Fine-Grained Privilege Separation for Web Applications

Akshay Krishnamurthy ~ Adrian Mettler

David Wagner

Department of Electrical Engineering and Computer Science
University of California, Berkeley, USA
akshayk@berkeley.edu, {amettler, daw}@cs.berkeley.edu

ABSTRACT

We present a programming model for building web applications
with security properties that can be confidently verified during a
security review. In our model, applications are divided into iso-
lated, privilege-separated components, enabling rich security poli-
cies to be enforced in a way that can be checked by reviewers. In
our model, the web framework enforces privilege separation and
isolation of web applications by requiring the use of an object-
capability language and providing interfaces that expose limited,
explicitly-specified privileges to application components. This ap-
proach restricts what each component of the application can do and
quarantines buggy or compromised code. It also provides a way to
more safely integrate third-party, less-trusted code into a web appli-
cation. We have implemented a prototype of this model based upon
the Java Servlet framework and used it to build a webmail applica-
tion. Our experience with this example suggests that the approach
is viable and helpful at establishing reviewable application-specific
security properties.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures; D.2.4
[Software Engineering]: Software/Program Verification

General Terms

Security, Design

Keywords

Web applications, privilege separation, object-capabilities

1. INTRODUCTION

Today, web applications are vulnerable to a variety of attacks
that can compromise private data, bring down essential systems, or
otherwise wreak havoc on our lives. One recent study reports that
web-based attacks are now the “primary vector for malicious activ-
ity over the internet” and that 63% of reported attacks targeted web
applications in 2008 [20]. With current tools, developing a secure
web application is challenging, and enabling others to verify its se-
curity is even harder. In this paper, we address these two concerns
with a novel web programming model that partitions an application
into privilege-separated components and minimizes the privileges
assigned to each one. This architecture enables a code reviewer to

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2010, April 26-30, 2010, Raleigh, North Carolina, USA.

ACM 978-1-60558-799-8/10/04.

verify specific security properties by examining relevant applica-
tion components, rather than auditing the application as a whole.
At runtime, we isolate code on a per-user basis by default, avoid-
ing accidental communication between users and making it easier
to identify and review the correct operation of intended communi-
cation channels between users.

Web applications are increasingly being developed using frame-
works that abstract and automate low-level implementation details.
We believe that such frameworks should provide better support for
security. In addition to providing automated protection against tra-
ditional web attacker threats such as cross-site scripting and SQL
injection, they should support secure compartmentalization of ap-
plications. The framework is an ideal place to handle security con-
cerns as it allows a single well-reviewed implementation to be used
for a large number of applications. Also, handling security features
in the framework reduces the opportunity for application program-
mers to introduce security vulnerabilities and reduces the need for
them to be security experts.

We present a prototype framework, Capsules, that provides iso-
lation between reduced-privilege application components via the
strong security guarantees of an object-capability language. In our
framework, each application component can be given a minimal
set of privileges, bounding its behavior and limiting the damage
from bugs in that component. Reducing trust in application code
can simplify the security review process: when reviewing security
properties, we can easily identify which components must be exam-
ined simply by understanding the privileges granted to them. For
instance, to check that a security invariant is preserved, we need to
review only those components that have the privileges that would
be needed to violate that invariant. Isolation and limited privilege
also provide a way to securely support third-party components and
plugins, which are becoming a popular way to extend application
functionality.

In addition, we leverage existing techniques to help the web ap-
plication developer defend against attacks from malicious clients.
Although our focus is not on lower-level vulnerabilities such as
cross-site scripting, cross-site request forgery, and SQL injection,
we incorporate known defenses for these vulnerabilities in our ap-
plication framework. These problems are well-understood, and so-
lutions for addressing them have been and continue to be proposed
and deployed.

Capsules is built atop the Java Servlet framework and exposes a
Servlet-like interface to the web application. A web application is
composed of a number of servlets, and each (session, servlet) pair
defines a protection domain that can only communicate with other
protection domains in explicit ways. Each user session is associated
with a session object, and only portions of this object are exposed
to each servlet.

Capsules applications are largely written in Joe-E, an object-
capability language in which all privileges are represented as object
references, or capabilities [11]. In Joe-E, at each point in time, the
program only has the privilege provided by the objects currently in
scope. This allows us to follow the principle of least privilege by
limiting the capabilities granted to each protection domain, thereby
reducing the trust placed in it. In particular, in our model, one can
ensure that the application code processing each request only re-
ceives the capability to access data associated with the currently
logged-in user, so any security breach associated with that request
can affect only a single user. In contrast, conventional web appli-
cation architectures do not restrict a servlet’s access to user data,
which is more fragile because a single security compromise can
affect every user of the web application. Joe-E also helps us to en-
force the security boundary between the web application and the
framework. Using Joe-E, we know that servlets will only be able to
interact with the outside world through the objects exported by our
servlet framework. These interfaces can be thoroughly reviewed
once to ensure that the framework will maintain its integrity in the
face of compromised or even malicious servlets.

In order to better evaluate our model and prototype framework,
we built a simple web mail application. We found that our model
makes it possible to verify important application-level security prop-
erties, including privacy and integrity of user data and isolation be-
tween users. We also perform experiments to assess the perfor-
mance impact of our model for web application programming.

The rest of this paper is organized as follows. Section 2 identi-
fies the security and usability goals of our system. In Section 3, we
present a high-level overview of our approach. Section 4 describes
the Capsules framework and its implementation. In Section 5, we
evaluate how Capsules aids in the security review process, and we
discuss its performance and practical deployability. We survey re-
lated work in Section 6 and conclude in Section 7.

2. GOALS

We want to enable programmers to build real-life web applica-
tions with high-level security properties that can be verified by a
security review. To achieve this, our approach must make it feasi-
ble to conclude with confidence that application security goals are
met while providing a model in which programmers can efficiently
build real applications.

