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1 Recap

Last time we talked about the nonstochatsic bandit problem which was a partial information version of our online
learning problem. Here we studied situations where at each iteration t, the learner chooses an action at and suffers
loss `t(at) which is the only thing the learner observes. We showed that the importance weighting trick can be
plugging into any full information algorithm with a local-norm type regret bound, which lead to a O(

√
KT log(K))-

regret for EXP3.
Today we’ll study an easier version of this problem where the losses are not generated by an adversary. This is

the stochastic multi-armed bandit problem.

2 Stochastic Bandits

Here we’ll be in essentially the same setup as before, except that each arm a is associated with a distribution νa
supported on [0, 1] with mean µa. At every round the rewards r(a) ∼ νa iid for all arms but otherwise the game is
exactly the same as before. For each of T rounds, we choose an arm at, suffer loss rt(at), which we also observe.
Here the regret is

Reg(T ) = max
a∈[K]

T∑
t=1

rt(a)− rt(at)

We’ll also study the pseudo-regret, which is

R̄eg(T ) = max
a∈[K]

E
T∑
t=1

rt(a)− rt(at) = max
a∈[K]

Tµa −
T∑
t=1

Eµ(at)

Here the expectation accounts for all randomness in the problem and in the agent. Note that the index at is a random
variable, since it may depend on all of the previous observations. Then since, as we have seen, E max ≥ max E the
pseudo-regret is in general smaller than the expected regret. It doesn’t really have a natural interpretation, but it
is a quantity that is heavily studied in the literature.

One thing to note here is that since we are not facing an adversary, we can now be a deterministic algorithm
over the space of arms. We do not have to lift to the space of distributions. Of course since the stochastic case is
a special case of the adversarial one, we know that EXP3 already has an O(

√
KT log(K) expected regret bound

here. However today we will study some deterministic algorithms.

3 Epsilon-Greedy strategies

A simple strategy, that maybe many of you have seen, is based on uniform exploration. At each round, with
probability ε, we choose an arm uniformly at random, and with probability 1 − ε, we play the arm with the
empirically highest mean. This is called ε-greedy exploration. Something that is simpler to analyze is the explore-
first strategy which, plays uniformly at random for the first n rounds, and then plays the empirically best arm for
the remaining rounds.
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Theorem 1. The Explore-First algorithm, with n = T 2/3(K log(K/δ))1/3 has, with probability at least 1− δ

Reg(T ) ≤ O((K log(K))1/3T 2/3)

Proof Sketch. If we do n rounds of exploration and use the importance weighting reward estimator then using
Hoeffding’s inequality, we can prove

|µ̂(a)− µ(a)| ≤
√
K log(K/δ)

n

simultaneously for all a ∈ [K], with probability 1 − δ. Using the usual ERM analysis, this means that µ(â) ≥
µ(a?)− 2

√
K log(K/δ)/n. So our regret is

n+ 2T

√
K log(K/δ)

n
.

If we set n = T 2/3(K log(K/δ))1/3 we get the desired bound. Technically one more deviation bound is required on∑T
t=n+1 rt(a

?)− rt(â) but it is lower order.

Essentially the same thing can be shown for ε-greedy strategies. However, since we know that EXP3 can get√
KT log(K) regret, we know that this is suboptimal. Nevertheless, ε-greedy approaches can be quite effective in

practice, and also in some cases are the best thing we currently know how to do. Getting to
√
T -type regret requires

adaptive exploration, which roughly means localizing your exploration around the optimal arm, rather than doing
something uniform. In some problems this can be hard, so ε-greedy is what we resort to.

4 Upper Confidence Bound Algorithms

The popular algorithm that people use for bandit problems is known as UCB for Upper-Confidence Bound. It uses
a principle called “optimism in the face of uncertainty,” which broadly means that if you don’t know precisely what
the environment is, make your decisions as if it were the best case for you. One way to think about this, which
sometimes appears formally, is that when you make decisions optimistically, either you made a good decision, or
you learned a lot. We’ll see how this appears in the UCB analysis.

Let Nt(a) =
∑t
i=1 1{ai = a} be the number of times you have pulled arm a up to and including round t. Define

the empirical mean µ̂t(a) = 1
Nt(a)

∑t
i=1 ri(a)1{ai = a}. Then the UCB algorithm is as follows. Start by pulling

each arm once, and then at round t, the algorithm pulls

at = argmax
a∈[K]

µ̂t−1(a) + σt−1(a)

where σt−1(a) is a confidence interval term that we’ll set depending onNt−1(a). Intuitively it will beO(
√

1/Nt−1(a)),
which is what you would get if you used Hoeffding’s inequality on the empirical mean.

