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Motivations

1. Difference between model-based & model-free RL beyond

tabular setting
2. Global exploration in large-scale MDPs w/ function

approximation

Contextual Decision Processes

In this work, we consider MDPs with an extremely large state
space X’ (hence poly(|X|) is intractable)

- Finite number of actions, horizon H;
- Context/State space X

+ Policy: m: X = A(A)

- Transition P* : X x A — A(X)

- reward 7" : X x A — [0,1]

Model-based RL setting

A model is a pair of transition & reward: M = (P, r)

Given: a class of models M, with (P*,r*) € M

Goal: learn a near-optimal policy V™ > V* — e w/ # of sample

poly(H, | A, 1/e,1log(|M]))

(i.e., no explicit poly dependency on # of states)
Note: realizability itself is not enough to achieve the goal

Definition of Model-free Algorithms

- When G = policy class: policy gradient (e.g., REINFORCE,
gradient can be computed from finite differencing)

- When G = Q-function class: (Delayed) Q-learning, OLIVE
- When G = Q-function + Policy: Actor-Critic methods

Intuition of the Definition

G-profile could obfuscate the context, leading to information
loss in function approximation setting (but not in tabular setting)

Why Model-based RL

Formalize the Inputs:

- Optimal Planning oracle: OP(M) = (=", Q™)

- Model-based methods take M as input

- Model-free methods take G = OP (M) as input
Informal Statement (Theorem 2)

There exists a family of MDPs, where a model-based alg
can learn in poly sample complexity, while any model-free
alg suffers an exponential sample complexity (2)

Remark:

Our lower bound does not hold when:
(1) model-free algs take some G # OP(M)as input
(2) whenM is “over-parameterized” s.t. G-profile reveals state

Withess Rank

(for simplicity, from now on, we assume reward is known, model class just contains transitions)

Introduce a Witness function class:
F={f: A xAxX — R}
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Imaginary Real

This is an Integral Probability Metric (IPM)
(Discriminators try to tell how real a transition from P. is)

Withess Rank is defined as the rank of this misfit matrix

Examples of low Withess Rank:

Small Discrete MDP  Linear Quadratic Regulator
Rank <= # of state Rank <= O(d"2)

Examples (continued):

o

Factored MDPs

[Guestrin et.al, 03; Osband & Van Roy,13 ]

Rank <= exp(in-degree)

Lipschitz Continuous MDPs

[Kearn, Langford, Kakade, 03]
Rank <= Covering number
of state space

...and any MDPs with low Bellman Rank (Jiang et al. 17)

Algorithm & Analysis

Samples from
real world via 7, = OP(F,)

{$7 a, $/}N

/
r~ T, a~U1x ~ P*

<}: Estimate Model Misfit
W(P,, P;F),VP € P,

Terminate it |Vp, — V™ |is small, I.e., the current policy
has similar values under P,, & P*

Optimistic model
selection;

P, = arg max Vp
PcP,,

/\

Eliminate models
whose misfits are large

P : . F) >0

Sample Complexity:

Witness RankéP/u? log (‘fHP‘ ))

0

Extensions

1. Refine analysis w/ conditional Scheffe Estimator to handle
Total Variation distance (i.e., F = {f : || f|lcc < 1}), and
sample complexity is reduced to:

o(" s (1)

2. Doubling trick to deal with unknown model rank

3. Refine witness rank to ensure it's never larger than
Bellman rank (Jiang et al, 17)

4. Can handle approximate low-rank misfit matrices