2.1 Security Goals

Our primary goal is to improve the security of web applications.
Specifically, we wish to:

e Support the principle of least privilege. It should be easy to
grant application components access to only the resources that
they need, minimizing the potential damage they can do. Such
reduction in privilege should meaningfully reduce trust in appli-
cation components, so that irrelevant components can be ignored
when reviewing security properties. It should be possible to re-
strict privileges to the extent that less-trusted components can
be safely subjected to less thorough security review than more-
trusted components.

e Provide isolation. We want to provide two kinds of isolation.
First, our model should enforce session isolation: the code pro-
cessing each request should have access only to data relating to
that request and to the associated session, but not to data asso-
ciated with other sessions or other requests. Developers can use
session isolation to enforce proper isolation between users by
ensuring that the session object only contains information asso-
ciated with the currently logged-in user. Therefore, session iso-

lation provides a way to restrict how a user’s actions can affect
other users. Second, our model should provide component isola-
tion: application components should not be able to tamper with
each other. Each component should be able to maintain the in-
tegrity of its own code and private state. One component should
not be able to escalate its privilege by invoking functionality pro-
vided by another component. This form of isolation ensures that
the capabilities provided to a component are not used inappro-
priately by others.

o Facilitate security reviews. It is not enough for a developer to
be able to achieve desired security properties. It should also be
possible for a reviewer to gain confidence that the claimed se-
curity properties are actually maintained. Our proposed model
should make it easy to reason about security properties of an ap-
plication and should facilitate such a security audit. In order to
support the security properties that are important for a given ap-
plication, our model must allow verification not just of common
predefined security properties, but also of higher-level policies
that vary between applications. Our model should be general
enough to support the security policies of a diverse range of web
applications.

2.2 Usability Goals

For our programming model to be adopted, it must be easy to
learn and use. In particular, we have the following goals:

e Familiarity and simplicity. It is important for a new frame-
work to be easy for existing web developers to learn. One way to
achieve this is to base it on an existing framework in popular use.
Changes to the existing framework should be the minimum re-
quired to achieve the desired security and reviewability benefits,
and they should be straightforward and easy for programmers to
understand. This allows existing developer expertise to be lever-
aged to build secure applications.

e Maintain developer productivity. A possible hazard of adding
mechanisms to improve security during application development
is that programmers can be overwhelmed by added complexity,
dissuading adoption. To the extent possible, security enhance-
ments should be transparent and automatic. When security con-
cerns are abstracted away in this manner, developers no longer
have to worry about them. Abstracting security features makes
it less likely that developers will introduce security vulnerabil-
ities by misuse or disuse of the feature. Where providing safe
default behavior by abstraction is not possible, any security sup-
port should be explicit but naturally integrated into the language
or library. “Bolted-on” security enforcement mechanisms can
lead to unintuitive behavior such as unexpected errors or myste-
rious failures, as well as an increased risk of unsoundness due to
mismatch between the framework and the security code.

e Ease development of new applications. Our primary focus is
on new web applications; we want to ensure that developers do
not have a hard time understanding the model and can easily
develop applications using this model. Porting old applications
is a lower priority.

3. APPROACH

We use a language-based approach to enforce isolation between
web application components and grant each one a minimal set of
privileges appropriate to its functionality. In our framework, ap-
plication code is written in an object-capability language in order

to reliably achieve these properties. We prevent application com-
ponents from interfering with each other and restrict the privileges
granted to each one in accordance with the principle of least privi-
lege [18]. These two properties serve to prevent vulnerabilities in a
web application and limit the consequences of exploiting remaining
ones.

3.1 Object-Capabilities

Object-capability languages are designed to enforce isolation and
facilitate practicing the principle of least privilege at the granularity
of individual objects. In such a language, capabilities (unforgeable
tokens granting privileges) are implemented as object references in
an object-oriented programming language.

Objects in these languages are used to store information and rep-
resent external resources. A capability is a reference to an object;
code that has such a capability is thereby authorized to call the ob-
ject’s methods and access its public instance variables. It is not
possible to perform any operations on an object or to read or write
its state without a reference to the object.

In object-capability languages, all privileges to read sensitive in-
formation or to affect the state of the program or the outside world
are carried by capabilities. Code that is not granted an explicit ca-
pability cannot communicate with the rest of the program (except
to return a result when called) or the outside world. Libraries are
designed to ensure that they do not expose any privileges to the
program except when the caller presents an appropriate capability.
Typically, each system resource is represented by an object pro-
vided by the library, and programs interact with that resource by
invoking methods on the corresponding object.

Any real application will need to make use of application-specific
resources such as databases or files. In a capability system where
application components cannot instantiate these resources directly,
there must be some component trusted to create the initial capa-
bilities to these resources. In our approach, we propose that the
framework should invoke some small body of trusted application-
specific code in order to construct these capabilities, which can then
be used by various application components as needed.

Object-capability languages are helpful from a security perspec-
tive for several reasons. They allow a developer to manage which
privileges are made available to different parts of a system in such
a way that a reviewer can determine this distribution while limiting
the amount of code that needs to be examined. Thus, the object-
capability model helps achieve least privilege in a easily-reviewable
way. They also make it easier to reason about security invariants:
the subset of the program that must be reviewed to verify an invari-
ant can be minimized by limiting the distribution of capabilities that
could be used to violate the invariant.

3.2 Design Overview

Object-capability languages can reliably isolate objects from each
other, and we use this ability to separate web applications into com-
ponents which can only interact in proscribed ways, achieving our
component isolation property. Each application component forms
a protection domain. The extent of a protection domain is speci-
fied by the set of capabilities assigned to that component, and by
considering which capabilities are shared between domains, we can
understand how components can communicate with each other. If
two components have disjoint sets of capabilities, we immediately
know that they are completely isolated.

In our approach, all application state, including capabilities to
application-specific resources, is stored in a per-session data store.
This architecture facilitates session isolation. The only way state
can be shared between sessions is if shared capabilities are added

Capsules | | Capsules | | Capsules | | Capsules
Servlet Servlet Servlet Servlet

[
o
[

Dispatcher

App-specific
session initializer

JVM

Figure 1: Overall architecture of our implementation. The dis-
patcher exposes a modified Servlet API to the application-level
servlet instances. The dispatcher is part of the Capsules frame-
work; the application developer writes the servlets and session
initializer code. Typically, servlets are written in Joe-E, and the
trusted session initializer is written in Java.

to the session by an application’s trusted session initialization code.
This trusted code is a small fraction of the application that must be
carefully reviewed. Each application component has a declarative
policy governing its access to the per-session data store. This per-
mits review of communication channels between components and
limits how they can interfere with each other. Properly-defined ac-
cess policies can achieve least privilege and thus facilitate a security
review.

In many web applications, we expect that each session will be
associated with a single logged-in user of the application (or, if
the client has not logged in yet, with no user at all). For these
applications, session isolation contributes to providing verifiable
user isolation.

