
Homework 1

Akshay Krishnamurthy
Due: Tuesday 9/19

September 12, 2017

Instructions: Turn in your homework in class on Tuesday 9/19/2017

1. Linear Regression. In class, we saw a risk bound for linear regression. Here we will study linear regression
from another perspective. We consider the fixed design case, where the feature vectors x1, . . . , xn ∈ Rd are
non-random and assume that yi = 〈β?, xi〉 + εi where εi ∼ N (0, σ2) iid, but β? is unknown. Note that the
only randomness is in the error variables ε1, . . . , εn. Let Σ = 1

n

∑
xix

T
i denote the second moment matrix,

and assume that that Σ is non-singular with minimum eigenvalue λmin(Σ) ≥ κ. Let β̂ be the empirical risk

minimizer with the square loss (e.g., the ordinary least squares estimator β̂ = (nΣ)−1
∑n

i=1 xiyi). Show that

E‖β̂ − β‖22 ≤
dσ2

κn
.

Note that while we didn’t show it here, this basic result also applies for the random design setting, where
instead we use κ = λmin(ExixTi ), and it also holds with high probability. However this extensions require
more powerful concentration inequalities than we’ll see in this class.

2. PAC Learning. In this problem we will design and analyze an algorithm for PAC-learning the concept class
of decision lists. The domain is {0, 1}d, the boolean hypercube. The hypotheses in consideration are known
as decision lists, which are a sequence of if then else rules, which take the form “If `1 then b1, else if `2 then
b2 else if `3 then, . . . else bk” where `is are boolean literals (either xj or x̄j for some j ∈ [d]), and bi ∈ {−1, 1}.

(a) Design an algorithm for computing an ERM decision list in the PAC model.

(b) Provide a bound on log |H|, where H is the hypotheses induced by decision lists. What upper bound on
the sample complexity of PAC-learning decision lists does this imply?

3. Robust mean estimation. Let X1, . . . , Xn be iid random variables from a distribution P with unknown
mean µ and variance σ2 < ∞. We are interested in estimating the mean µ from the data. This is called
robust mean estimation since we make very minimal assumptions on P , which could be very heavy tailed.

(a) Prove the Efron-Stein inequality. For any function f : Rn → R and X1, . . . , Xn iid,

Var(f(X1, . . . , Xn)) ≤ E
n∑

i=1

Var(f(X1, . . . , Xn)|X1, . . . , Xi−1, Xi+1, . . . , Xn)

(b) Consider the sample mean X̄ = 1
n

∑n
i=1Xi. Show that, with probability at least 1− δ,

|X̄ − µ| ≤
√
σ2

nδ

(c) A better estimator is the median-of-means estimator defined as follows. Choose a number k (assume
for simplicity that n = mk and that k is even) and partition the data into k groups. In each group

compute the sample means µj = 1
m

∑mj
i=m(j−1)+1Xi for j ∈ {1, . . . , k}. Then take the median of these k

values, i.e. choose any number µ̂ that is larger than exactly k/2 of these sample means (mathematically,
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|{µj : µj ≤ µ̂}| = k/2). Show that, for appropriate settings of k and consequently m, with probability
at least 1− δ

|µ̂− µ| ≤
√

64σ2 log(1/δ)

n
,

Provided n is large enough. Other constants here are also fine.

4. Uniform Convergence. In this problem we will prove a stronger generalization error bound for the agnostic
binary classification, that uses more information about the distribution. Let P be a distribution over (X,Y )
pairs where X ∈ X and Y ∈ {+1,−1} and let H ⊂ X → {+1,−1} be a finite hypothesis class and let
` denote the zero-one loss `(ŷ, y) = 1{ŷ 6= y}. As usual let R(h) = E`(h(X), Y ) denote the risk, and let

h? = minh∈HR(h). Given n samples let ĥn denote the empirical risk minimizer. The goal here is to prove a
sample complexity bound of the form:

R(ĥn)−R(h?) ≤ c1

√
R(h?) log(|H|/δ)

n
+ c2

log(|H|/δ)
n

. (1)

for constants c1, c2. This can be a much better bound than the usual excess risk bound we saw in class, if
R(h?) is small. In particular, if R(h?) = 0 as in the realizable setting, this bound recovers the 1/n-rate.

(a) To prove the result, we will use Bernstein’s inequality, which is a sharper concentration result.

Theorem 1 (Bernstein’s inequality). Let X1, . . . , Xn be iid real-valued random variables with mean zero,
and such that |Xi| ≤M for all i. Then for all t > 0

P[

n∑
i=1

Xi ≥ t] ≤ exp

(
− t2/2∑n

i=1 E[X2
i ] +Mt/3

)
.

We will not prove this here. Use the inequality to show that with probability at least 1− δ

|X̄| ≤
√

2EX2
1 log(2/δ)

n
+

2M log(2/δ)

3n
. (2)

where X̄ = 1
n

∑n
i=1Xi and Xis satisfy the conditions of Bernstein’s inequality.

(b) Use Eq. (2) and the union bound to show Eq. (1).
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