) WC-Frequent users: find frequent users in a
click stream; (C) WC-session: sessionization over a click
stream.

The running example throughout this paper, which starts
to show in Figure 1(a) and 1(b), is a real use case. A Hadoop
expert found out the root causes by manually checking a
large volume of logs. The expert also confirmed that the
results generated by EXstream match the ground truth per-
fectly.

To enable the ground truth for evaluation further, we
manually created four types of anomalies by running ad-
ditional programs to interfere with resource consumption:
(1) High memory usage: the additional programs use up
memory. (2) High CPU: the additional programs keep CPU
busy. (3) Busy disk: the programs keep writing to disk.
(4) Busy network: the programs keep transmitting data be-
tween nodes. By combining the anomaly types and Hadoop
jobs, we create 8 workloads listed in Figure 13. The ground
truth features are verified by a Hadoop expert.

Our second use case is supply chain management of an
aerospace company. Due to confidentiality issues we were
unable to get real data. Instead, we consulted an expert
and built a simulator to generate manufacturing data and
anomalies such as faulty sensors and subpar material. Since
both use cases generate similar results, we report results
using the first use case and refer the reader to [27] for results
of the second use case.

All of our experiments were run on a server with two Intel
Xeon 2.67GHz, 6-core CPUs and 16GB memory. EXstream
is implemented in Java and runs on Java HotSpot 64-bit
server VM 1.7 with the maximum heap size set to 8GB.

��

����

����

����

����

��

�� �� �� �� �� �� �� ��

�
��
��
��
��

���������

�������
���������������
���������������

������
�������������������

�������������

Figure 14: Consistency comparison

6.2 Effectiveness of Explanations by EXstream
We compare EXstream with a range of alternative tech-

niques. We use decision trees to build explanations based
on the latest version of weka, and logistic regression based
on a popular R package. We consider two additional tech-
niques, majority voting [15] and data fusion [19]. Both
techniques make full use of every feature, and make predic-
tion based on all features. Majority voting treats features
equally and uses the label which counts the most as the
prediction result. The fusion method fuses the prediction
result from each feature based on their precision, recall and
correlations. We compare these techniques on three mea-
sures: (1) consistency: selected features as compared against
ground truth; (2) conciseness: the number of selected fea-
tures; (3) prediction accuracy when the explanation is used
as a prediction model on new test data.

Consistency. First we compare the selected features of
each algorithm with the ground truth features. The results
are shown in Figure 14. X-axis represents different work-
loads (1 - 8), while Y-axis is the F-measure, namely, the
harmonic mean of precision and recall regarding the inclu-
sion of ground truth features in the returned explanations.
EXstream represents our results before applying clustering
on selected features, while EXstream-cluster represents re-
sults clustered by correlations (Section 5). We can see that
EXstream-cluster works better than EXstream without clus-
tering for most of workloads, and EXstream-cluster provides
much better quality than the alternative techniques. Ma-
jority voting and fusion do not select features, and hence
their F-measures are low. Logistic regression and decision
tree generate models with selected features, with sightly
increased F-measures but still significantly below those of
EXstream-cluster.

Conciseness. Figure 15 shows the sizes of explanations
from each solution. Here the Y-axis (in logarithmic scale) is
the number of features selected by each solution, where the
total number of available features is 345. “Ground truth”
represents the number of features in ground truth, while
“Ground truth cluster” represents the number of clusters af-
ter we apply clustering on the contained features. Again,
majority voting and fusion do not select features, so the size
is the same as the size of feature space. The models of logis-
tic regression includes 20 - 30 features, which is roughly 10
times of the ground truth. Decision trees are more concise
with less than 10 features selected. Overall, EXstream out-
performs other algorithms, and is quite close to the number
of features in ground truth cluster.

��

��
��
��
��

���

����

����

�� �� �� �� �� �� �� ��

�
�
�
��
��
�
��
��
��
��
��
��
�
��

���������

�������
���������������
���������������

������

�������������������
�������������
������������

��������������������

Figure 15: Conciseness comparison

��

����

����

����

����

��

�� �� �� �� �� �� �� ��

�
�
��
��
��

�
�
��
��
��
��
��
��

���������

�������
���������������
���������������

������
�������������������

�������������

Figure 16: Prediction power comparison

Predication accuracy. In Figure 16 we compare the
prediction accuracy of each method. The Y-axis represents
F-measure for prediction over new test data. The F-measures
of EXstream, logistic regression and decision tree are quite
stable, most of time above 0.95. Data fusion and major-
ity voting fluctuate more. Overall, our method can provide
consistent high-quality prediction power.

Effectiveness of the distance function. We finally
demonstrate the effectiveness of our entropy-based distance
function by comparing it with a set of existing distance func-
tions [24] for time series: (1) Manhattan distance, (2) Eu-
clidean distance, (3) DTW, (4) EDR, (5) ERP and (6) LCSS.