We make use of known techniques to automatically guard against
client-side web attacks such as cross-site scripting and cross-site
request forgery, as well as analogous attacks between application
components. These defense mechanisms are implemented in the
framework and are fully automatic, so that developers can focus on
application functionality and higher-level security properties.

4. IMPLEMENTATION

We implemented a prototype web framework, called Capsules,
atop the Java Servlet framework. Capsules introduces an addi-
tional layer, the dispatcher, between the servlet container and Cap-
sules applications; see Figure 1. The dispatcher exposes a modified
Servlet API to the application and controls communication between
the user and the application, allowing it to provide additional secu-
rity features not offered by traditional servlet containers.

4.1 Joe-E

Capsules applications are written primarily in Joe-E, an object-
capability language designed as a subset of the Java language [11].
The Joe-E verifier is used to statically check that Joe-E code con-
forms to the Joe-E language subset; then, the Joe-E code is com-
piled with a standard Java compiler. Joe-E code is executed on an
unmodified JVM, like ordinary Java programs, requiring only the
addition of a Joe-E support library. Joe-E code can be combined
with unrestricted Java code, but since Java code is fully trusted and
has the ability to violate the security properties enforced by Joe-
E, any code written in Java should be reviewed and verified not to
interfere with the Joe-E code’s security properties.

Joe-E removes a number of features from Java that preclude se-
cure isolation, such as unsafe reflection and mutable static fields. It

additionally defines a subset of the Java library, excluding methods
and fields that convey privilege without an appropriate capability.
This subsetting is necessary to satisfy the principle of least privi-
lege, as otherwise all code in the system would be granted inappro-
priate privilege in excess of its need. In some cases where the Java
APIs cannot be made safe by subsetting alone, Joe-E provides ad-
ditional library methods that expose the underlying functionality in
a capability-safe way. One aspect of Capsules is the definition of a
safe subset of the Servlet API and a capability-safe implementation
of this subset.

4.2 The Servlet API

The Java Servlet framework is a standard platform for writing
Java web applications. An application in this framework is hosted
by a servlet container and consists of a set of servlet classes that
process incoming requests from users. When the container receives
a request, it forwards the request to the appropriate servlet, typi-
cally by calling its doGet or doPost method. The servlet gener-
ates a response and the container sends this back to the user. An
interaction with an application consists of one or more requests to
its servlets and the associated responses.

When the servlet container is started, it installs an application
by constructing an instance of each servlet defined in a configura-
tion file. Throughout the lifetime of the application, these singleton
servlets are responsible for handling user requests. When invoking
a servlet, the web server gives the servlet two objects, represent-
ing the HTTP request and response. The servlet is allowed to read
any information from the request and to populate the response with
data to be sent back to the user. Bundled with the HTTP request is
an HTTPSession object, associated with the current user session,
as identified by a session cookie. The session object provides a
session-specific mapping from strings to arbitrary objects. Every
servlet can access the session object and the entire mapping asso-
ciated with it.

4.3 Capsules API

The Capsules framework presents a modified version of the Serv-
let API to its applications. The Capsules API is a subset of the
standard Servlet API along with replacement functionality medi-
ated by a dispatcher component. The dispatcher component han-
dles all communication between Capsules applications and the rest
of the Capsules framework.

Our implementation builds on top of an existing servlet con-
tainer. The dispatcher interposes between the application-level serv-
lets and the underlying servlet container. In particular, the dis-
patcher is a servlet registered with the underlying servlet container;
the underlying servlet container is unaware of the application-level
servlets and delivers all incoming requests to the dispatcher. We
maintain our own URI-to-servlet mapping in the dispatcher, so that
we can appropriately forward requests to application-level servlets.
This mapping is specified declaratively in an application configura-
tion file in the same format used by the servlet container and loaded
into the dispatcher upon initialization.

Capsules applications, while written mostly in Joe-E, include a
small Java component to initialize capabilities to various resources
such as the filesystem or a database. In our implementation, these
resources are placed in every session upon initialization.

4.3.1 Isolation

In the Servlet framework, a single instance of each servlet is
created and shared across all sessions. The instance variables of
servlets can be used to store servlet-local state that is shared across
sessions (though this is not a recommended practice), and appli-

cation developers may not realize that these shared variables can
cause concurrency bugs or leak sensitive information between users.
This violates our session isolation goal. To eliminate this commu-
nication channel, we require that servlets contain no mutable state,
which we enforce by declaring the JoeEServlet class to imple-
ment the Immutable marker interface. This interface is defined
by the Joe-E library and causes the Joe-E verifier to check that all
of the class’s fields are final and are declared with a (transitively)
immutable type.

This restriction ensures that all application state is maintained
in HTTPSession objects. The dispatcher makes application state
available to servlets when it calls the doGet and doPost methods,
by passing a reference to the session object as a parameter. Since
servlets cannot maintain state on their own, any objects associated
with users must be reachable from that user’s HTTPSession object.
Thus, we can achieve user isolation by ensuring that every object
in the HTTPSession contains only data that should be accessible to
the current user.

4.3.2 Restricted Views

The standard servlet model makes the entire session object and
all cookies received available to every servlet. In this model, it is
difficult to pinpoint where session members and cookies are used,
and it is challenging to fully understand the consequences of mod-
ifying or misusing these objects. This lack of documentation com-
plicates security reviews. Capsules provides restricted access to
the HTTP session object and cookies in order to reduce privileges
granted to components and facilitate review.

Our dispatcher exposes a servlet-specific view of the HTTP ses-
sion. Much like a database view, this provides only a portion of
the session state to the servlet. We augment the application con-
figuration file to list which session members—i.e., which entries
in the mapping from strings to objects maintained by the session
object—can be read and written by each servlet. From this speci-
fication, we automatically generate code to define a wrapper class,
called a SessionView, that provides a restricted interface to the
underlying HTTPSession object. There is one SessionView class
per servlet, and it restricts that servlet’s access to a subset of the
session state. A SessionView object consists of a reference to the
HTTPSession and getter and setter methods for accessing specific
session members. SessionViews are constructed on each request
and passed to Capsules servlets as a parameter to their doGet and
doPost methods.

Each servlet also defines a CookieView class specifying which
cookies it can read and write. Like the SessionView objects,
CookieView objects are constructed on each request and passed
to the servlet as a method argument. In addition to the set of cook-
ies included in the HTTP request, CookieViews include a set of
cookie updates to be sent as part of the HTTP response.

