Disagreement-Based Combinatorial Pure Exploration:
UMassAmherst
Sample Complexity Bounds and an Efficient Algorithm
Microsoft Research
Tongyi Cao and Akshay Krishnamurthy

$$
\begin{aligned}
& \text { Algorithm: Query each arm } T / K \text { times and output } \hat{\hat{v}}=\text { argmax } \alpha v, \hat{\mu} \text { with empirical mean } \hat{\mu} . \\
& \text { Combinatorial Parameters: } \operatorname{with} d\left(v, v^{\star}\right) \triangleq\left|v \ominus v^{\star}\right|, \mathcal{B}(k, v) \triangleq\{\langle\in \mathcal{V}| d(v, u)=k\}, \\
& \\
& \Phi \triangleq \Phi(\mathcal{V}) \triangleq \max _{k \in \mathbb{N}, v \in \mathcal{V}} \frac{\log (|\mathcal{B}(k, v)|)}{k}, \quad \Psi \triangleq \Psi(\mathcal{V}) \triangleq \min _{u, v \in \mathcal{V}} d(u, v) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { uniform convergence on all arms, all sets, or all pairs of sets). } \\
& \text { But regret inequality hard to use algorithmically! } \\
& \hline
\end{aligned}
$$

Instance-Specific Parameters (e.g., Gaps):

$$
\Delta_{v}(\mu) \triangleq \frac{\left\langle v-v^{*}(\mu), \mu\right\rangle}{d\left(v, v^{*}\right)}, \quad \Delta_{a}(\mu) \triangleq \min _{v, u \in v v^{*}}, \Delta_{v}(\mu) .
$$

- Also: Disjoint Sets, partition $[K]$ into K / s blocks, choose one element per block. - Many well-studied examples (Top-K, Matroids, Biclustering). Sharp guarantees known for matroids. Comparisons: Compare leading terms in homogeneous setting: $\mu=\Delta\left(2 v^{\star}-\mathbf{1}\right)$.

Sample complexity	Top-K	DisJSET	Matching	Biclique
[CLKLC14] / Baseline	$\Theta(1)$	$\Theta(s)$	$\Omega(K)$	$\Omega(\sqrt{s})$
[CGLQW17] / Baseline	$\Theta(1)$	$\Theta(1)$	$\Omega\left(K^{1 / 2}\right)$	$\Omega(1)$
[GLGOB16] / Baseline	$\Theta(1)$	$\Theta(s)$	$\Omega(1)$	$\Omega(\sqrt{s})$

Interactive algorithms can be polynomially worse than non-interactive baseline! Why? Normalized regret inequality much sharper than other natural concentration arguments (e.g,

- How should we collect data to do unsupervised learning or structure discovery?
- Can we design an algorithm that is never worse than baseline and sometimes much better?
- Can we make the algorithm oracle efficient?

Other results

Define symmetrized log-volume $D\left(v, v^{\prime}\right) \triangleq \max \left\{\log \left|\mathcal{B}\left(d\left(v, v^{\prime}\right), v\right)\right|, \log \mid \mathcal{B}\left(d\left(v, v^{\prime}\right), v^{\prime}\right)\right\}$
Theorem 4 (Refined fixed confidence). There exists a computationally inefficient fixen Theorem 4 (Refined fixed confidence). There
confidence algorithm with sample complexity

$$
O\left(\sum_{a \in[\mid K]} H_{a}^{(1)}\left(\log \left(H_{a}^{(1)}\right)+\log \left(\pi^{2} K / \delta\right)\right)+H_{a}^{(2)}\right)
$$

Theorem 5 (Fixed budget). Given budget $T \geq K$ there exists an algorithm guaranteeing

$$
\mathbb{P}\left[\hat{v} \neq v^{*}\right] \leq K^{2} \exp \left(\psi\left(\Phi-\frac{T-K}{8 \log (K) \sum_{a} \Delta_{a}^{-2}}\right)\right) .
$$

Final Remark: In the high confidence regime ($\delta=\exp (-K)$), [CGLQW17] give tight instance optimal results. B
baseline optimal rates here remain unknown.
References

1. Chen, Gipta, Li, (iao, and Wang, Nearly yptimal sampling algorithms for combinatorial pure exploration. Coutr 2017

2. Gabillon, Laearic, Chavamamadel, OTtreer and Bartetet. Improved leaning complexity in combinat
Learn more at: https ://arxiv org/abs/1711.08018