The results are shown in Figure 17. In each method,
all available features are sorted by the distance function of
choice in decreasing order. We measure the number of fea-
tures retrieved from each sorted list in decreasing order in
order to cover all the features in the ground truth, shown
as the Y-axis. We see that our entropy distance is always
the one using the minimum number of features to cover the
ground truth. LCSS works well in the first two workloads,
but it works poorly for workloads 3, 4, 5, and 6. This is be-
cause the ground truth features for the first two workloads
have perfect separating power based on LCSS distance, while
in other workloads they contain some noisy signals. So LCSS
is not as robust as our distance function. Other distance
functions always use large number of features.

Summary. Our explanation algorithm outperforms other
techniques in consistency and conciseness while achieving
comparable, high predication accuracy. Specifically, EXstream
improves consistency to other methods from 10.7% to 87.5%
on average, and up to 100% in some cases. EXstream is also
more concise, reducing the number of features in an explana-
tion 90.5% on average, up to 99.5% in some cases. EXstream

��

��
��
��
��

���

����

����

�� �� �� �� �� �� �� ��

�
��
��
��
��

�
��
��
��
��

�
��
��
�

���������

������������
�������

����������

���������
���
����

���
���

Figure 17: Distance function comparison

is as good as other techniques on prediction quality: its F-
measure on prediction is only slightly worse than logistic
regression by 0.4%, while it is 3.3% higher than majority
voting, 6.1% percent higher than fusion, and 1.9% higher
than decision tree.

Our entropy distance function works better than existing
distance functions on time series. It reduces the size of ex-
planations by 94.6% on average, up to 97.2%, compared to
other functions.

6.3 Efficiency of EXstream
We further evaluate the efficiency of EXstream. Our main

result shows that our implementation is highly efficient: with
2000 concurrent monitoring queries, triggered explanation
analysis returns explanations within half a minute and af-
fects the performance only slightly, delaying events process-
ing by only 0.4 second on average. Additional details are
available at [27].

7. RELATED WORK
In the previous section, we compared our entropy distance

with a set of state-of-the-art distance functions [24] and com-
pared our techniques with prediction techniques including
decision trees and logistic regression [2]. In this section we
survey broadly related work.

CEP systems. There are a number of CEP systems in
the research community [8, 17, 1, 21, 23]. These systems
focus on passive monitoring using CEP queries by providing
either more powerful query languages or better evaluation
performance. Existing CEP techniques do not produce ex-
planations for anomalous observations.

Explaining outliers in SQL query results. Scor-
pion [25] explains outliers in group-by aggregate queries.
Users annotate outliers on the results of group-by queries,
and then scorpion searches for predicates that remove these
outliers while minimally affect the normal answers. It does
not suit our problem because it works only for group-by ag-
gregation queries and it searches through various subsets of
the tuples that were used to compute the query answers.
As shown for our example, Q1, the explanation of memory
usage contention among different jobs cannot be generated
from only those events that produced the monitoring results
of Q1. Recent work [20] extends Scropion by supporting
richer and insightful explanations by pre-computation and
thus enables interactive explanation discovery. This work
assumes a set of explanation templates given by the user
and requires precomputation in a given database. Neither
of the assumptions fits our problem setting.

Explaining outputs in iterative analytics. Recent
work [7] focuses on tracking, maintaining, and querying lin-
eage and “how” provenance in the context of arbitrary itera-
tive data flows. It aims to create a set of recursively defined
rules that determine which records in a data-parallel com-
putation inputs, intermediate records, and outputs require
explanation. It allows one to identify when (i.e., the points
in the computation) and how a data collection changes, and
provides explanations for only these few changes.

Set-based distance function for time series. Besides
the lock-step and elastic distance functions we compared
with, time series are also transformed into sets [18] for mea-
surement. However, the goal of the set-based function is to
speed up the computation of existing elastic distance, so it
is different from our entropy based distance function.

Anomaly detection. Common anomaly detection tech-
niques [5, 6, 14, 13, 22] do not fit our problem setting. There
are two main approaches. One is using a prediction model,
which is learned on labeled or unlabeled data. Then incom-
ing data is compared against with expected value by the
model. If the difference is significant, the point or time se-
ries will be reported as outlier. The other approach is using
distance functions, and outliers are those points or time se-
ries far from normal values. Both approaches report only
outliers, but not the reasons (explanations) why they occur.

8. CONCLUSIONS
In this paper, we present EXstream, a system that pro-

vides high-quality explanations for anomalous behaviors that
users annotate on CEP-based monitoring results. Formu-
lated as a submodular optimization problem, which is hard
to solve, we provide a new approach that integrates a new
entropy-based distance function and effective feature rank-
ing and filtering methods. Evaluation results show that
EXstream outperforms existing techniques significantly in
conciseness and consistency, while achieving comparable high
prediction power and retaining a highly efficient implemen-
tation of a data stream system.