Defining session and cookie views as wrappers around the un-
derlying session and cookie objects lets programmers define fine-
grained access policies. For example, we can enforce read-only or
write-only access to the underlying objects simply by removing a
getter or setter method. From the programmer’s perspective, ac-
cess policies are specified declaratively, and a code generation tool
automatically generates code implementing the session and cookie
views. While session and cookie view classes may contain many
getter and setter methods, these methods do not need to be verified
for correctness because the view classes are automatically gener-
ated. Instead, it suffices to review the code generation tool. If
finer-grained access to a session member is desired, an applica-
tion developer can define a wrapper class that mediates access to
that object and enforces a custom access policy on all accesses, and

then expose only the wrapper (not the object it wraps) to servlets
by placing the wrapper object in the session instead of the wrapped
object.

We make use of Joe-E’s taming functionality, which exposes
only a subset of the Java libraries to Joe-E code, to ensure that ap-
plication servlets can only access session data and cookies through
the view objects. In particular, we prevent Joe-E code from call-
ing the getHTTPSession and getCookies methods on the HTTP
request object and the addCookie method on the HTTP response
object.

Restricted views support the principle of least privilege, as they
permit programmers to grant each servlet with only the capabili-
ties it needs. These views also facilitate security audits, as review-
ers can quickly understand what capabilities are granted to each
servlet. Additionally, they help enforce servlet isolation, because
servlets can only communicate using channels explicitly defined as
session members and two servlets with disjoint views have almost
no way of interacting with each other'.

Nothing in our framework currently prevents one servlet from
directly invoking a method on another servlet, but it will be unable
to escalate its privilege by doing so. To invoke another servlet with
its normal privileges requires constructing the same SessionView
as it would receive from the dispatcher, but this is not possible be-
cause doing so would require direct access to the HTTPSession and
servlets are not given direct access to the underlying HTTPSession.

A malicious servlet could invoke another servlet with a Ses-
sionView constructed from an HTTPSession it generates itself,
but such a HTTPSession can only contain capabilities the mali-
cious servlet already had access to. In most cases, this means that
the attacking servlet could have replicated the results of any such
attack by duplicating and calling a local copy of the code of the vic-
tim servlet. The exception is if the victim servlet is able to construct
an object of a type that the attacking servlet cannot, such as a pri-
vate inner class. If the type of this class is used elsewhere as a trust
marker, and the victim class assumes that it has a trusted path to the
user, then this attack could violate the trust assumptions placed on
the type. We expect this pattern to be rare, but we acknowledge that
it is unfortunate to require developers using this type of type-based
reasoning to be aware of this hazard in our current implementation.

4.3.3 Automated Defenses

In addition to isolation and restricted views, Capsules provides
defenses against certain common kinds of attacks. Since the dis-
patcher mediates all communication between the user and the ap-
plication in both directions, it can transparently transform requests
and responses to defend the application against certain attacks. In
our implementation, we prevent cross-site scripting attacks, make
it possible to review that application JavaScript does not violate
servlet isolation, and guard against cross-site and cross-servlet re-
quest forgery (CSRF).

We implement these mechanisms by restricting how application
servlets can write to the HTTP response. In our current implemen-
tation, servlets can only construct a response page via a restricted
DOM API, rather than specifying arbitrary strings to a Print-
Writer as in the standard Servlet API. We check that the con-
structed DOM contains no dynamically-constructed active content;
our API prohibits adding script and embed tags to the docu-
ment. As these restrictions prevent any dynamically-constructed
JavaScript, they suffice to protect the page from cross-site script-
ing. We also prohibit inline CSS, as some browsers allow script to

"We do not prevent communication over covert channels. However,
covert channels can only be used to transfer information, i.e., bits,
not capabilities.

be defined in CSS. While it is much easier to make a DOM API
safe from active content injection, we acknowledge that applica-
tions written using a DOM API are more verbose than those written
using unsafe string concatenation or a templating system, and thus
our system may be less convenient for developers to use. Addi-
tionally, DOM construction prevents streaming of the document as
it is generated, substantially increasing perceived latency for large
pages. A useful addition to our system would be a safe templating
language which permits streaming, similar to Genshi [3].

While these restrictions prevent dynamically constructed Java-
Script, we allow developers to specify (in the application’s config-
uration file) a static JavaScript header file and a CSS file for each
servlet. Once a servlet returns control to the dispatcher with its
DOM response, the dispatcher augments the DOM to link in the ap-
propriate files. The included script can then modify the DOM tree
to add any desired action handlers to the document, guided by id
tags or CSS styles. These JavaScript and CSS files must be man-
ually audited to ensure that the JavaScript does not access pages
belonging to other servlets in violation of the application’s desired
security properties. A better approach would be to create an ap-
propriate JavaScript validator or rewriter similar to AdSafe [2] or
Caja [13] to automate this process. This tool would verify that the
active content on the page adheres to a “same-servlet policy” and
does not access other servlets in a manner that would be prevented
by the browser’s same-origin policy if they resided at a different
domain. However, we have not implemented this extension.

In our framework, we must guard against not only standard cross-
site request forgery, but also cross-servlet request forgery, as we
must protect each application component individually and provide
servlet isolation. The risk is that one servlet could cause requests to
be performed to another servlet, effectively escalating its privilege.
We extend the well-known CSRF defense of one-time keys, in-
serted into forms as a hidden field, by associating a distinct securely-
random key with each servlet at session construction. We insert
these keys into forms by having our DOM API implementation au-
tomatically add a hidden input whenever the servlet creates a form
object. When the dispatcher receives a POST request, it compares
the value of the associated HTTP parameter with the one-time key
stored in the HTTPSession before forwarding the request to the
application servlet. At present, it is up to the developer to ensure
that GET requests do not have undesired side effects, but this task is
simplified in comparison with other frameworks as most servlets’
SessionView policies will restrict what portion of the session state
each servlet can modify.

S. EVALUATION

To evaluate the effectiveness of our programming model for build-
ing secure web applications, we built a webmail application as a
case study. While our application is simple, we are able to demon-
strate high-level security properties. Our application is implemented
as a collection of servlets, where each servlet corresponds to a spe-
cific application feature. We wrote 8 servlets for creating user ac-
counts, authenticating and logging out of the application, and for
reading, writing, and deleting emails. Each of these servlets de-
fines a SessionView and a CookieView that we use to restrict the
capabilities provided to that component. Users’ mail is stored in
the file system, in the form of a mailbox directory for each user
following the Maildir specification. A top-level users directory
contains all the user directories. We use Postfix to accept incoming
email on port 25 and deliver it to the user’s mailbox directory.

