FLAMBE: Structural complexity and
representation learning of low rank MDPs

Goal: Sample efficient exploration in RL

How can we get reinforcement learning algorithms to explore efficiently when

operating in complex environments? Such algorithms would be immensely useful in

scaling RL into high stakes scenarios where sample-efficiency is a primary
concern.

A possible solution is through representation learning, where we discover some
simple underlying structure that enables us to efficiently explore and approximate

the key quantities, such as value functions and policies.

Key question:

1. What does it mean to have a good representation?

2. How do we learn one in a sample-efficient manner, while exploring?
We answer these questions in the context of low rank MDPs

Structural results

Proposition: A block MDP is low
rank with d = |§|. However, there
exist low rank MDPs of
embedding dimension 2 that
admit no non-trivial block MDP
representation

A stochastic factorization, where ¢ (x, a) is on the simplex, has a natural
interpretation as a (fully observable) latent variable model. However:
Proposition: There exists low rank MDPs of rank d for which the stochastic

factorization has dimension 220V,

Proof overview
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The low rank MDP

Latent
representation

Transition operator T admits a low rank factorization into feature maps ¢, u.
1. Low rank MDP is algorithmically tractable if ¢ is known [JYWJ19]
2. Low rank MDP is statistically tractable with unknown ¢ [JKALS17]
Representation learning in low rank MDPs: Discover ¢.
Efficient algorithms?

Main result

Assume access to function class ®,Y suchthat¢p € d,u €Y
Assume computational oracle for optimizing and sampling from ®,Y

Theorem [AKKS20]: FLAMBE learns a low rank MDP model such that
Vo, hi o Eg [(&nConsan), fn (D) = Tl xp, )|

With sample complexity:
poly(d, |Al, H,,log(|®|[Y|/5))

FLAMBE runs in polynomial time in oracle model.

Learn the model with maximum likelihood:

Gn, An = argmaxpeq, yey 2 log (¢ (xp, ap), h(xp41))

XhQh,Xh+1

Can guarantee accuracy in TV-distance on training
distribution [Z07]

) Measure coverage using second moment of
features at the previous time:

E.f (xp) = (EndOn_1, an—1), | uCen)f (xp))

Addresses distribution shift with potential function

Three key questions: .

1. How to learn the dynamics?
2. How to measure coverage?
3. How to compute an exploratory policy to optimize coverage?

Optimize coverage by planning to visit all
directions of learned feature two steps behind!

p guarantees: max E;[¢n_, £, ¢pp | M| < 0(d)
Vs

By TV guarantee, p approximately visits all

directions in the environment
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FLAMBE

Algorithm 1 FLAMBE: Feature Learning And Model-Based Exploration

Input: Environment M, function classes ®, Y, subroutines MLE and SAMP, parameters (3, n.

Set pg to be the random policy, which takes all actions uniformly at random.

Set Dy, = () foreach h € {0,...,H — 1}.

forj =1,..., Jnax do

forh=0,...,H—1do

Collect n samples (xp, ap, p+1) by rolling into =5, with p;_; and taking aj, ~ unif(.A).
Add these samples to Dy,.
Solve maximum likelihood problem: (¢, i) < MLE(Dp,).

Set Ty, (Thi1 | Th,ap) = <¢h($h,ah)aﬂh($h+1) :
end for
For each h, call planner (Algorithm 2) with h step model T}.;,_; and 3 to obtain phe.
Set p; = unif({p}, " o random}fz_ol), to be uniform over the discovered h-step policies, augmented
with random actions.
end for

Algorithm 2 Elliptical planner

Input: MDP M = (#0.7» Mo.7,)» Subroutine SAMP, parameter 3 > 0. Initialize Xo = Ixq.
fort=1,2,...,do
Compute (see text for details)

—~
.

7y = argmax E [qﬁﬁ(a;ﬁ,aﬁ)TEt__llqﬁﬁ(xﬁ,aﬁ) | 7, M]

If the objective is at most 3, halt and output p = unif ({7, }r<¢).
Compute ¥, = E [qﬁﬁ(wﬁ, a; )¢ (7, aﬁ)T | T, M] Update ¥ — X;_1 + X,.
end for

Corollaries, discussion, references

Corollaries
1. For any reward, near-optimal policy and Q function are linear in ¢,.y
2. Can optimize any reward function with no additional experience

3. Simpler planner for stochastic factorization, with a much better sample
complexity.

Discussion

1. Provable RL with general non-linear function approximation

2. Suggestions for practice: reward bonuses, model architecture, etc.
3. Future work: does it work in practice?
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