Model-based RL in Contextual Decision Process: PAC Bounds and Exponential Improvements over Model-free Approaches Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford

Motivations

- Difference between model-based & model-free RL beyond tabular setting
- 2. Global exploration in large-scale MDPs w/ function approximation

Contextual Decision Processes

In this work, we consider MDPs with an extremely large state space \mathcal{X} (hence poly($|\mathcal{X}|$) is intractable)

- Finite number of actions, horizon H;
- Context/State space \mathcal{X}
- Policy: $\pi : \mathcal{X} \to \Delta(\mathcal{A})$
- Transition $P^* : \mathcal{X} \times \mathcal{A} \to \Delta(\mathcal{X})$
- reward $r^{\star}: \mathcal{X} \times \mathcal{A} \rightarrow [0, 1]$

Model-based RL setting

A model is a pair of transition & reward: $M \triangleq (P, r)$ **Given**: a class of models \mathcal{M} , with $(P^{\star}, r^{\star}) \in \mathcal{M}$ **Goal**: learn a near-optimal policy $V^{\pi} > V^{\star} - \epsilon$ w/ # of sample: $\operatorname{poly}(H, |\mathcal{A}|, 1/\epsilon, \log(|\mathcal{M}|))$

(i.e., no explicit poly dependency on # of states) Note: realizability itself is not enough to achieve the goal

Definition of Model-free Algorithms

Model-free Alg takes a function class $\ \mathcal{G}:\mathcal{X} imes\mathcal{A} o\mathbb{R}$ as input, accesses state x via G-profile: $\Phi_{\mathcal{G}} = \{g(x, a)\}_{g \in \mathcal{G}, a \in \mathcal{A}}$

- When \mathcal{G} = policy class: policy gradient (e.g., REINFORCE, gradient can be computed from finite differencing)
- When $\mathcal{G} = Q$ -function class: (Delayed) Q-learning, OLIVE
- When $\mathcal{G} = Q$ -function + Policy: Actor-Critic methods

Intuition of the Definition

G-profile could obfuscate the context, leading to information loss in function approximation setting (but not in tabular setting)

Why Model-based RL

Formalize the Inputs:

- **Optimal Planning oracle:** $OP(M) = (\pi^M, Q^M)$
- Model-based methods take \mathcal{M} as input
- Model-free methods take $\mathcal{G} \triangleq OP(\mathcal{M})$ as input

Informal Statement (Theorem 2)

There exists a family of MDPs, where a model-based alg can learn in poly sample complexity, while any model-free alg suffers an exponential sample complexity $\Omega(2^H)$

Remark:

Our lower bound does not hold when: (1) model-free algs take some $\mathcal{G} \neq OP(\mathcal{M})$ as input (2) when \mathcal{M} is "over-parameterized" s.t. G-profile reveals state

Witness Rank

(for simplicity, from now on, we assume reward is known, model class just contains transitions) Introduce a Witness function class:

Misfit Matrix:

Provides

 $W(P_r, P_c; \mathcal{F})$

 $W(P_r, P_c; \mathcal{F}) = \max_{f \in \mathcal{F}} \mathbb{E}_{x \sim \pi_{P_r}, a \sim U} [\mathbb{E}_{x' \sim P_c} f(x, a, x') - \mathbb{E}_{x' \sim P^*} f(x, a, x')]$ Imaginary Real

This is an Integral Probability Metric (IPM) (Discriminators try to tell how real a transition from P_c is) Witness Rank is defined as the rank of this misfit matrix

Examples of low Witness Rank:

Small Discrete MDP **Rank <= # of state**

Linear Quadratic Regulator Rank <= O(d^2)

$$\frac{H^{\delta}R^{2}|\mathcal{A}|^{2}}{\epsilon^{2}}\log\left(\frac{|\mathcal{F}||\mathcal{P}|}{\delta}\right)$$

$$\left(\frac{H^3R^2|\mathcal{A}|}{\epsilon^2}\log\left(\frac{|\mathcal{P}|}{\delta}\right)\right)$$