5.1 Security Analysis

We identify two critical application-specific security properties
that we want our webmail service to achieve:

1. Integrity. If Alice is a user of the webmail service, an at-
tacker who does not know Alice’s password is unable to use
the webmail service to affect (directly or indirectly) the con-
tents of Alice’s mailbox, except by using the webmail ser-
vice’s defined interface to send Alice an email.

2. Privacy. If Alice is a user of the webmail service, an attacker
who does not know Alice’s password is unable to use the
webmail service to gain any new information on the content
of messages in Alice’s mailbox through any overt channel.

We assume that the attacker controls a malicious web client. We
allow for the possibility that the attacker might be colluding with
the programmers who wrote the webmail servlets (so we do not
exclude malicious code from our threat model). However, we as-
sume that the system administrator and platform code (e.g., Tom-
cat, Postfix) are trusted and not malicious. The privacy property
makes no promises about information that might be leaked through
covert channels.

To evaluate how effectively Capsules facilitates security reviews,
we conducted a security review of our webmail application to ver-
ify the two critical security properties listed above. Unlike many
security reviews, which often consist of a best-effort search for
bugs starting with the most likely places, we instead aimed to con-
vince ourselves that our two critical security properties hold. We
constructed an explicit argument that each property holds and then
checked that the code satisfies each of the assumptions made by that
argument. Due to the isolation and privilege separation properties
of the framework, it sufficed to manually review only a portion of
the code in order to check each property: we were able to identify
a subset of the code that was critical to enforcing each property and
then informally reason about these subset.

5.1.1 Verifying Integrity

To convince ourselves that our webmail application achieves the
integrity property above, we first identified all application compo-
nents that have the ability to directly modify the contents of Alice’s
mailbox by finding all components that can obtain a capability to
any file in Alice’s mail directory. We found that only the session
initialization module and DeleteServlet can acquire a capabil-
ity to modify any such file, the latter only when it executes within
Alice’s session. We also verify that each session is associated with
at most one user of the webmail service and that the authentication
logic prevents logging into a session as Alice without knowledge
of Alice’s password. Therefore, no one else can gain control of a
session belonging to Alice and directly violate her integrity.

Next, we check that the attacker cannot indirectly affect the con-
tents of Alice’s mailbox. The only way this could happen is if some
other session were able to influence the execution of code running
in Alice’s session, causing that code to modify Alice’s mailbox in
a way she did not request. Here our basic strategy is to show that
the set of heap objects reachable from the attacker’s session is dis-
joint from the set of heap objects reachable from Alice’s sessions
and then argue that this prevents an attacker from influencing the
behavior of code running on Alice’s behalf.

Session Initialization. We reviewed the application’s session
initialization code and confirmed that it doesn’t use unsafe Java
features to violate the isolation properties that Joe-E guarantees for
the application code. This enables us to soundly reason about the
propagation of capabilities.

(a): an unauthenticated session:

Session Create
Account

CreateAccount.SessionView - create
GetCreate()

File System

- auth
Login.SessionView) A
GetAuth() readmail —|
SetMaildir()) -
SetName() deletemail
- name — |

(b): an authenticated session:

Read.SessionView Session
GetReadmail()
GetName() - create

Delete.SessionView

- auth
GetName() |_> - readmail —
GetDeletemail()

Inbox.SessionView
GetName() -
GetReadmail()

Figure 2: Our authentication scheme. A fresh session is
preloaded with capabilities that can be used to create a new
user account or authenticate a user. However, once a user is
authenticated, the Auth capability is invalidated.

1
;
ReadOnly
File

The session initialization module is the only application code
that can create file capabilities from scratch. We verified that it
only uses this power to construct an Auth capability, giving it a
reference to the users directory. The Auth capability is then stored
in the session object.

Authentication. When a user successfully authenticates and
logs into the webmail application, the application populates her
session object (that of the session in which the successful authenti-
cation occurred) with capabilities to her mailbox files; before then,
the session object does not contain any mailbox file capabilities.
See Figure 2, which shows the application state before and after
successfully authenticating a user.

In our framework, the only way capabilities can become avail-
able to application code processing a request is if they are stored
in the session. Since application code cannot construct new capa-
bilities to the outside world, all external capabilities must derive
from the ones initially placed in the session by the session initial-
izer. Therefore, the only way for code to access Alice’s mailbox is
if its session’s initial capabilities gave access to her directory. Due
to the immutability of session objects and Joe-E’s prohibition on
mutable static fields, there is no way to “smuggle” Alice’s data or
a capability to her mailbox from a previous session.

In our application, there are several capabilities initially stored in
the session, but only two can be used to access the users directory
and thus potentially read or modify Alice’s mail: namely, a refer-
ence to the Auth class, which authenticates a user and retrieves her
mailbox, and a reference to the CreateAccount class, which can
be used to add new users to the system.

In reviewing the CreateAccount class, we confirmed it can
only create and initialize an account that does not already exist at
creation time. It appropriately restricts the user name via a whitelist
of valid characters, chosen to avoid creation of multiple names that

Dispatcher

(o)

Bob

=~ [W |
i Il 1 1
E |Login.doPost() | | Inbox.doGet() | ! |Login.doPost() | ! | Inbox.doGet() | !
1 1 1

1 1 1 1
E Cookie Cookie) 1 Cookie)i i
! View View ! View E !
1 1

i Session Session) | Session)| Session) |
1 View View ! View)1 View !
i | v i i
i : | |
1 HTTP ! ! HTTP |!

) -)

' Session 1 [! Session 3 !
i 1 i i i
i 1 Il |
| i | i
: : !
: - !
1 1 1
i ! i
1

: 1 :
1 1 1
1 1 I
1 1 I
1 1 1

Figure 3: A graph of the heap of our running application. Iso-
lation can be verified by examining a limited number of trusted
components (shaded) that bridge isolation domains.

the Postfix mail transfer agent will map to the same user mailbox
directory. It then invokes Postfix to create and initialize the new
mailbox directory and updates the Postfix configuration to recog-
nize this username. As a CreateAccount object cannot be used
to gain access to an existing mailbox, we do not need to review it
further to establish the integrity property.

