
Motivation New Algorithm: VALOR

Given 3-SAT instance with variables                      , and clauses                          
of the form                                    , construct MDPs                    determined 
up to terminal rewards            

After having collected data sets                                of transitions with pre-
vious policies, OLIVE chooses the next policy to execute by solving: 

Reducing 3-SAT to OLIVE:

(1)

•  Learn values of hidden states by depth-�rst search (as in LSVEE)
•  Store values and  observation distributions of hidden states explicitly 
•  Prune search tree by checking consensus among all value functions 

that agree with stored values

Main Ideas of VALOR (VAlues stored LOcally for RL):

Setting: Contextual Decision Processes with 
Deterministic Hidden State Transitions

Compute global policy from learned values:

Theorem:  If                   and                 , VALOR returns an    -optimal policy 
with probability at least              after collecting at most 

Is there a reinforcement learning algorithm that can be imple-
mented in polynomial time and learn e�ciently and reliably 
with rich stochastic observations? 

Provably Sample 
E�cient

Computationally 
Tractable

Handles Rich 
ObservationsAlgorithm

UCRL / RMax / UCBVI / 
UBEV/ PSRL

LSVEE

OLIVE

VALOR (this work)

Deep RL with ε-greedy
(DQN, Policy Gradient...) 

Markov / Reactivity: previous hidden state identi�able from ob-
servation but mapping                unkown

Theorem: OLIVE is not oracle-e�cient, that is, it cannot be imple-
mented with polynomially many calls to LP, CSC and least-squares 
oracles.

Sample E�ciency:

dfslearn(path p):

for all actions a:

such that:

Solve:

If consensus (                         small):

Else:

Successor already learned

Successor not learned yetdfslearn(p a)

Learn p by storing a new entry in       with:
1.  Data set of observations, uniformly chosen actions and immediate rewards 

at current path
2.  Values of all successor states
3.  Value of hidden state

Learning values in depth-�rst manner :

hidden state s

action

Optimal value function: reward to go for every state / observa-
tion when acting optimally

Deterministic transitions: hidden state is a deterministic func-
tion of previous state and action (but observations are stochastic!)

Learning with realizable function classes: to handle rich observations 
(e.g. images), our algorithm assumes access to: 
•  Class of policies                         , with
•  Class of value functions                         , with

Return 
: requires deterministic latent state transitions

#hidden states epsiode length #actions

Stochastic  
Environments

OCP

formula satis�able

Oracle E�ciency:

Theorem:  If                   and                 , VALOR is oracle e�cient with proba-
bility at least            , that is, it can be implemented with at most

Linear Program (LS) oracle calls and

Cost-sensitive Classi�cation (CSC) oracle calls,

each of which only needs to be accurate up                                         .

Function Approximation and  Oracles

Access function classes only through standard optimization oracles 
for computational tractability:

•  Cost-Sensitive Classi�cation (CSC) oracle on policies

•  Linear Programming (LP) oracle on value functions

Given sequence                            of observations                   
and cost                       return a policy with approximately 
minimal average cost

Given objective            and constraints              linear in    , 
that is, of the form                              , return a value function 
that approximately optimizes

such that
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small hidden state

rich observation

OLIVE is the only algorithm that is known to be provably sample-e�cient 
in contextual decision processes with stochastic state transitions.

trajectories.

episodes of       time steps
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Additional Result: OLIVE is Oracle-Ine�cient

Linear Programs

Cost-Sensitive Classi�cation

Value of initial observations

Bellman residualFor chosen policy has to be smallOn all data so far

Cost-Sensitive Classi�cation

stochastic
 observation x

Theoretical Analysis of VALOR

can be reduced to binary classi�cation!


