
Homework 2

Akshay Krishnamurthy
Due: Tuesday 10/3

September 19, 2017

Instructions: Turn in your homework in class on Tuesday 10/3/2017

1. VC classes.

(a) What is the VC-dimension of origin-centered radial classifiers (i.e. hb(x) = 1{‖x‖2 ≤ b‖}) in 2-
dimensions? Remember to prove that the VC-dimension is d, you must show both the lower and the
upper bound.

(b) What if we also allow for the center of the classifier to move, i.e. hx0,b(x) = 1{‖x− x0‖2 ≤ b}?
(c) What is the VC-dimension of convex polyhedral sets in 2 dimensions? Here the function class is H =
{hA,b(x) = 1{Ax ≤ b}}. This class can be equivalently represented by choosing a set of points y1, . . . , yT
and letting hy1:T (x) = 1{x ∈ conv({y1, . . . , yT })}, which may be easier to reason about.

2. Rademacher calculus. In this problem we will study how the Rademacher complexity of a simple two-layer
neural network. Let F ⊂ (Rd → R) be a class of sigmoid functions fw(x) = σ(〈w, x〉) where σ(a) = ea

1+ea with

the norm constraint ‖w‖2 ≤ 1. Fix the “hidden layer” dimension d1 and let H ⊂ (Rd1 → R) be the analogous

sigmoid functions, but with the restriction that
∑d1
i=1 wi = 1 and wi ≥ 0 for all i. What is the rademacher

complexity of the class of functions h(f1(x), . . . , fd1(x)) where h ∈ H, f1, . . . , fd1 ∈ F?

Bonus (for fun) Prove that the same bound holds when we just have the restriction that the weight vectors
in H have ‖w‖1 ≤ 1.

3. Goodness-of-Fit Testing. A number of scientific applications involve collecting some data and testing if
the data are distributed according to some pre-specified distribution (the hypothesis). A specific formalism
of this is goodness-of-fit testing problem, and in this problem we will study a one dimensional problem where
we work with cumulative distribution functions. We are given data X1, . . . , Xn iid from a distribution with
CDF F and we want to test:

null H0 : F = G alternate H1 : F ∈ Θε = {G′ | ‖G′ −G‖∞ ≥ ε}

A test statistic T : Rn → {0, 1} looks at the data and makes a prediction about whether the null or the
alternate is true. We are typically interested in

Type I error PXn1 ∼G[T (Xn
1 ) = 1] Type II error sup

G′∈Θε

PXn1 ∼G′ [T (Xn
1 ) = 0]

In words the Type I errors are when the data really does come from G, but you fail to detect it and the Type
II errors are when the data does not come from G but you think that it does.

The KS test is a popular test statistic for one-dimensional data. The procedure takes the n samples
X1, . . . , Xn ∼ F and forms the empirical cumulative distribution function Fn(t) = 1

n

∑n
i=1 1{Xi ≤ t}. Then

we define T (Xn
1 ) = 1{‖Fn −G‖∞ > τ} for some parameter τ .

We will give a crude analysis of this procedure
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(a) To analyze the procedure, first establish uniform convergence. Prove that with probability at least 1− δ

sup
t
|Fn(t)− F (t)| ≤

√
2 log n

n
+

√
log(1/δ)

2n
.

Note that a sharper inequality known as the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality is possible,
essentially removing the log(n) term. This inequality is easier to prove with the tools we currently have.

(b) (Type I Error) How should we set τ to ensure that the Type I error is at most α?

(c) (Type II Error) For this choice of α, how small can ε be for the Type II error to be at most β?

4. Histogram Density Estimation. Let X1, . . . , Xn be an iid sample from a distribution P with density p
supported on [0, 1]d. In a histogram estimator, we divide [0, 1]d into hypercubes B1, . . . , BN of side length h
(the bandwidth) and estimate p with

p̂h(x) =

N∑
j=1

π̂j
hd

1{x ∈ Bj} whereπ̂j =
1

n

n∑
i=1

1{Xi ∈ Bj}.

Assume that p ∈ P = {p | ‖p(x) − p(y)| ≤ L‖x − y‖} upper bound the MSE at a single point x, i.e.
EXn1 (p̂h(x)− p(x))2 as a function of h. What is the optimal choice of h (as a function of n, d, L) to minimize
the bound and what is the resulting MSE?
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