Homework 1

Akshay Krishnamurthy
Due: Tuesday 9/19

September 12, 2017

Instructions: Turn in your homework in class on Tuesday 9/19/2017

1. Linear Regression. In class, we saw a risk bound for linear regression. Here we will study linear regression from another perspective. We consider the fixed design case, where the feature vectors $x_1, \ldots, x_n \in \mathbb{R}^d$ are non-random and assume that $y_i = \langle \beta^*, x_i \rangle + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ iid, but β^* is unknown. Note that the only randomness is in the error variables $\epsilon_1, \ldots, \epsilon_n$. Let $\Sigma = \frac{1}{n} \sum x_i x_i^T$ denote the second moment matrix, and assume that that Σ is non-singular with minimum eigenvalue $\lambda_{\min}(\Sigma) \geq \kappa$. Let $\hat{\beta}$ be the empirical risk minimizer with the square loss (e.g., the ordinary least squares estimator $\hat{\beta} = (n\Sigma)^{-1} \sum_{i=1}^n x_i y_i$). Show that

$$E\|\hat{\beta} - \beta\|_2^2 \leq \frac{d\sigma^2}{\kappa n}.$$

Note that while we didn’t show it here, this basic result also applies for the random design setting, where instead we use $\kappa = \lambda_{\min}(\mathbb{E} x_i x_i^T)$, and it also holds with high probability. However this extensions require more powerful concentration inequalities than we’ll see in this class.

2. PAC Learning. In this problem we will design and analyze an algorithm for PAC-learning the concept class of decision lists. The domain is $\{0, 1\}^d$, the boolean hypercube. The hypotheses in consideration are known as decision lists, which are a sequence of if then else rules, which take the form “If ℓ_1 then b_1, else if ℓ_2 then b_2 else if ℓ_3 then, \ldots else b_k” where ℓ’s are boolean literals (either x_j or \bar{x}_j for some $j \in [d]$), and $b_i \in \{-1, 1\}$.

(a) Design an algorithm for computing an ERM decision list in the PAC model.

(b) Provide a bound on $\log |\mathcal{H}|$, where \mathcal{H} is the hypotheses induced by decision lists. What upper bound on the sample complexity of PAC-learning decision lists does this imply?

3. Robust mean estimation. Let X_1, \ldots, X_n be iid random variables from a distribution P with unknown mean μ and variance $\sigma^2 < \infty$. We are interested in estimating the mean μ from the data. This is called robust mean estimation since we make very minimal assumptions on P, which could be very heavy tailed.

(a) Prove the Efron-Stein inequality. For any function $f : \mathbb{R}^n \to \mathbb{R}$ and X_1, \ldots, X_n iid,

$$\text{Var}(f(X_1, \ldots, X_n)) \leq \sum_{i=1}^n \text{Var}(f(X_1, \ldots, X_n)|X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n).$$

(b) Consider the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$. Show that, with probability at least $1 - \delta$,

$$|\bar{X} - \mu| \leq \sqrt{\frac{\sigma^2}{n\delta}}.$$

(c) A better estimator is the median-of-means estimator defined as follows. Choose a number k (assume for simplicity that $n = mk$ and that k is even) and partition the data into k groups. In each group compute the sample means $\mu_j = \frac{1}{m} \sum_{i=m(j-1)+1}^{mj} X_i$ for $j \in \{1, \ldots, k\}$. Then take the median of these k values, i.e. choose any number $\hat{\mu}$ that is larger than exactly $k/2$ of these sample means (mathematically,
\(|\{\mu_j : \mu_j \leq \hat{\mu}\}| = k/2\). Show that, for appropriate settings of \(k\) and consequently \(m\), with probability at least \(1 - \delta\)

\[
|\hat{\mu} - \mu| \leq \sqrt{\frac{64\sigma^2 \log(1/\delta)}{n}},
\]

Provided \(n\) is large enough. Other constants here are also fine.

4. **Uniform Convergence.** In this problem we will prove a stronger generalization error bound for the agnostic binary classification, that uses more information about the distribution. Let \(P\) be a distribution over \((X, Y)\) pairs where \(X \in \mathcal{X}\) and \(Y \in \{+1, -1\}\) and let \(\mathcal{H} \subset \mathcal{X} \rightarrow \{+1, -1\}\) be a finite hypothesis class and let \(\ell\) denote the zero-one loss \(\ell(\hat{y}, y) = 1\{\hat{y} \neq y\}\). As usual let \(R(h) = \mathbb{E}(\ell(h(X), Y))\) denote the risk, and let \(h^* = \min_{h \in \mathcal{H}} R(h)\). Given \(n\) samples let \(\hat{h}_n\) denote the empirical risk minimizer. The goal here is to prove a sample complexity bound of the form:

\[
R(\hat{h}_n) - R(h^*) \leq c_1 \sqrt{\frac{R(h^*) \log(|\mathcal{H}|/\delta)}{n}} + c_2 \frac{\log(|\mathcal{H}|/\delta)}{n}.
\]

for constants \(c_1, c_2\). This can be a much better bound than the usual excess risk bound we saw in class, if \(R(h^*)\) is small. In particular, if \(R(h^*) = 0\) as in the realizable setting, this bound recovers the \(1/n\)-rate.

(a) To prove the result, we will use Bernstein’s inequality, which is a sharper concentration result.

Theorem 1 (Bernstein’s inequality). Let \(X_1, \ldots, X_n\) be iid real-valued random variables with mean zero, and such that \(|X_i| \leq M\) for all \(i\). Then for all \(t > 0\)

\[
\mathbb{P}\left[\sum_{i=1}^{n} X_i \geq t\right] \leq \exp\left(-\frac{t^2/2}{\sum_{i=1}^{n} \mathbb{E}(X_i^2) + Mt/3}\right).
\]

We will not prove this here. Use the inequality to show that with probability at least \(1 - \delta\)

\[
|\bar{X}| \leq \sqrt{\frac{2\mathbb{E}X_i^2 \log(2/\delta)}{n}} + \frac{2M \log(2/\delta)}{3n},
\]

where \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i\) and \(X_i\)s satisfy the conditions of Bernstein’s inequality.

(b) Use Eq. 2 and the union bound to show Eq. 1.