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Combinatorial Pure Exploration

• Stochastic multi-armed bandits: Arms a ∈ [K], each with sub-Gaussian distribution νa with unknown
mean µa ∈ [−1, 1]. (Vectorized representation µ ∈ [−1, 1]K.)
•Combinatorial decision set: V ⊆ {0, 1}K.
•Pure exploration problem: find

v⋆ , argmax
v∈V

〈v, µ〉,

while minimizing samples. Query individual arms, sequentially.

–Fixed confidence: Given δ ∈ (0, 1) ensure P[v̂ 6= v⋆] ≤ δ, minimize samples.

–Fixed budget: Given T ∈ N use at most T samples, minimize P[v̂ 6= v⋆].

•Optimization oracle-based computational model

Oracle(c) , argmax
v∈V

〈v, c〉.

Non-interactive Baseline

Algorithm: Query each arm T/K times and output v̂ = argmaxv〈v, µ̂〉 with empirical mean µ̂.
Combinatorial Parameters: with d(v, v⋆) , |v ⊖ v⋆|,B(k, v) , {u ∈ V | d(v, u) = k},

Φ , Φ(V) , max
k∈N,v∈V

log(|B(k, v)|)
k

, Ψ , Ψ(V) , min
u,v∈V

d(u, v).

Instance-Specific Parameters (e.g., Gaps):

∆v(µ) ,
〈v − v⋆(µ), µ〉

d(v, v⋆)
, ∆a(µ) , min

v:a∈v⊖v⋆
∆v(µ).

Theorem 1.Algorithm succeeds w.p. 1− δ when T ≥ O
(

K
minv∆2

v

(

Φ + log(K/δ)
Ψ

))

.

This is minimax optimal among non-interactive methods.

Proof uses a simple concentration argument:

P [v̂ 6= v⋆] = P

[

∃v ∈ V :
|〈v⋆ − v, µ̂− µ〉|

d(v⋆, v)
≥ ǫ

]

≤ 2
∑

v∈V
exp

(−Td(v⋆, v)ǫ2
2K

)

≤ 2

K
∑

k=Ψ

|B(k, v⋆)| exp
(−Tkǫ2

2K

)

≤ 2K exp

(

max
Ψ≤k≤K

log |B(k, v⋆)| − Tkǫ
2

2K

)

.

Follows since 〈v⋆ − v, µ̂− µ〉 is the average of Td(v⋆,v)K centered sub-Gaussian random variables.
Method succeeds with ǫ = minv 6=v⋆∆v(µ). Choosing T such that RHS is at most δ yields theorem.

Normalized Regret Inequality: With n samples per arm, for any δ we have

P



∃v ∈ V :
|〈v⋆ − v, µ̂− µ〉|

d(v⋆, v)
≥

√

2

n

(

Φ +
log(2K/δ)

Ψ

)



 ≤ δ.

Examples and Motivation

Top-K Matching Biclique Biclustering
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•Also: Disjoint Sets, partition [K] into K/s blocks, choose one element per block.

•Many well-studied examples (Top-K, Matroids, Biclustering). Sharp guarantees known for matroids.

Comparisons: Compare leading terms in homogeneous setting: µ = ∆(2v⋆ − 1).

Sample complexity Top-k DisjSet Matching Biclique

[CLKLC14] / Baseline Θ(1) Θ(s) Ω(K) Ω(
√
s)

[CGLQW17] / Baseline Θ(1) Θ(1) Ω(K1/2) Ω(1)

[GLGOB16] / Baseline Θ(1) Θ(s) Ω(1) Ω(
√
s)

Interactive algorithms can be polynomially worse than non-interactive baseline!

Why? Normalized regret inequality much sharper than other natural concentration arguments (e.g.,
uniform convergence on all arms, all sets, or all pairs of sets).
But regret inequality hard to use algorithmically!

•How should we collect data to do unsupervised learning or structure discovery?

•Can we design an algorithm that is never worse than baseline and sometimes much better?