4.1 Distribution-Independent Analysis.

Theorem 2. With σt(a) =
√

log(2KT/δ)
2Nt(a) the regret of UCB is, with probability at least 1− δ,

Reg(T ) ≤ O(
√
KT log(KT/δ))

Proof. The first step is to build the confidence intervals so that they trap the true mean with high probability. By
Hoeffding’s inequality and a union bound over all arms and all time T , with probability at least 1− δ

|µ̂t(a)− µt(a)| ≤

√
log(2KT/δ)

2Nt(a)
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Let us condition on this high probability event and proceed with the proof. The regret incurred in the first K
rounds is at most K. Then, for any round t > K, our regret on that round is,

µ(a?)− µ(at) = µ(a?) + µ̂t−1(a?)− µ̂t−1(a?)− µ(at) + µ̂t−1(at)− µ̂t−1(at)

≤ σt−1(a?) + µ̂t−1(a?) + µ̂t−1(at) + σt−1(at)

≤ 2σt−1(at)

The first inequality uses the deviation bound both for a? and for at. The second uses the decision rule of the
algorithm, which implies that,

µ̂t−1(a?) + σt−1(a?) ≤ µ̂t−1(at) + σt−1(at)

Thus the total regret is,

Reg(T ) ≤ K + 2

T∑
t=K+1

σt−1(at) = K +
√

2 log(KT/δ)

T∑
t=K+1

√
1

Nt−1(at)

Now we have to bound this last term. We need to use that fact that if at = a then Nt(at) = Nt−1(at) + 1, so that
all of the terms are non-increasing. We also have to use that NK(a) = 1 for all i ∈ [K], which holds because we
pull each arm once in the first K rounds. Thus we get,

T∑
t=K+1

√
1

Nt−1(at)
=

K∑
a=1

NT (a)∑
j=1

√
1

j
≤

K∑
a=1

2
√
NT (a).

The last inequality (
∑n
i=1

√
1/i ≤ 2

√
n) can be proved by induction. Now finally, we know that

∑K
i=1NT (a) ≤ T .

This is a concave constrained maximization, and it can be solved analytically. It turns out the worst case allocation
is when NT (a) = T/K for each i, which gives the regret bound,

Reg(T ) ≤ K +
√

8KT log(KT/δ).

Corollary 3. UCB with σt(a) =
√

log(2KT 2)
2Nt(a) has pseudo-regret bound

R̄eg(T ) = O(
√
KT log(KT ))

Proof. The bounds from above holds whenever the deviation bound holds. Trivially the regret is bounded by T
otherwise so in total we get,

R̄n ≤ K +
√

8Kn log(Kn/δ) + δT

If we set δ = 1/T this bound becomes O(
√
KT log(KT )).

Modulo logarithmic factors, this is essentially the optimal regret achievable in the worst case. I like this analysis
because you can see the exploration-exploitation tradeoff at work here. The regret is directly related to the deviation
bounds, so a sharper deviation bounds give you better regret.

To see the optimism at work, notice that the instantaneous regret can only be big if σIt,t−1 is big. Thus if you
play a bad action, it must be because σIt,t−1 was big, and by virtue of playing the action, you decrease σIt,t−1

substantially. This captures the sentiment, either you play a good action, or you learn a lot.

4.2 Distribution-Dependent Analysis.

Now we’ll prove an instance specific (or distribution dependent) bound. We need a new definition. Let,

∆(a) = µ? − µ(a)

be the suboptimality of arm a.
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Theorem 4. For σt(a) =
√

log(t+1)
Nt(a) the regret of the UCB algorithm is at most,

R̄eg(T ) ≤
∑

a:∆(a)>0

(
4 log T

∆(a)
+ 8∆(a)

)

This is called a distribution dependent bound, since the RHS depends on the gaps ∆(a) which are problem
specific. Note that this bound has a much better dependence on T , of O(log(T )) instead of O(

√
T ), but if the gaps

are extremely small, then the bound will not be that good.

Proof. First, we show that if at = a then one of the following three inequalities must be true,

µ̂t−1(a?) + σt−1(a?) ≤ µ(a?)

µ̂t−1(a)− σt−1(a) > µ(a)

∆(a) ≤ 2σt−1(a)

Intuitively, if µ̂(a) is small, µ̂(a?) is big, and the gap is big then there is no way that at = a. Or formally, suppose
that all three are false. Then

µ̂t−1(a?) + σt−1(a?) > µ? = µ(a) + ∆(a) ≥ µ(a) + 2σt−1(a) ≥ µ̂t−1(a) + σt−1(a)

which contradicts the fact that at = a.
Now we can bound the number of times we pull arm a. First, let us crudely solve for Nt−1(a) in the inequality

related ∆a and σt−1(a)

∆a ≤ 2

√
log(T )

Nt−1(a)
⇒ Nt−1(a) ≥ 4 log(T )

∆2
a

So setting u = d4 log(T )/∆(a)2e we can bound

ENT (a) =

T∑
t=1

E1{at = a} ≤
T∑
t=1

E1{at = a ∧Nt−1(a) ≤ u}+ E1{at = a ∧Nt−1(a) > u}

≤ u+

T∑
t=1

P[µ̂t−1(a)− σt−1(a) > µ(a)] + P[µ̂t−1(a?) + σt−1(a?) ≤ µ(a?)]

Now we just need to upper bound the probability terms. They are identical so let’s just look at the first one

P[µ̂t−1(a)− σt−1(a) > µ(a)] ≤ exp
(
−2Nt−1(a)σ2

t−1(a)
)
≤ exp(−2 log(t)) ≤ 1

t2

So we get

ENT (a) ≤ u+ 2

T∑
t=1

1

t2
≤ u+ 4

The last thing is to use a useful decomposition of the pseudoregret

R̄eg(T ) = Tµ(a?)−
t∑
t=1

Eµ(at) = Tµ(a?)−
∑
a

ENT (a)µ(a) =
∑
a

ENT (a)∆(a) ≤
∑
a

4 log(T )

∆a
+ 4∆a.

This proves the theorem.
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