Homework 2

Akshay Krishnamurthy
Due: Tuesday 10/3

September 19, 2017

Instructions: Turn in your homework in class on Tuesday 10/3/2017

1. VC classes.

(a) What is the VC-dimension of origin-centered radial classifiers (i.e. hy(z) = 1{||z||> < b[|}) in 2-
dimensions? Remember to prove that the VC-dimension is d, you must show both the lower and the
upper bound.

(b) What if we also allow for the center of the classifier to move, i.e. hy, p(z) = 1{||z — zo||* < b}?

(c) What is the VC-dimension of convex polyhedral sets in 2 dimensions? Here the function class is H =
{hap(z) =1{Ax < b}}. This class can be equivalently represented by choosing a set of points y1,...,yr
and letting hy, . () = 1{z € conv({y1,...,yr})}, which may be easier to reason about.

2. Rademacher calculus. In this problem we will study how the Rademacher complexity of a simple two-layer
neural network. Let F C (R? — R) be a class of sigmoid functions f,,(z) = o((w, x)) where o(a) = % with
the norm constraint ||w||2 < 1. Fix the “hidden layer” dimension d; and let # C (R% — R) be the analogous
sigmoid functions, but with the restriction that Z?;l w; = 1 and w; > 0 for all i. What is the rademacher

complexity of the class of functions h(f1(z),..., fa,(z)) where h € H, f1,..., fa, € F?

Bonus (for fun) Prove that the same bound holds when we just have the restriction that the weight vectors
in H have ||w|; < 1.

3. Goodness-of-Fit Testing. A number of scientific applications involve collecting some data and testing if
the data are distributed according to some pre-specified distribution (the hypothesis). A specific formalism
of this is goodness-of-fit testing problem, and in this problem we will study a one dimensional problem where
we work with cumulative distribution functions. We are given data Xi,..., X, iid from a distribution with
CDF F and we want to test:

null Hy : F =G alternate Hy : F € O, = {G' | |G’ — G||lo0 > €}

A test statistic T : R™ — {0,1} looks at the data and makes a prediction about whether the null or the
alternate is true. We are typically interested in

Type I error Pxn q[T(X7') = 1] Type Il error  sup Pxr e [T(X7) = 0]
G’'eO,

In words the Type I errors are when the data really does come from G, but you fail to detect it and the Type
IT errors are when the data does not come from G but you think that it does.

The KS test is a popular test statistic for one-dimensional data. The procedure takes the n samples
Xi,...,X, ~ F and forms the empirical cumulative distribution function F,(t) = 23"  1{X; < t}. Then
we define T'(X7") = 1{||F, — G||oc > 7} for some parameter 7.

We will give a crude analysis of this procedure



(a) To analyze the procedure, first establish uniform convergence. Prove that with probability at least 1 —§

sup| Fu(t) — F(1)] < \/QIOg” N \/log(l/é).

n 2n

Note that a sharper inequality known as the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality is possible,
essentially removing the log(n) term. This inequality is easier to prove with the tools we currently have.

(b) (Type I Error) How should we set 7 to ensure that the Type I error is at most «?
(¢) (Type II Error) For this choice of o, how small can € be for the Type II error to be at most 37
4. Histogram Density Estimation. Let Xi,..., X, be an iid sample from a distribution P with density p

supported on [0,1]¢. In a histogram estimator, we divide [0,1]¢ into hypercubes By, ..., By of side length h
(the bandwidth) and estimate p with

N n
: 1
() = %1@ € B} wheret; = ~ Y 1{X; € B;}.
j=1 i=1

Assume that p € P = {p | |[p(x) — p(y)| < L|jz — y||} upper bound the MSE at a single point z, i.e.
Exr (pn(z) — p(x))? as a function of h. What is the optimal choice of h (as a function of n,d, L) to minimize
the bound and what is the resulting MSE?