•Can we make the algorithm oracle efficient?

Disagreement-based Algorithm

Intuition: Use disagreement-based active learning

1.Maintain version space of “good” sets.

2. Query where version space disagrees.

In active learning, standard version space is:

V
v̂ Vt

Vbad

t
= {v | 〈µ̂t, v̂t − v〉 ≤ ∆td(v̂t, v)}

For us, much better version space:

VVtv̂

Vt = {v | ∀u, 〈µ̂t, u− v〉 ≤ ∆td(u, v)}

Algorithm 1
1: for t = 1, 2 . . . , do
2: Compute v̂t = argmaxv∈V〈v, µ̂t〉
3: for a ∈ [K] do
4: Query a if Vt disagrees

∃v ∈ Vt(µ̂t,∆t) s.t. v(a) 6= v̂t(a)

5: Otherwise, hallucinate yt(a) = 2(v̂t(a)− 1)
6: Update µ̂t+1← 1

t+1

∑t
i=0 yi

7: If no queries issued this round, output v̂t

Theorem 2.For any δ ∈ (0, 1), Algorithm guarantees
that P[v̂ 6= v⋆] ≤ δ, with sample complexity

∑

a∈K

144

∆2
a

(

Φ +
2 log(144/(∆2

aΨ)) + 2 log(Kπ2/δ)

Ψ

)

.

•Modulo logarithmic factors, never worse than non-interactive algorithms. Better with heterogeneity.

Efficient Computation

Bottleneck is computing disagreement:

∃v ∈ Vt s.t. v(a) 6= v̂t(a).

•Linear feasibility, exponentially many constraints.

•Use online learner to collapse constraints

max
v

∑

u

pt(u) (∆d(v, u)− 〈µ̂, u− v〉)

s.t. v(a) = b

•Update learner using slack of best-response.

•Use FTPL for implicit distribution.

collapse

check

feasibility

infeasible?

no disagreement

p 〈u, x〉 ≤ b

sample

with

oracle

feasible?

update p with slacks

Theorem 3.FTPL runs in polynomial time with Õ(K6/∆4) oracle calls. If it reports
false then there is no disagreement. Otherwise there exists v ∈ conv(V) with v(a) = b
and ∀u ∈ V 〈µ̂, u− v〉 ≤ ∆ ‖u− v‖1 + ∆ (There is approximate disagreement).

•Approximate feasibility does not damage sample complexity.

•Corollary: Fixed confidence algorithm runs in polynomial time with optimization oracle.

Other results

Define symmetrized log-volume D(v, v′) , max {log |B(d(v, v′), v)|, log |B(d(v, v′), v′)|}.

Theorem 4 (Refined fixed confidence).There exists a computationally inefficient fixed
confidence algorithm with sample complexity

O





∑

a∈[K]

H (1)
a

(

log(H (1)
a ) + log(π2K/δ)

)

+H (2)
a



 ,

where H
(1)
a , maxv:a∈v⊖v⋆

d(v,v⋆)

〈µ,v⋆−v〉2 and H
(2)
a , maxv:a∈v⊖v⋆

d(v,v⋆)D(v,v⋆)

〈µ,v⋆−v〉2 .

Better dependence on combinatorial parameters Φ,Ψ, since H
(1)
a ≤ 1

∆2
aΨ

and H
(2)
a ≤ Φ

∆2
a
.

Theorem 5 (Fixed budget).Given budget T ≥ K there exists an algorithm guaranteeing

P [v̂ 6= v⋆] ≤ K2 exp

(

ψ

(

Φ− T −K
8 log(K)

∑

a∆
−2
a

))

.

Final Remark: In the high confidence regime (δ = exp(−K)), [CGLQW17] give tight instance-
optimal results. But for δ = poly(1/K) their algorithm can be significantly worse than non-interactive
baseline and our algorithm. This “moderate confidence” regime is quite interesting and the instance
optimal rates here remain unknown.
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