The Auth class has a single method which accepts a username
and password and returns the user’s mailbox directory. We re-
viewed the implementation of this method and verified that it re-
quires a correct password before returning a capability to the user’s
mailbox files. Before returning, the Auth capability invalidates it-
self by clearing a boolean flag. This operation is atomic because
our framework serializes all requests per session by default. This
means that each Auth object can only be used for at most one suc-
cessful authentication. As the session initialization code adds only
a single Auth object to the session, there is no way for that session
to gain a reference to any other Auth object. The Auth object en-
capsulates a capability for the user’s mailbox files and releases this
capability only upon successful authentication. There is no other
way to gain a capability to a user’s mailbox. Thus, during the life-
time of any one session, the session can contain capabilities for at
most a single user’s mailbox files.

It follows that a web client who does not know Alice’s password
cannot obtain a session with access to her mailbox.

User Isolation. We verified a user isolation property: the exe-
cution of a request on behalf of one user (say, the attacker) cannot
influence the execution of code running on Alice’s behalf in a way
that would affect the contents of Alice’s mailbox, except for autho-
rized transmission of e-mail messages to Alice. We verified this
in two phases: first, we ruled out influence via overt channels by
reasoning about all possible overt channels between two sessions;
then, we ruled out unwanted influence via covert channels by ex-
amining the code running on Alice’s behalf.

We eliminated the possibility of unwanted influence via overt
channels by reasoning about the possible runtime heap graphs of
our application. In particular, the heap graph separates into mostly-

disjoint regions. Each region corresponds to a distinct user: the
region contains all of the objects transitively reachable from any
session associated with that user, except that we prune the transi-
tive traversal at certain bridge objects. In addition, there is a set of
shared resources that are not associated with any particular region.
See Figure 3 for an example. Bridge objects are objects that have a
capability to a shared resource, an external resource, or an external
communication channel. Bridge objects enable a potential commu-
nication channel between regions and as such must be reviewed to
verify that they do not violate user isolation.

In our application, the bridge objects are the CreateAccount,
Auth, and MTA classes. We reviewed their code to confirm that
they do not permit unintended communication. CreateAccount
and Auth could in principle be used by servlets to communicate
across sessions, but we verified that the servlets do not in fact use
this potential channel to communicate in a way that would violate
integrity. No servlet listens on this communication channel and
uses the message received to influence its modifications to mailbox
contents. DeleteServlet does not query the existence or non-
existence of other accounts or allow their existence to affect the
modifications it makes to Alice’s mailbox. LoginServlet does
not use its capability to the mailbox files to modify the contents of
any mailbox. No other servlet ever receives a capability to modify
the contents of any mailbox file.

Mail transport can also be used to communicate across sessions,
but it cannnot violate the recipient’s integrity because the Delete-
Servlet does not look at the contents of any mail message before
deciding which one to delete.

Since servlets are immutable, they cannot be used as a commu-
nication channel between users. Therefore, they are not bridge
objects and need not be reviewed when verifying user isolation.
As part of the framework, the dispatcher is assumed not to violate
servlet isolation.

5.1.2 Verifying Privacy

To ensure that the privacy of Alice’s messages is preserved, we
reviewed all application code that can potentially read the contents
of Alice’s messages. For each such class, we verified that it does
not send information about the messages to anyone other than Al-
ice. We check that (a) it does not send this information to other
connected web users or out via outgoing email, and (b) it does not
communicate any of this sensitive information to other classes, e.g.,
by storing it in the session. If condition (b) did not hold, we would
also have to review any additional code that could read that data.

Immediately after session initialization, before a user is logged
in, only the CreateAccount and Auth capabilities grant any ac-
cess to the user mailboxes in the filesystem. CreateAccount does
not directly access the filesystem; it instead instructs the MTA to
add a user for mail delivery and then sends a welcome mail to that
user. It reads data from the filesystem only when it checks that a
user does not already exist, so it does not reveal any information
about the content of messages in Alice’s mailbox. Use of this ca-
pability is guarded by a lock to eliminate possible race conditions
from concurrent creations of the same user name. The Auth ca-
pability itself never looks at the contents of a user’s directory, so
it does not reveal any information about the content of the user’s
messages. Additionally, our prior review of the Auth capability
showed that it returns a capability to a user mailbox only when
supplied with the appropriate password, so an attacker who does
not know Alice’s password cannot use it to gain a capability to Al-
ice’s mailbox.

The only remaining way that Alice’s privacy might be compro-
mised is if servlets running on behalf of Alice read her email and

leak information about it to the attacker. After authentication, the
objects in the session that provide access to her mailbox include the
CreateAccount capability and the ReadOnlyFile and Delete-
Mail wrappers pointing to her mailbox directory. Of these, only
the ReadOnlyFile is actually able to read the contents of Alice’s
mail. We therefore need to review only the servlets that are allowed
to get this capabiltity, as specified by the policy file.

The policy file specifies that only the Read and Inbox servlets
have access to the ReadOnlyFile capability used to read Alice’s
mail. The Inbox reads in the file names of Alice’s messages and
reads the content of these files in order to get their subject lines.
The file names are used for URLs that point to the Read servlet;
as web browsers do not reliably protect the URLs of pages, these
are potentially readable by a malicious website acting in concert
with the attacker. While these file names contain timing informa-
tion used to generate a unique identifier by the local mail transfer
agent, they do not reveal any information about the content of the
message. The subject line, on the other hand, is included only in the
response to Alice as part of a text block in the HTML page sent to
Alice. Unlike the URL of a page, the browser’s same-origin policy
is assumed to reliably protect the content of a page from being read
by script originating from other domains. Our webmail application
is hosted on its own server, so we do not need to verify any script
belonging to other applications. In our current implementation, our
application does not have any script content, so we do not need
to worry about other servlets being able to read the content output
by the Inbox servlet. If our application had used JavaScript, we
would have to review the scripts to ensure that they do not allow
other servlets to read sensitive information from the Inbox servlet.

The Read servlet reads the contents of a file from the user’s mail-
box directory, with the filename specified by a GET parameter, and
simply outputs the file’s contents as a single DOM text node in the
response to be sent back to Alice. We assume that the browser does
not leak this text to any other domain; that should be prevented by
the same-origin policy. If we had JavaScript in our application, we
would have to verify that it does not read and exfiltrate the private
information output by this servlet, but at present our webmail ap-
plication does not use any scripts. The Read servlet does not make
any other overt use of the contents of the email message, and thus
does not violate Alice’s privacy.

