
Lecture 15: Online Learning and Convex Optimization

Akshay Krishnamurthy
akshay@cs.umass.edu

November 1, 2017

1 Recap

Last time we introduced the online learning model and studied the realizable case. We showed how the halving
algorithm can achieve logarithmic mistake bound and introduced the Littlestone dimension which characterizes
online learnability in the mistake bound model. Finally we introduced the notion of regret in our attempt to relax
the realizability assumption.

2 Regret and Weighted Majority

Recall the new online learning formulation. We are given a set of hypotheses H : X → [K]. Then, for t = 1, . . . , T

1. We receive xt ∈ X

2. We choose action pt ∈ ∆([K])

3. We receive loss 〈pt, `t〉 and we observe `t.

Our goal is to minimize the regret

Regret(T ) =

T∑
t=1

〈pt, `t〉 −min
h∈H

T∑
t=1

`t(h(xt))

This maps to our previous setting with K = 2, `t(y) = 1{y 6= yt}, but clearly generalizes to multi-class prediction
and to other loss functions. Note that it is only more general (and we’ll use this formulation later) to ignore the
examples altogether and have pt ∈ ∆(H) and `t ∈ [0, 1]|H|. This latter formulation is called the Experts setting.

Weighted Majority/Hedge. The weighted majority algorithm achieves sublinear regret in this setting. We
consider the finite hypothesis class case, |H| = N . We start with w(1) = (1, . . . , 1) ∈ RN and with η =

√
2 log(N)/T ,

which requires knowing the number of rounds T (although this can be relaxed). Then for t = 1, . . . , T .

1. set w̃(t) = w(t)/Zt where Zt =
∑
h w

(t)(h) is the normalization.

2. set pt(h) = w̃(t)(h) and predict with pt.

3. observe loss vector `t ∈ [0, 1]d, suffer 〈pt, `t〉.

4. update w(t+1)(h) = w(t)(h) exp(−η`t(h(xt))).

Intuitively whenever a hypothesis makes a mistake we shrink it’s weight dramatically so that the distribution w̃(t)

concentrates on the hypotheses that are doing well. This enables us to be competitive with these hypothesis, which
leads to a good regret bound.

Before turning to the regret bound, observe that the algorithm has the same flavor of update as AdaBoost.
Namely if we map the hypotheses here to the examples in the Boosting setting, then the algorithms are actually

1



identical. In AdaBoost, we maintain a distribution over the examples and we increase the weight if the loss is high
and we decrease it if the loss is low. Here we maintain a distribution over the hypotheses but do the same thing. In
homework 3 we saw the game-theoretic interpretation of AdaBoost, where we are one of the players in the game.
In Weighted Majority, we are just the other player, but running the same algorithm!

Theorem 1 (Weighted Majority regret bound). For T > 2 log(N) the Weighted Majority algorithm has regret

Regret(T ) =

T∑
t=1

〈pt, `t〉 −min
h∈H

T∑
t=1

`t(h(xt)) ≤
√

2T log(N)

Proof. The proof is actually quite similar to the Adaboost proof.

log
Zt+1

Zt
= log

∑
h

w(t)(h) exp(−η`t(h(xt)))

Zt
= log

∑
h

w̃(t)(h) exp(−η`t(h(xt))) = log
∑
i

pt(i) exp(−η`t(i))

≤ log

(
1− η〈pt, `t〉+

η2

2
〈pt, `2t 〉

)
≤ −η〈pt, `t〉+

η2

2
〈pt, `2t 〉 ≤ −η〈pt, `t〉+ η2/2.

Here we used two tricks. First observe that η`t(i) ∈ [0, 1] and use the second order taylor expansion of e−x ≤
1−x+x2/2. Then, use that log(1−x) ≤ −x for x ∈ (0, 1), which it is here. Of course we know that log(Z1) = log(N)
and so we get a telescoping sum

logZT+1 =

T∑
t=1

log
Zt+1

Zt
+ log(Z1) ≤ −η

∑
t

〈pt, `t〉+
Tη2

2
+ log(N)

The last step is to lower bound log(ZT+1). For any h ∈ H

logZT+1 = log
∑
h

exp(−η
∑
t

`t(h(xt))) ≥ −η
∑
t

`t(h(xt)).

Combining we get

η

(
T∑
t=1

〈pt, `t〉 −min
h

∑
t

`t(h(xt))

)
≤ log(N) +

Tη2

2

Now diving by η and using our choice proves the theorem.

Corollary 2. There exists a randomized prediction algorithm for online classification that enjoys a regret bound of
(where qt ∈ [0, 1] is the probability of predicting label 1)

∀h ∈ H
T∑
t=1

|qt − yt| −
T∑
t=1

|h(xt)− yt| ≤
√

2T log(|H|)

Proof. We just have to translate from the absolute loss which is easy since we are doing binary classification. Let
the loss vector have coordinates `t(i) = 1{yt 6= i} then clearly |h(xt) − yt| = `t(h(xt)) but it is also true that
〈pt, `t〉 = |qt − yt| where pt(1) = qt, pt(0) = 1− qt. Thus after translation we may apply Multiplicative weights.

