Instructions: Turn in your homework in class on Tuesday 10/3/2017

1. VC classes.
 (a) What is the VC-dimension of origin-centered radial classifiers (i.e. \(h_b(x) = 1\{\|x\|^2 \le b\} \)) in 2-dimensions? Remember to prove that the VC-dimension is \(d \), you must show both the lower and the upper bound.
 (b) What if we also allow for the center of the classifier to move, i.e. \(h_{x_0,b}(x) = 1\{\|x - x_0\|^2 \le b\} \)?
 (c) What is the VC-dimension of convex polyhedral sets in 2 dimensions? Here the function class is \(\mathcal{H} = \{ h_{A,b}(x) = 1\{Ax \le b\} \} \). This class can be equivalently represented by choosing a set of points \(y_1, \ldots, y_T \) and letting \(h_{y_1:T}(x) = 1\{x \in \text{conv}\{y_1, \ldots, y_T\}\} \), which may be easier to reason about.

2. Rademacher calculus. In this problem we will study how the Rademacher complexity of a simple two-layer neural network. Let \(F \subset (\mathbb{R}^d \to \mathbb{R}) \) be a class of sigmoid functions \(f_w(x) = \sigma(\langle w, x \rangle) \) where \(\sigma(a) = \frac{e^a}{1+e^a} \) with the norm constraint \(\|w\|_2 \le 1 \). Fix the “hidden layer” dimension \(d_1 \) and let \(\mathcal{H} \subset (\mathbb{R}^{d_1} \to \mathbb{R}) \) be the analogous sigmoid functions, but with the restriction that \(\sum_{i=1}^{d_1} w_i = 1 \) and \(w_i \ge 0 \) for all \(i \). What is the rademacher complexity of the class of functions \(h(f_1(x), \ldots, f_{d_1}(x)) \) where \(h \in \mathcal{H}, f_1, \ldots, f_{d_1} \in F \)?
 Bonus (for fun) Prove that the same bound holds when we just have the restriction that the weight vectors in \(\mathcal{H} \) have \(\|w\|_1 \le 1 \).

3. Goodness-of-Fit Testing. A number of scientific applications involve collecting some data and testing if the data are distributed according to some pre-specified distribution (the hypothesis). A specific formalism of this is goodness-of-fit testing problem, and in this problem we will study a one dimensional problem where we work with cumulative distribution functions. We are given data \(X_1, \ldots, X_n \) iid from a distribution with CDF \(F \) and we want to test:

 \[
 \text{null } H_0 : F = G \quad \text{alternate } H_1 : F \in \Theta_{c} = \{ G' | \|G' - G\|_{\infty} \ge c \}
 \]

 A test statistic \(T : \mathbb{R}^n \to \{0, 1\} \) looks at the data and makes a prediction about whether the null or the alternate is true. We are typically interested in

 \[
 \text{Type I error } \mathbb{P}_{X_1^n \sim G}[T(X_1^n) = 1] \quad \text{Type II error } \sup_{G' \in \Theta_{c}} \mathbb{P}_{X_1^n \sim G'}[T(X_1^n) = 0]
 \]

 In words the Type I errors are when the data really does come from \(G \), but you fail to detect it and the Type II errors are when the data does not come from \(G \) but you think that it does.

 The KS test is a popular test statistic for one-dimensional data. The procedure takes the \(n \) samples \(X_1, \ldots, X_n \sim F \) and forms the empirical cumulative distribution function \(F_n(t) = \frac{1}{n} \sum_{i=1}^{n} 1\{X_i \le t\} \). Then we define \(T(X_1^n) = 1\{|F_n - G|_{\infty} > \tau\} \) for some parameter \(\tau \).

 We will give a crude analysis of this procedure.
(a) To analyze the procedure, first establish uniform convergence. Prove that with probability at least \(1 - \delta\)

\[
\sup_t |F_n(t) - F(t)| \leq \sqrt{\frac{2 \log n}{n}} + \sqrt{\frac{\log(1/\delta)}{2n}}.
\]

Note that a sharper inequality known as the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality is possible, essentially removing the \(\log(n)\) term. This inequality is easier to prove with the tools we currently have.

(b) (Type I Error) How should we set \(\tau\) to ensure that the Type I error is at most \(\alpha\)?

(c) (Type II Error) For this choice of \(\alpha\), how small can \(\epsilon\) be for the Type II error to be at most \(\beta\)?

4. **Histogram Density Estimation.** Let \(X_1, \ldots, X_n\) be an iid sample from a distribution \(P\) with density \(p\) supported on \([0, 1]^d\). In a histogram estimator, we divide \([0, 1]^d\) into hypercubes \(B_1, \ldots, B_N\) of side length \(h\) (the bandwidth) and estimate \(p\) with

\[
\hat{p}_h(x) = \sum_{j=1}^{N} \frac{\hat{\pi}_j}{h^d} 1\{x \in B_j\} \quad \text{where} \quad \hat{\pi}_j = \frac{1}{n} \sum_{i=1}^{n} 1\{X_i \in B_j\}.
\]

Assume that \(p \in \mathcal{P} = \{p \mid \|p(x) - p(y)\| \leq L \|x - y\|\}\) upper bound the MSE at a single point \(x\), i.e.

\[\mathbb{E}_{X^n}(\hat{p}_h(x) - p(x))^2\] as a function of \(h\). What is the optimal choice of \(h\) (as a function of \(n, d, L\)) to minimize the bound and what is the resulting MSE?