To enable proactive monitoring in CEP systems, our fu-
ture work will address temporal correlation in discovering
explanations, automatic recognition and explanation of anoma-
lous behaviors, and exploration of richer feature space to
enable complex explanations.

Acknowledgements. This work was supported in part by
the National Science Foundation under grants IIS-1421322,
IIS-1453543, and IIS-1218524.

9. REFERENCES
[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,

C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: a new model and architecture for data
stream management. The VLDB Journal, 12(2):120–139,
2003.

[2] C. C. Aggarwal. Data Mining: The Textbook. Springer
Publishing Company, Incorporated, 2015.

[3] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.
Efficient pattern matching over event streams. In SIGMOD,
pages 147–160, New York, NY, USA, 2008. ACM.

[4] R. S. Barga, J. Goldstein, M. Ali, and M. Hong. Consistent
streaming through time: A vision for event stream
processing. arXiv preprint cs/0612115, 2006.

[5] L. Cao, J. Wang, and E. A. Rundensteiner. Sharing-aware
outlier analytics over high-volume data streams. In
Proceedings of the 2016 International Conference on
Management of Data, pages 527–540. ACM, 2016.

[6] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys (CSUR),
41(3):15, 2009.

[7] Z. Chothia, J. Liagouris, F. McSherry, and T. Roscoe.
Explaining outputs in modern data analytics. Proceedings
of the VLDB Endowment, 9(4), 2015.

[8] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald,
V. Sharma, and W. M. White. Cayuga: A general purpose
event monitoring system. In CIDR, pages 412–422, 2007.

[9] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases, volume 23.
ACM, 1994.

[10] U. Fayyad and K. B. Irani. Multi-interval discretization of
continuous-valued attributes for classification learning.
1993.

[11] U. Feige, V. S. Mirrokni, and J. Vondrak. Maximizing
non-monotone submodular functions. SIAM Journal on
Computing, 40(4):1133–1153, 2011.

[12] Ganglia monitoring system. http://ganglia.sourceforge.net/.

[13] M. Gupta, J. Gao, C. Aggarwal, and J. Han. Outlier
detection for temporal data. Synthesis Lectures on Data
Mining and Knowledge Discovery, 5(1):1–129, 2014.

[14] H. Huang and S. P. Kasiviswanathan. Streaming anomaly
detection using randomized matrix sketching. Proceedings
of the VLDB Endowment, 9(3):192–203, 2015.

[15] L. Lam and S. Suen. Application of majority voting to
pattern recognition: an analysis of its behavior and
performance. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 27(5):553–568,
1997.

[16] D. Luckham. Event Processing for Business: Organizing
the Real-Time Enterprise. Wiley, 2011.

[17] Y. Mei and S. Madden. Zstream: a cost-based query
processor for adaptively detecting composite events. In
SIGMOD Conference, pages 193–206, 2009.

[18] J. Peng, H. Wang, J. Li, and H. Gao. Set-based similarity
search for time series. In Proceedings of the 2016
International Conference on Management of Data, pages
2039–2052. ACM, 2016.

[19] R. Pochampally, A. Das Sarma, X. L. Dong, A. Meliou, and
D. Srivastava. Fusing data with correlations. In Proceedings
of the 2014 ACM SIGMOD international conference on
Management of data, pages 433–444. ACM, 2014.

[20] S. Roy, L. Orr, and D. Suciu. Explaining query answers
with explanation-ready databases. Proceedings of the
VLDB Endowment, 9(4):348–359, 2015.

[21] StreamSQL Team. StreamSQL: a data stream language
extending SQL. http://blogs.streamsql.org/.

[22] L. Tran, L. Fan, and C. Shahabi. Distance based outlier
detection for data streams. Proceedings of the VLDB
Endowment, 9(4):1089–1100, 2015.

[23] D. Wang, E. A. Rundensteiner, and R. T. Ellison. Active
complex event processing over event streams. PVLDB,
4(10):634–645, 2011.

[24] X. Wang, A. Mueen, H. Ding, G. Trajcevski,
P. Scheuermann, and E. Keogh. Experimental comparison
of representation methods and distance measures for time
series data. Data Mining and Knowledge Discovery,
26(2):275–309, 2013.

[25] E. Wu and S. Madden. Scorpion: explaining away outliers
in aggregate queries. Proceedings of the VLDB Endowment,
6(8):553–564, 2013.

[26] H. Zhang, Y. Diao, and N. Immerman. On complexity and
optimization of expensive queries in complex event
processing. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pages
217–228. ACM, 2014.

[27] H. Zhang, Y. Diao, and A. Meliou. Exstream: Explaining
anomalies in event stream monitoring tech report.
https://cs.umass.edu/%7Ehaopeng/tr.pdf).