5.2 Usability

For the most part, our APIs are consistent with the servlet API,
differing only to meet our security goals. Legacy servlet applica-
tions are not directly compatible with this model, and we have not
evaluated the difficulty in porting them to it. From our experience
using the model, we did not find it appreciably more difficult to
use than the standard servlet API. We have not built large, complex
applications atop our framework, and thus there may be issues that
arise only at scale that we have not encountered. While we believe
that the properties of our framework will make large programs eas-
ier to review for security than in existing frameworks, it remains
unknown whether it reduces the difficulty enough to make security
verification practical for large, complex applications.

Our application uses files for persistent storage, but a database is
a more practical alternative for many web applications. Capsules
does not currently support databases because we do not have a good
least-privilege-compatible means for doing so; remedying this is an
important open problem.

Another practical concern for our framework implementation is
the current incompleteness of Joe-E’s taming database, which spec-
ifies which Java methods can be called from Joe-E code. Java has
a very large number of useful libraries and only a handful have

10

7.17 7:32

145.50 150

Latency (ms/request)

100

Throughput (requests/sec)

[Capsules
[Servlet w/ DOM
I Servlet

0

Figure 4: DOM Microbenchmark. Error bars in all figures
indicate a 95% confidence interval for the mean.

been carefully scrutinized for capability discipline and enabled for
use with Joe-E applications. To let applications use these libraries,
it will be necessary to carefully tame these libraries to determine
which methods are safe to allow, and in some cases, add supple-
mental APIs to expose missing functionality in a capability-safe
way. This is a substantial amount of work, though the taming effort
for a library can be leveraged by all Joe-E applications.

5.3 Performance Analysis

We evaluated the performance impact of Capsules by comparing
against the unmodified servlet framework. To facilitate this com-
parison, we implemented an identical webmail application as a set
of regular Java servlets. We deployed both applications on the same
web server (2.26 GHz Pentium 4 with 512 MB RAM) and ran ex-
periments that compared the two in terms of latency, throughput,
and memory usage. For latency measurements, we measured the
round-trip time for requests issued by a single client. For through-
put, we saturated the server by simulating 20 simultaneous clients
issuing sequential requests. In both cases, we eliminated network
overhead by running the clients on the same machine as the server.
In all our measurements, we noticed short, relatively infrequent
pauses due to periodic garbage collection; despite this, our mea-
surements were consistent when averaged over longer time periods.

DOM Microbenchmark. We evaluated the performance im-
pact of org.w3c DOM API. We built three applications: one us-
ing Capsules and the DOM API; another using regular servlets and
the DOM API; and a third using regular servlets and the default
PrintWriter API. Each application writes over 200 HTML ele-
ments to the HTTP response. This enables us to separately assess
the overhead of the DOM API alone and the additional overhead
added by the Capsules framework for a DOM-heavy workload.
We found that the DOM API has a substantial performance
penalty relative to simple string concatenation; in our experiments
it nearly halved throughput and more than doubled latency (see Fig-
ure 4). Perceived latency may be even worse due to the inability to
stream the response with a DOM API. We anticipate that substan-
tial performance gains could be made by using a streamable safe
templating system or SAX API instead of the DOM APL

Session Construction Microbenchmark. The Capsules dis-
patcher adds overhead to session construction and initialization be-
cause it populates each fresh session with capabilities needed by

Latency (ms/request)

Throughput (requests/sec)

[Capsules [Capsules
[Servlet [Servlet

0

Figure 5: Session Construction Microbenchmark.

100
92.11

80

73.89

60

40

Latency (ms/request)
Throughput (requests/sec)

20f

[Capsules
[Servlet

0

Figure 6: Application Functionality Macrobenchmark.

the application. This overhead is application-specific, depending
largely on the complexity of constructing these capabilities. For
this experiment, we used our webmail application’s session initial-
izer, which is nontrivial but likely to be less complex than that of
a larger application. We implemented two servlets, one for Cap-
sules and one for the Servlet Framework, that simply invalidate
the associated session, without producing any output, so that on
each request a fresh session is constructed. Our experiments show
that Capsules adds approximately 1.5 ms of latency on session con-
struction, which is unlikely to be noticeable when amortized over
the lifetime of a typical session. See Figure 5.

Application Functionality Macrobenchmark. Our micro-
benchmarks do not reflect realistic web application workloads; it is
likely that real applications will spend a larger proportion of their
time in application-specific logic. Therefore, we measured perfor-
mance on a synthetic workload: a servlet that lists the subject of
1000 messages from the user’s mailbox. See Figure 6. Our mea-
surements show approximately a 20% throughput penalty, which is
substantial but may be acceptable in some cases given the security
benefits.

Memory Experiments. We evaluated the memory overhead of
our approach by seeing how many active sessions could be sup-
ported by each application. We found that with a 256MB heap, the

Capsules implementation could handle 71,500 sessions while the
control implementation allowed 153,590 sessions. This works out
to an overhead of approximately 2.0KB to each session, which we
believe is not substantial.

6. RELATED WORK

Our work on building secure web applications with Joe-E has
parallels with SIF [1], which extends and applies the information-
flow-typed language Jif [15] to web application development. Infor-
mation-flow languages like Jif allow the programmer to declare se-
curity labels on program variables. These labels specify the con-
fidentiality and integrity policies to be enforced on the variables’
contents. This allows one to verify statically that integrity-critical
data is influenced only by trusted sources and that private data is
not leaked to unauthorized sinks. The SIF platform builds atop the
Java Servlet framework to allow developers to build web applica-
tions in Jif. Like our work, it exposes a slightly modified servlet
API to web applications in order to enforce its security properties.
Both Capsules and SIF restrict the output of application servlets to
prevent them from triggering client-side actions that would violate
the intended security properties.

SIF’s architecture focuses on security properties that can be ex-
pressed as information-flow properties, whereas Capsules was de-
signed more around the notions of privilege separation, least privi-
lege, and control of side effects. We speculate that some application
security properties may be more naturally expressed in SIF, and that
others may be more naturally expressed in Capsules, but we have
not made any attempt to evaluate this hypothesis.

Capabilities have a long history as an approach for securing sys-
tems [9]. Early multi-user capability systems were based upon
hardware support for capabilities, where each capability indicated a
resource and a set of access rights. Due to the need for specialized
hardware, these systems declined in popularity, but they provided
the inspiration for capability-based operating systems [4, 19] and
later object-capability languages. The concept of programming en-
vironments supporting security and isolation dates back as far as
work by Morris in 1973 [14]. W7 implemented these features in
a Scheme environment and provided an early example of language
support for capabilities [17]. Joe-E, the object-capability language
we use for our prototype framework, was heavily influenced and
inspired by E, a seminal object-capability language [12].