Theorem 3. There is an algorithm for binary classification that enjoys

Regret(T ) ≤
√

2TLdim(H) log(eT )

The idea here is to run multiplicative weights on a subset of the now infinite hypothesis space. Instead of
using the individual hypotheses as the experts, each expert will itself be a learning algorithm, that is kind of like
the Halving algorithm but for Littlestone classes. Each one of these algorithms is initialized with a sequence of
L ≤ Ldim(H) time indices, which correspond to the rounds where it will disagree from its majority. Otherwise it
will predict like the majority. It can be shown that for every sequence x1, . . . , xT and every hypothesis h, there
exists one of these base learners that behaves exactly like h, via the mistake bound for the halving algorithm. Then
when weighted majority is run on top we achieve the regret bound.

2



3 Online Convex Optimization

We start with introducing a more general setting, that of online convex optimization. Here the learner has a decision
set S and at each round chooses wt ∈ S, while the adversary chooses a convex loss function ft : S → R. The learner
suffers loss ft(wt) and would like to minimize the regret

Regret(T ) =
∑
t

ft(wt)−min
u

∑
t

ft(u).

Example 1 (Linear regression). Let S = Rd and let ft(w) = (〈w, xt〉− yt)2 which is clearly convex. Then using an
algorithm for OCO we can solve online linear regression. At each round OCO gives us a vector wt which we use to
make the prediction 〈wt, xt〉.

Example 2 (Experts). Let S = ∆(d) and ft(w) = 〈w, `t〉 be a linear function, which is also convex. Then we can
use an OCO algorithm for the experts problems. Here for convexity it is important that we can play a distribution
over the experts, which as we saw last time was important for achieving non-trivial regret in the experts setting.

Follow-the-leader The most obvious algorithm for OCO is follow the leader. At each round we play

wt ∈ argmin
w∈S

t−1∑
i=1

fi(w),

which is the best choice based on all the past data. This is also like using the empirical risk minimizer at round t
to predict. We will first analyze Follow-the-leader.

Lemma 4 (Be-the-leader Lemma). For any u ∈ S

Regret(u) =

T∑
t=1

ft(wt)− ft(u) ≤
T∑
t=1

ft(wt)− ft(wt+1)

Note that wt+1 is the leader after seeing the tth loss function, so it is not something we can actually use.
However, the lemma says that the regret is small whenever the predictions are stable, in the sense that seeing ft
does not radically change your prediction on ft. Another way people say this is that Be-the-leader has negative
regret, but unfortunately it is not something we can implement.

Proof. Since ft(wt) is on both sides, instead we show that be-the-leader has negative regret

T∑
t=1

ft(wt+1)− ft(u) ≤ 0

We prove this by induction. Clearly at round 1, by definition of w2 we know that for all u, f1(w2) ≤ f1(u). Now
at time τ > 1, for any u

τ∑
t=1

ft(wt+1) =

τ−1∑
t=1

ft(wt+1) + fτ (wτ+1) ≤
τ∑
t=1

ft(wτ+1) ≤
τ∑
t=1

ft(u).

The first inequality here is the induction hypothesis, that Be-The-Leader up to round τ − 1 is better than any fixed
hypothesis, including wτ+1. The second inequality uses that wτ+1 is the ERM.

Example 3 (FTL with quadratic loss). If the losses are of the form ft(w) = 1
2‖w − zt‖

2
2 and ‖zt‖ ≤ L for all t

then FTL, with S = Rd has a closed form solution wt ← 1
t−1

∑t−1
i=1 zi. Moreover the stability is bounded

ft(wt)− ft(wt+1) =
1

2
‖wt − zt‖22 −

1

2
‖(1− 1/t)wt + 1/tzt − zt‖22

=
1

2
(1− (1− 1/t)2)‖wt − zt‖22 ≤ 4(1/t)L2.

Hence the regret is O(L2 log(T )).

3



Example 4 (FTL with linear loss). Unfortunately for linear losses the stability term cannot be controlled. Consider
S = [−1, 1] and the loss function ft(w) = wzt where the sequence of zts is (−0.1, 1,−1, 1,−1, . . .). The wts that
FTL predicts are (0,−1, 1,−1, 1,−1, 1, . . .) which have widly oscillating behavior and are clearly unstable.

4 Follow-the-Regularized Leader

Above we saw that FTL works well when the losses or the algorithm is stable. The idea with FTRL is to force the
algorithm to be stable by using regularization. Let R : S → R be some function, which we will call a regularizer
from now on. Then FTRL plays

wt ∈ argmin
w∈S

R(w) +

t−1∑
i=1

fi(w)

FTL is the same algorithm where R(w) = 0. The point now is that R is forcing stability of the algorithm. Before
turning to the general case let us just study the quadratic regularizer R(w) = 1

2η‖w‖
2
2 with linear loss functions:

wt ∈ argmin
w∈S

1

2η
‖w‖22 +

t−1∑
i=1

w`i = argmin
w∈S

1

2η
‖w‖22 − 〈w, θt〉

where θt = −
∑t−1
i=1 `i is the sum of the loss functions so far. When S = Rd FTRL has a closed form

wt = ηθt

which we can equivalently write as wt = wt−1 − η`t−1 which is the Online Gradient Descent algorithm.
If S 6= Rd then we are doing a lazy projection step where

wt = ΠS(ηθt),

This is called a lazy projection since we don’t project the iterates θt but only project when we need to make a
prediction. This is also called Nesterov’s Dual Averaging algorithm.

4


	Recap
	Regret and Weighted Majority
	Online Convex Optimization
	Follow-the-Regularized Leader

