In [10]: import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import gaussian_kde
from scipy.stats import mode
%matplotlib inline

In [11]: f = open('./scores.csv').readlines()
x = []
for line in f:
 try:
 x.append(int(line))
 except Exception:
 pass

In [12]: n,s,_ = plt.hist(x,bins=20)
plt.xlabel('Score')
plt.ylabel('Number of students')
plt.title('Score histogram')

Out[12]: Text(0.5,1,'Score histogram')
In [13]: density = gaussian_kde(x)

In [14]: plt.plot(s,density(s))
 plt.xlabel('Score')
 plt.ylabel('Number of students')
 plt.title('Smoothed score distribution')

Out[14]: Text(0.5,1,'Smoothed score distribution')
In [15]: print("Mean = %0.2f\nStDev = %0.2f\nMedian = %0.2f\nMode = %0.2f" % (np.mean(x), np.std(x),np.median(x), mode(x)[0]))

Mean = 40.12
StDev = 5.52
Median = 41.00
Mode = 42.00