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Contextual Bandits and Background

: f p :
Contextual Bandit Protocol Surrogate Losses in Supervised Learning Theorem 2. For any constants 3 > o > 0, smoothing parameter p € (0,1) and margin pa- Key Insights
On each of T rounds 3 | | | rameter v > 0 there exists an adversarial CB strateqy with expected loss bounded as: e Stationary distribution of LMC Markov chain is Exponential weights distribution.
1. Observe context x ’ %O&ngu}f at(lionalzb(lzonvex/ continuous relaxations " T 7 e With hinge surrogate and convexity, sampling problem is log-concave = eflicient algorithm!
0 -hard problems. . .
2. Choose action ay - . y L L th(at) g [L%(f )] + 4\/2K "Tog Neo oo (B/2,F,T) + uKT e Sampler uses randomized smoothing and /5 regularization for strong convexity.
| e Statistical: sharper generalization bounds, e.g.. s | feF | | | . |
3. Observe loss £;(ag, xy). 1 distribution-dependent. dimension-free. etc. q { =T e Also use geometric resampling to estimate importance weight.
Goal: Minimize loss! - —log/\/oo (B2, F,T) +— 3e’a KT + 24en [ —— f \/log/\/oo (e, F,T)de
Applications: online personal- Why not use surrg) 552;2098868 mn conteztual H v H Algorithm 1 HINGE-LMC Algorithm 2 Langevin Monte Carlo (LMC)
ization, medical trials, etc. -2 -1 0 i 2 ' . . . Input: Class O, learning rate n, rounds 7', margin +. Input: Function F', parameters m, u, A, IV, a.
. where Noo oo(€,F,T) is the Lo [loo-sequential covering number for F. ) Define wy(6) =1 for all 6 € ©. Set O < 0 € R
g Our results A e Also yields a policy regret bound, against policy class derived from F. fOI’Ht =1,.. C,(T do | for k=1,...,N do y
ires | - ke uni st - ¢ < LMC(nwz). D oz < N(0,u2I) and defi
e New regret bound for margin-based contextual bandits with generic function class. e Requires knowledge of margin parameter v, unlike uniform guarantees for statistical learning. Set (-5 60;) o< W (f(2560:)), P (+:0;) = (1= K p)pg + . l”af\f 21, (0,u?l;) and define
—Generalizes and improves several prior results. Class Rate Notes Receive zy, play a; ~ pl'(+;6;), observe £,(a;). Fi.(0) = % S0+ 2;) + %H@H%
—Extends sequential complexity bounds for online learning (Rakhlin et al., 2015) Finite classes K/Tloe | F Can oot ontimal O(~ /KT loe T policy reoret with our Broof form=1,...,M do N
to contextual bandits. \/ 3171 S (\/ |M}) policy reg P 0 < LMC(nw;_1). // Geometric resampling. Draw & ~ N'(0, [4) and update
e A new CB algorithm for parametric/convex classes with O(\/d1") regret. Parametric | K\/Tdlog(KT/y) |logNe (g, F,T) o< dlog(1/e), as in the LINUCB setting. enc?i’?fle a; ~ py (+10), if 4y = ay, break 0. < Po (ék_l _ %vﬁk(ék_l) + \/afk) ,
—First efﬁ(nen.t bandit-multiclass algorithm with O.(\/ dT') regret against thge loss. Rademacher | K (R(F. T)/7)25T/3 Involves Rademacher complexity of scalar restrictions of benchmark. Set my = m, and Et(a) li(ar) - midias = aj
. e A new analysis of (smoothed) Follow-the-Leader with large non-parametric classes. ) ) i For full information, rate is ©(max, R (Fl., T)). Update w;( (9) w1 (0) + (b 07 (F 2 0))) end for
. Linear classes K(T]~)*3 Generalizes BANDITRON to smooth Banach spaces. end for Return Oy
Prior Results
. . L e )
e Parametric methods: Simple, efficient, but rely on realizability. Can we get guarantees without realizability? Nonparametric ( KT)z]ii y -2 log Naw oo (£, F,T) o< &7, p € (0,2] Theorem 4. Assume F is parametrized by a compact convezr set © c R, f(x:;0) is conver
e Agnostic methods: Few assumptions, but computationally inefficient in general. Can we gain tractability? and L-Lipschitz in 0, and sup, 4| f(2;0)| ., < B. For any v, HINGE-LMC guarantees
e Bandit Multiclass: Surrogate losses common, but loss functions do not generalize to cost-sensitive. Nonparametric (KT )1%7_1% log V. o0.0o(E F,T) cxeP p>2 "
. N . . o . ] N | - (B
e Statistical /Online Learning: Surrogate losses ubiquitous. Can we extend to partial information? - % ADRACHIE min | - > (C 0 (f(24:0))) | <O ;\/ dT
=1 ] S| ]
Lipschitz CB. For & = [0,1]?, the class F of Lipschitz func- |_ 8 Moreover the running time is O (%)
- : : _p : g_jv% ® . )
Surro gat e Loss Functions tlons.has Sﬁquentlal enﬁropy g.rowthhe O \2{% Ob;;)am dO(Y{j ) ) 06
gizl;géﬁi/ Ie)é) ;clzyé%glgl;e)t, improving the O(T*?) bound of Cesa- §04- e Bandit Multiclass: First efficient /d1" algorithm against a loss without curvature!
Setting g | | - I — uare loss T2 e Realizability: If 6* has f(x;0*),= K~v1{{(a) < miny{(a’)} —~ then obtain %\/ dT policy regret.
o Adversarial contextual bandits with K actions: @, € X, £, € [0,1]* chosen by adaptive adversary. Right: exponent on T' vs. entropy exponent. “Square loss” de- 021 === Full info ramp loss 7" e Practical Aspects: Likely can significantly improve runtime and extend to non-convex classes.
e Bandit feedback: On each round, choose an action a;, incur loss £;(a). Only loss of chosen action is observed. notes optimal rate under square-loss realizability (Slivkins, 2011). = Qur result: Bandit ramp loss T5" 7
e Standard goal: Compete with policy class I : X — [ K|, measured via regret 05 1 2 3 4 5

