Disagreement-Based Combinatorial Pure Exploration: Sample Complexity Bounds and an Efficient Algorithm

UMassAmherst

Combinatorial Pure Exploration

- Stochastic multi-armed bandits: Arms $a \in [K]$, each with sub-Gaussian distribution ν_a with unknown mean $\mu_a \in [-1, 1]$. (Vectorized representation $\mu \in [-1, 1]^K$.)
- Combinatorial decision set: $\mathcal{V} \subseteq \{0, 1\}^K$.
- Pure exploration problem: find

$$v^{\star} \triangleq \operatorname*{argmax}_{v \in \mathcal{V}} \langle v, \mu \rangle,$$

while minimizing samples. Query individual arms, sequentially.

- -Fixed confidence: Given $\delta \in (0, 1)$ ensure $\mathbb{P}[\hat{v} \neq v^*] \leq \delta$, minimize samples.
- -Fixed budget: Given $T \in \mathbb{N}$ use at most T samples, minimize $\mathbb{P}[\hat{v} \neq v^*]$.
- Optimization oracle-based computational model

$$\operatorname{Oracle}(c) \triangleq \operatorname{argmax}_{v \in \mathcal{V}} \langle v, c \rangle.$$

Non-interactive Baseline

Algorithm: Query each arm T/K times and output $\hat{v} = \operatorname{argmax}_v \langle v, \hat{\mu} \rangle$ with empirical mean $\hat{\mu}$. **Combinatorial Parameters:** with $d(v, v^*) \triangleq |v \ominus v^*|, \mathcal{B}(k, v) \triangleq \{u \in \mathcal{V} \mid d(v, u) = k\},\$

$$\Phi \triangleq \Phi(\mathcal{V}) \triangleq \max_{k \in \mathbb{N}, v \in \mathcal{V}} \frac{\log(|\mathcal{B}(k, v)|)}{k}, \qquad \Psi \triangleq \Psi(\mathcal{V}) \triangleq \min_{u, v \in \mathcal{V}} \frac{\log(|\mathcal{B}(k, v)|)}{k}$$

Instance-Specific Parameters (e.g., Gaps):

$$\Delta_{v}(\mu) \triangleq \frac{\langle v - v^{\star}(\mu), \mu \rangle}{d(v, v^{\star})}, \qquad \Delta_{a}(\mu) \triangleq \min_{v:a \in v \ominus v^{\star}} \Delta_{v}(\mu)$$

Theorem 1. Algorithm succeeds w.p. $1 - \delta$ when $T \ge O\left(\frac{K}{\min_v \Delta_v^2} \left(\Phi + \frac{\log(K/\delta)}{\Psi}\right)\right)$. This is minimax optimal among non-interactive methods.

Proof uses a simple concentration argument:

$$\begin{split} \mathbb{P}\left[\hat{v} \neq v^{\star}\right] &= \mathbb{P}\left[\exists v \in \mathcal{V} : \frac{|\langle v^{\star} - v, \hat{\mu} - \mu \rangle|}{d(v^{\star}, v)} \geq \epsilon\right] \\ &\leq 2\sum_{v \in \mathcal{V}} \exp\left(\frac{-Td(v^{\star}, v)\epsilon^{2}}{2K}\right) \\ &\leq 2\sum_{k=\Psi}^{K} |\mathcal{B}(k, v^{\star})| \exp\left(\frac{-Tk\epsilon^{2}}{2K}\right) \\ &\leq 2K \exp\left(\max_{\Psi \leq k \leq K} \log |\mathcal{B}(k, v^{\star})| - \frac{Tk\epsilon^{2}}{2K}\right). \end{split}$$

Follows since $\langle v^* - v, \hat{\mu} - \mu \rangle$ is the average of $\frac{Td(v^*, v)}{K}$ centered sub-Gaussian random variables. Method succeeds with $\epsilon = \min_{v \neq v^*} \Delta_v(\mu)$. Choosing T such that RHS is at most δ yields theorem.