Multiple projects have taken a capability-based approach to se-
curing client-side JavaScript for web applications. The Caja project
is designed to securely support coexistence of active web content
from multiple sources in a single domain. They provide a tool to
rewrite a webpage containing JavaScript into a self-contained mod-
ule that can be used as a web gadget. This transformation sand-
boxes the code so it can only interact with other modules using
capabilities [13]. ADsafe [2] is a more restrictive object-capability
subset of JavaScript, designed to support advertisements whose se-
curity can be checked without requiring code rewriting. Our work
is analogous, but applied to the server side of web development; the
two can complement each other to provide client- and server-side
isolation between components of a multi-tiered web application.

The term “privilege separation” has traditionally been used to re-
fer to dividing an application into distinct components that can run
in separate processes with different OS-level privileges. A typical
example involves a trusted, high-privileged process that delegates
most of the real work to less-privileged slave processes [16]. The
OK Web Server follows this technique to provide limited privilege
to web server and web application components [8]. Each compo-
nent of the web application is chrooted to a jail directory and only
allowed to communicate via RPC to the dispatcher and database

components.

Hawblitzel et al. provide an alternate model of Java module com-
ponentization to the one we use for application servlets [5]. Their
J-Kernel system establishes protection domains for Java code so
that communication between domains is only possible using spe-
cial Capability objects: normal objects are never shared across
protection domains. Separate classloaders are used to enforce iso-
lation between domains except for the special Capability ob-
jects, which can be retrieved from the J-Kernel’s call-gate-like pub-
lic interfaces of modules. The J-Kernel isolation model has the
advantage of focusing attention on the precise interface between
components, at the cost of reduced flexibility. Using Joe-E, our
framework can provide isolation for components without the in-
frastructure needed to establish and permit sharing between pro-
tection domains. J-Kernel’s protection domains have been used to
host servlets, providing isolation between distinct servlet-based ap-
plications. However, unlike our work, they do not provide isolation
between users or components of the same servlet application.

The Open Web Application Security Project (OWASP) provides
a guide for developing secure web applications [21]. We feel that
this type of effort in assembing best practices is valuable as an aid to
web application developers. Ideally, web development frameworks
should automate many of the best practice defenses described in
this guide, and Capsules aims to move in this direction.

In addition to frameworks aimed at developing secure web appli-
cations, there has been a substantial body of work on static analysis
for web applications to find security vulnerabilities [6, 7, 10]. We
feel that these tools have a place, especially for legacy applications,
but moving forward, we believe that applications should be written
in higher-level frameworks that prevent many of the vulnerabilities
that static analysis tools currently detect.

7. CONCLUSION

In this paper, we presented a programming model for building
web applications that enables verification of high-level security
properties by compartmentalizing an application into isolated com-
ponents and limiting the privileges allotted to each one. We re-
alized this model with Capsules, a prototype framework that ex-
poses a modified Servlet API to applications and harnesses Joe-E,
an object-capability language. Using this framework, a security re-
view was able to verify important security properties of a webmail
application.

8. ACKNOWLEDGEMENTS

Part of this work was inspired by a helpful suggestion from Ben
Laurie, whom we gratefully acknowledge. We thank Devdatta Akh-
awe, Matt Finifter, Jayant Krishnamurthy, and our anonymous re-
viewers for helpful feedback on earlier drafts of this paper. This
material is based upon work supported by the National Science
Foundation under grants CNS-0716715, CCF-0424422, and CCF-
0430585. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

9. REFERENCES

[1] S. Chong, K. Vikram, and A. C. Myers. SIF: Enforcing
confidentiality and integrity in web applications. In USENIX
Security Symposium, 2007.

[2] D. Crockford. ADsafe. http://www.adsafe.org.

[3] Edgewall Software. Genshi.
http://genshi.edgewall.org.

[4] N. Hardy. KeyKOS architecture. SIGOPS Oper. Syst. Rev.,

19(4):8-25, 1985.

C. Hawblitzel, C.-c. Chang, G. Czajkowski, D. Hu, and

T. Von Eicken. Implementing multiple protection domains in

Java. In USENIX Annual Technical Conference, 1998.

Y. W. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y.

Kuo. Securing web application code by static analysis and

runtime protection. In 13th International World Wide Web

Conference, 2004.

N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static

analysis tool for detecting web application vulnerabilities

(short paper). In IEEE Symposium on Security & Privacy,

pages 258-263, 2006.

M. Krohn. Building secure high-performance web services

with OKWS. In Proceedings of the USENIX Annual

Technical Conference, pages 15-28, 2004.

H. M. Levy. Capability-based computer systems. Digital

Press, Maynard, MA, USA, 1984.

V. B. Livshits and M. S. Lam. Finding security

vulnerabilities in Java applications with static analysis. In

14th USENIX Security Symposium, 2005.

A. Mettler, D. Wagner, and T. Close. Joe-E: A

security-oriented subset of Java. In 17th Network &

Distributed System Security Symposium, 2010.

M. S. Miller. Robust Composition: Towards a Unified

Approach to Access Control and Concurrency Control. PhD

thesis, Johns Hopkins University, Baltimore, Maryland,

USA, May 2006.

M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay.

Caja: Safe active content in sanitized JavaScript (draft),

2008. http://google-caja.googlecode.com/files/

caja-spec-2008-06-07.pdf.

J. H. Morris, Jr. Protection in programming languages.

Commun. ACM, 16(1):15-21, 1973.

A. C. Myers and B. Liskov. A decentralized model for

information flow control. In Symposium on Operating

Systems Principles, pages 129-142, 1997.

N. Provos. Preventing privilege escalation. In /2th USENIX

Security Symposium, pages 231-242, 2003.

[17] J. A. Rees. A security kernel based on the lambda-calculus.
A. I. Memo 1564, MIT, 1564, 1996.

[18] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. In Communications of the
ACM, 1974.

[19] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast
capability system. In 17th ACM symposium on Operating
Systems Principles (SOSP’99), pages 170-185, 1999.

[20] Symantec Corporation. Symantec Global Internet Security
Threat Report: Trends for 2008, April 2009.

[21] A. Wiesmann, A. van der Stock, M. Curphey, and R. Stirbei,
editors. A Guide to Building Secure Web Applications. The
Open Web Application Security Project, September 2005.

(5]

(6]

[7

—

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

(16]

