
Homework 3

Akshay Krishnamurthy
Due: Tuesday 10/17

October 11, 2017

Instructions: Turn in your homework in class on Tuesday 10/17/2017

1. Model Selection. This problem builds on the R(h?) bound we proved in Homework 1. The goal here is
to do this simultaneously while doing structural risk minimization. Specifically, given a family of hypothesis
classes H1 ⊂ H2 . . . ,⊂ HL, of sizes N1 ≤ N2 ≤ . . . ≤ NL <∞, a loss function bounded on [0, 1] and a sample
of size n, design an algorithm that guarantees

R(ĥ) ≤ min
i∈[L]

min
h?∈Hi

{
R(h?) + c1

√
R(h?) log(LNi/δ)

n
+ c2

log(LNi/δ)

n

}
for n ≥ 2. Your algorithm may use ERM (so need not be efficient) and your constants may vary.

You may find it useful to use the following empirical bernstein inequality.

Theorem 1. Let X1, . . . , Xn be i.i.d. random variables from a distribution P supported on [0, 1] and define
the sample variance Vn = 1

n(n−1)
∑

1≤i<j≤n(Xi −Xj)
2. Then for any δ ∈ (0, 1) with probability at least 1− δ

EX − 1

n

n∑
i=1

Xi ≤
√

2Vn log(2/δ)

n
+

7 log(2/δ)

3(n− 1)
.

2. Boosting. Boosting can be understood from many perspectives, and here we will explore a game-theoretic
perspective. As some background, a two-player zero-sum game is specified by matrix M and the two players
are denoted the row player and the column player. The game is played by the row player choosing a row i and
the column player choosing a column j, and the loss for the row player is M(i, j), which is also the reward
for the column player. Instead of choosing individual rows/columns, we will allow both players to choose
distributions over rows/columns, so if row player choose P and column player choose Q the loss/reward is∑

i

∑
j

P (i)M(i, j)Q(j) ,M(P,Q)

If we are acting as the row player, we’d like to choose a distribution P that achieves low loss, no matter what
the column player does, in other words, we’d like to choose P that minimizes maxQM(P,Q). On the other
hand, if we were the column player, we’d like to choose Q that maximizes minP M(P,Q). Von Neumann’s
celebrated minimax theorem states that in fact both of these values are the same, or in some sense it doesn’t
matter which player goes first in the game:

max
Q

min
P

M(P,Q) = min
P

max
Q

M(P,Q) , V

V is referred to as the value of the game. In this problem, we’ll use boosting to compute the optimal strategy
in a particular game.

Let H be finite, and fix a target concept c : X → {+1,−1} (not necessarily in H) and sample S =
{(Xi, c(Xi)}ni=1 of size n. We will form a matrix M ∈ {0, 1}n×|H| where M(i, h) = 1{h(Xi) = c(Xi)}.
Here the row player specifies distributions over examples, just as in boosting, and the column player chooses
distributions over hypotheses.
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(a) Assume that the empirical γ-weak learning assumption holds so that for every distribution P over
examples, there exists a hypothesis h ∈ H such that Px∼P [h(x) 6= c(x)] ≤ 1/2− γ. What does this mean
about the value of the game?

(b) Let Q? be the distribution achieving the value of this game, i.e. minP M(P,Q?) = V . Since Q? is a
distribution over hypotheses, what can you say about the empirical error of Q??

(c) Boosting can be viewed as an iterative algorithm to compute Q? using a weak learner. At every round
we choose Pt, a distribution over samples, and then compute

Qt = max
Q

M(Pt, Q)

which is actually a single hypothesis ht due to linearity. Then we update Pt to be

Pt+1(x) =
Pt(x)

Zt
× (exp(−η1{ht(x) = c(x)}))

After T rounds, we output Q̄ = 1
T

∑T
t=1Qt which is a distribution over hypothesis and the final predictor

is H(x) = sign(Q̄(x)).

Prove that once T = Ω(log(n)/γ2) rounds and for appropriate choice of η, this variant of boosting
guarantees

∀x ∈ X. 1
T

T∑
i=1

M(x, ht) > 1/2,

which implies that H(x) has zero training error.

Hint: You may find it helpful to look at the Taylor expansion of exp(−x).

(d) Informally, what does this mean about Q̄, what is it converging to as T →∞?

3. Margins and Geometry. In this problem we briefly investigate the different notions of margin used in
the boosting analysis and the SVM analysis. The translation between boosting and SVM is as follows.
For boosting, fix the dataset and let H be finite. Let w ∈ R|H| be a distribution over hypothesis and
let Φ(x) = (h1(x), . . . , h|H|(x)) where the hypotheses are numbered arbitrarily. In boosting, we defined the

margin for (x, y) as y〈w,Φ(x)〉, which is exactly how we defined the margin for SVM but where Φ(x) = x ∈ Rd

and w ∈ Rd with ‖w‖2 = 1 (for hard-margin SVM). The primary difference here is that in Boosting we have
that w is a distribution (so ‖w‖1 = 1) and ‖Φ(x)‖∞ = 1 while in SVM we have ‖w‖2 = 1 and ‖Φ(x)‖2 ≤ 1,
so that the geometries are different. Here we will investigate the differences. Let |H| = d so both problems
are in the same dimension.

(a) Prove that the same margin-type generalization bound applies for SVM: For any θ > 0 and for all weight
vectors w ∈ Rd with ‖w‖2 = 1 and where X = {x | ‖x‖2 ≤ 1}, with probability at least 1− δ,

PD[y〈w, x〉 ≤ 0] ≤ PS [y〈w, x〉 ≤ θ] +
1

θ
√
n

+ 4

√
log(4/δ)

n
.

Hint: for a simpler proof, use the Rademacher complexity of the linear class with the ramp function
ϕ(u) = 1{u ≤ 0}+ (1− u/θ)1{0 ≤ u ≤ θ}.

(b) Suppose that in the boosting case Φ(x) ∈ {−1,+1}d and in the SVM case Φ(x) ∈ {−1/
√
d,+1/

√
d}d

so that the normalization works out. Let k be an odd number and suppose that w is the majority vote
over k of the hypotheses/dimensions. What are the worst-case Boosting and SVM margins in this case?
When k is small, why is this favorable for boosting?

(c) Suppose instead that Φ(x) are s-sparse binary vectors (with s odd and entries ±1 in the boosting case and
entries ±1/

√
s in the SVM case). For boosting, you can think of this as some most classifiers abstaining

from making a prediction on each example. Let w be a majority over all hypotheses dimensions. What
are the worst case boosting and SVM margins here? When s is small why is this favorable for SVM?
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(d) Looking at the generalization bounds, in words explain how the problem geometry can dramatically
impact performance and why the choice between boosting and SVM can problem-dependent.

4. SVM. In class we saw the hard margin SVM formulation

minimize
w

1

2
‖w‖22 s.t. ∀i ∈ [n], yi〈w, xi〉 ≥ 1.

We also saw the soft margin SVM optimization

minimize
w,ξ

1

2
‖w‖22 + C

n∑
i=1

ξi s.t. ∀i ∈ [n], yi〈w, xi〉 ≥ 1− ξi, and ξi ≥ 0.

Use Lagrange duality to show that this problem can be expressed purely in terms of inner products between
the points, so that we can apply the Kernel trick.

maximize
α∈Rn

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyj〈xi, xj〉 s.t. ∀i ∈ [n], 0 ≤ αi ≤ C.
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