Normalized Regret Inequality: With *n* samples per arm, for any δ we have $\mathbb{P}\left(\exists v \in \mathcal{V} : \frac{|\langle v^{\star} - v, \hat{\mu} - \mu \rangle|}{d(v^{\star}, v)} \ge \sqrt{\frac{2}{n}} \left(\Phi + \frac{\log(2K/\delta)}{\Psi}\right)\right) \le \delta.$

Tongyi Cao and Akshay Krishnamurthy

eneous setting: $\mu = \Delta(2v^* - 1).$		
DisjSet	Matching	BICLIQUE
$\Theta(s)$	$\Omega(K)$	$\Omega(\sqrt{s})$
$\Theta(1)$	$\Omega(K^{1/2})$	$\Omega(1)$
$\Theta(s)$	$\Omega(1)$	$\Omega(\sqrt{s})$

Otherwise, hallucinate $y_t(a) = 2(\hat{v}_t(a) - 1)$

Theorem 2. For any $\delta \in (0, 1)$, Algorithm guarantees

Bottleneck is computing dis
$\exists v \in \mathcal{V}_t \text{ s.t. } v($
 Linear feasibility, exponent Use online learner to colla
$\max_{v}\sum p_t(u) \left(\Delta d(v)\right)$
s.t. $v(a) = b$
Update learner using slacUse FTPL for implicit di
Theorem 3. <i>FTPL</i> FALSE then there is a and $\forall u \in \mathcal{V} \ \langle \hat{\mu}, u - v \rangle$
 Approximate feasibility d Corollary: Fixed confid
Define symmetrized log-vol
Theorem 4 (Refine confidence algorithm
C
where $H_a^{(1)} \triangleq \max_{v:a \in \mathcal{A}}$
Better dependence of
Theorem 5 (Fixed b
$\mathbb{P}[$
Final Remark: In the 1 optimal results. But for δ = baseline and our algorithm optimal rates here remain u
References 1. Chen, Gupta, Li, Qiao, and Wang. J 2. Chen, Lin, King, Lyu, and Chen. Co 3. Gabillon, Lazaric, Ghavamzadeh, Or

runs in polynomial time with $O(K^6/\Delta^4)$ oracle calls. If it reports no disagreement. Otherwise there exists $v \in conv(\mathcal{V})$ with v(a) = b $|v\rangle \leq \Delta ||u-v||_1 + \Delta$ (There is approximate disagreement).

loes not damage sample complexity.

dence algorithm runs in polynomial time with optimization oracle.

Other results

blume $D(v, v') \triangleq \max \{ \log |\mathcal{B}(d(v, v'), v)|, \log |\mathcal{B}(d(v, v'), v')| \}.$

d fixed confidence). There exists a computationally inefficient fixed with sample complexity

$$O\left(\sum_{a \in [K]} H_a^{(1)} \left(\log(H_a^{(1)}) + \log(\pi^2 K/\delta) \right) + H_a^{(2)} \right)$$

 $u \in v \ominus v^{\star} \frac{d(v,v^{\star})}{\langle \mu, v^{\star} - v \rangle^2} \text{ and } H_a^{(2)} \triangleq \max_{v:a \in v \ominus v^{\star}} \frac{d(v,v^{\star})D(v,v^{\star})}{\langle \mu, v^{\star} - v \rangle^2}.$ on combinatorial parameters Φ, Ψ , since $H_a^{(1)} \leq \frac{1}{\Lambda^2 \Psi}$ and $H_a^{(2)} \leq \frac{\Phi}{\Lambda^2}$.

(udget). Given budget $T \geq K$ there exists an algorithm guaranteeing

$$[\hat{v} \neq v^*] \le K^2 \exp\left(\psi\left(\Phi - \frac{T - K}{8\log(K)\sum_a \Delta_a^{-2}}\right)\right).$$

high confidence regime ($\delta = \exp(-K)$), [CGLQW17] give tight instance-= poly(1/K) their algorithm can be significantly worse than non-interactive n. This "moderate confidence" regime is quite interesting and the instance unknown.

Nearly optimal sampling algorithms for combinatorial pure exploration. COLT 2017. ombinatorial pure explo- ration of multi-armed bandits. NeurIPS 2014.

rtner, and Bartlett. Improved learning complexity in combinatorial pure exploration bandits. AISTATS 2016 Learn more at: https://arxiv.org/abs/1711.08018