Entropy exponent p

Regret(T,11) = Y E[l(ar)] - inf Y E[l(m(xr))].

=1 mell

=1
e Regressors: We derive IT from a class F: X - RE, of functions (R, = {s e R* : 3, s, = 0}). Proof Ideas Setting: Stochastic contextual bandits, (x, ;) ~ D iid on each round.
e Surrogates: Ramp ¢7(s) £ min(max(1+ s/v,0),1) and hinge ¢7(s) £ max(1 + s/v,0). (Pires et al. 2013) : - - T

Al thm: Epoch h hml f . = 2 .
Full information bound gorithm: Epoch based, with epoch m lasts for n rounds

| To begin m™ epoch, compute empirical importance-weighted hinge-loss minimizer:
If full info bound involves local norms, can obtain bandit bound via importance weighting. E.g., EXpP4 5 PO, P P P 5 5

Key observation: Surrogate losses induce randomized policies.

é )

Lemma 1. For s € RE | define a* = argmax, s, and Tump(8), Thinge(8) € A([K]) by Tramp(8)a o - . i §
0V (Sa) and Thinge(s)q o< WI(8q). For any £ € RE we have Regret(T,I1) < g *3w~pt(ﬂ($t),2t)2 n log (J11]) m-1= af]%SEmT %% 1<€m¢ (f(iUT))>
t=1 y
0(a”™) <{Tramp(s),£) < (£, 07(s)) Zé(a)l {8a2-7} and £(a”) < (Thinge(s), L) < K= (C,47(s)). , , , , , , , , Note, uses only data from previous epoch.
L J We show existence of full-info algorithm with regret scaling with (1) local norms and (2) sequential covering. For all rounds in mt epoch, play as (1 = K ) Tmee( frns(21)) + 1. (Essentially e-greedy.)

Uses adaptive minimax technique of Foster et al. (2015). We show for G: X - S

o ((,07(f(x))) or (£,47(f(x))) serve as surrogate losses for f. I rr T 7 Theorem 5. Suppose that F satisfies 10g Noo oo (e, F,T) o< P for p>2. Then for stochastic
o For ramp, also obtain margin regret: L1.(f) 2 Y1 Yo li(a)1{f(z:)a > -7} V= <<SUEp 12{8) Slélp 0 ~pt>> (51, €) = Z g(zt), ) = B(prr, bir) | < C CB, SMOOTHFTL guamntees
XT+€ t€ t t=1 | =1 t=1 -
. . i T .
CC-Ramp CC-Hinge MC-Hinge where B(pur, ur) = St [, +mo |47 + 20, <s,zt>2 and C' depends only on 715 and Noe oo(9). : Zztmt) ~min =B [(£,07(f(2))] < O ((T/7)7)
(¢, min(max(1 + 5,0), 1)) (¢, max(1 + 5,0)) - - Yields benign dependence on loss range and Dudley-type integral with sequential metric entropy. k )

- To give main theorem, use G = o7 o F.

e Oracle Efficient: Makes log(T") calls to hinge-loss minimization oracle.

Yyey min(max(1 +s,,0), 1) Ly max(1l + sy, 0) max(l = (s, = maxysy- 5y),0) Bandit Reduction o Lipschitz CB: Also yields 77 algorithm for Lipschitz CB with p-dimensional context space and finite
e Use full info algorithm with class G = ¢7 o F, to obtain p; € A(S) action space. Yields best known guarantee for Lipschitz CB.
e Define Py(a) = E,.,, s,(a() 5 sample a; ~ Pl (1= Kp)P+ 1) e (Sub)optimality? Matches information-theoretic results, but e-greedy typically suboptimal.
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