CMPSCI 311: Introduction to Algorithms
Second Midterm Exam: Practice Exam

Name:

ID:

Instructions:

e Answer the questions directly on the exam pages.

e Show all your work for each question. Providing more detail including comments and expla-
nations can help with assignment of partial credit.

e [f the answer to a question is a number, unless the problem says otherwise, you may give your
answer using arithmetic operations, such as addition, multiplication, “choose” notation and
factorials (e.g., “9 x 35! +2” or “0.5 x 0.3/(0.2 x 0.5+ 0.9 x 0.1)” is fine).

e If you need extra space, use the back of a page.

e No books, notes, calculators or other electronic devices are allowed. Any cheating will result
in a grade of 0.

e If you have questions during the exam, raise your hand.

Question Value Points Earned
1 10
2 10
3 20
5 10
Total 50




Question 1. (10 points) Indicate whether each of the following statements is TRUE or
FALSE. No justification required.

1.1 (2 points):  Consider the following subset sum instance. The items have weights wy = 2, we =
5 ws = 3,wy = 7,ws = 10 and the target weight is W = 14. This instance has a subset whose
weight is exactly 14.

1.2 (2 points): In a flow network G = (V, E) with capacities ¢, if we remove the edge with
smallest capacity we always decrease the maximum flow.

1.3 (2 points):  If a flow network has a s — t flow of capacity M then it also has a t — s flow of
capacity M.

1.4 (2 points): Suppose we compute two optimal sequence alignments between two strings x,y
using cost matriz C, but one alignment uses gap penalty 61 and the other uses d5. Let My be the
pairs of matched characters in the first and My be the pairs of matched characters in the second.
True or False: If 61 < 09 then My C Ms.

1.5 (2 points):  For the subset sum, the greedy algorithm that takes the element with largest weight
subject to not exceeding capacity finds the optimal subset.



Question 2. (10 points) In this problem we’ll revisit the strategy game Russell and Jesse
played on the homework. Recall that they found a n bills of various denominations and arranged
them into a list S[1...n] where S[i] denotes the value of the ith bill. On each player’s turn, they
may take a single bill from either the front or the end of the list and then it becomes the next
player’s turn. The goal is to collect as much money as possible.

2.1 (2 points): Suppose the list of bills is S = [1,2,10,5,17,8,6,4]. If Russell goes first and both
players play optimally, how much money can Russell collect?

2.2 (3 points): They decide to change the rules so that on a player’s turn, they may take any bill.
Describe briefly what the optimal strategy is with this twist.

2.3 (5 points):  Suppose that the bills come in both positive and negative denominations. Along
with this twist, they change the rules so that on a player’s turn they may take any prefix or suffic
of the current list. Describe how you would compute the optimal strategy in this new game?



Question 3. (20 points) In this problem we will be interested in computing the number s —¢
paths in a directed graph.

3.1 (1 points):  In the above graph, what is the length of the shortest path between s and t?

3.2 (1 points):  How many distinct shortest paths between s and t are there?

3.3 (8 points): Describe an algorithm for computing the number of shortest s — t paths? You
may assume all edges have weight 1.



A set of s —t paths are edge disjoint if each edge is used in at most one path.

3.4 (2 points):  How many edge-disjoint s —t paths are there in the graph on the previous page?

3.5 (3 points): More generally, if there are k edge-disjoint paths from x to y in a graph, and
there are k edge-disjoint paths from y to z in a graph, are there k edge-disjoint paths from x — z?
Remember that the graph may have cycles.

3.6 (5 points):  Describe an algorithm for computing the number of edge disjoint s —t paths in a
graph.



Question 4. (10 points) Suppose we have a complete k-ary tree with n leaves (suppose
n = k% for some integer d). Each leaf v is associated with a weight w(v). The weight of an internal
node is defined to be the sum of the weights of all leaves that are descendants of this node. So
the weight of the root 7 is w(r) = ) ) 1ves » W(v). Design and analyze an algorithm to compute the
weight of every internal node.



