Announcements

- Midterm Wednesday 7-9pm ISB 135
- Homework 3 due next week
- No discussion this week, yes quiz
- Ibrahim’s office hours change: Tuesday 12-1 CS 207
- HW 1 graded (submit regrade request with issues)

Recap

- Greedy algorithms
- Schedule problems
- Shortest paths (Dijkstra’s algorithm)
- MST (Prim, Kruskal)
 - Efficient implementation with union-find data structure.

Algorithm Design Techniques

- Greedy
- Divide and Conquer
- Dynamic Programming
- Network Flows

Comparison

<table>
<thead>
<tr>
<th></th>
<th>Greedy</th>
<th>Divide and Conquer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulate problem</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Design algorithm</td>
<td>easy</td>
<td>hard</td>
</tr>
<tr>
<td>Prove correctness</td>
<td>hard</td>
<td>easy</td>
</tr>
<tr>
<td>Analyze running time</td>
<td>easy</td>
<td>hard</td>
</tr>
</tbody>
</table>

Divide and Conquer: Recipe

- Divide problem into several parts
- Solve each part recursively
- Combine solutions to sub-problems into overall solution
- Common example
 - Problem of size $n \rightarrow$ two parts of size $n/2$.
 - Combine solutions in $O(n)$ time.
Example: Mergesort

MergeSort(Arr)
if length(Arr) ≤ 2 then ▶ Base case
Sort however you like, return sorted list.
else
middle = length(Arr)/2 ▶ Recursive Steps
L = MergeSort(Arr[0:middle])
R = MergeSort(Arr[middle:length(Arr)])
Return Merge(L, R) ▶ Combine Step
end if

Mergesort Running time

▶ Base Case: O(1).
▶ Recursive step: O(1) + ???
▶ Merge step: O(n).

Recurrence Relations
Let T(n) be running time for inputs of length n.

T(n) ≤ 2T(n/2) + cn when n ≥ 2
T(0), T(1), T(2) ≤ c
How do we solve for T(n)?

Solving recurrences

T(n) ≤ 2T(n/2) + cn, T(2) ≤ c.
▶ Unravel recurrence
▶ Guess and check
▶ Partial substitution
Mergesort runtime: O(n log₂ n).

Maximum Subsequence Sum (MSS)

Input: array A of n numbers
Find: value of the largest subsequence sum
(Note: empty subsequence (j < i) is allowed and has sum zero)

What is a simple algorithm for MSS?

MSS(A)
Initialize all entries of n × n array B to zero
for i = 1 to n do
 sum = 0
 for j = i to n do
 sum += A[j]
 B[i, j] = sum
 end for
end for
Return maximum entry of B[i, j]

Running time? O(n²). Can we do better?

Divide-and-conquer for MSS

Recursive solution for MSS

Idea:
▶ Find MSS L in left half of array
▶ Find MSS R in right half of array
▶ Find MSS M for sequence that crosses the midpoint
Return max(L, R, M)
MSS(Arr)
if length(Arr) == 1 then
 return max(A[0], 0) \>
Base case
end if
mid = length(Arr)/2
L = MSS(Arr[0:mid]), R = MSS(Arr[mid:length(Arr)]) \>
Recursive Steps
Set sum = 0, L' = 0.
for i = mid-1 down to 0 do
 sum += Arr[i], L' = max(L', sum).
end for
Set sum = 0, R' = 0.
for i = mid up to length(Arr)-1 do
 sum += Arr[i], R' = max(R', sum).
end for
return max(L, R, L' + R'). \>
Output max

MSS Correctness?

- If MSS is contained in left half, then by induction we are correct
- If MSS is contained in right half, then by induction we are correct
- Otherwise MSS spans midpoint.
 - L' = MSS on left half ending at midpoint
 - R' = MSS on right half starting at midpoint
 - L' + R' = MSS spanning midpoint.

MSS running time

- Base Case: O(1).
- Recursive step: O(1) + ???
- Merge step: O(n).

\[T(n) \leq 2T(n/2) + cn, \quad T(1) \leq c. \]

Solves to \(O(n \log_2 n) \) just like Mergesort.

Proof for \(q = 1 \)

\[T(n) \leq T(n/2) + cn, \quad T(1) \leq c. \]

- Unravel the recurrence

\[
T(n) \leq T(n/2) + cn \\
\leq T(n/4) + cn/2 + cn \\
\leq T(n/8) + cn/4 + cn/2 + cn \\
\vdots \\
\leq \sum_{i=0}^{\log_2 n-1} cn/2^i \\
\leq 2cn
\]

More recurrences

- Problem of size \(n \rightarrow q \) parts of size \(n/2 \).
- Combine solutions in \(O(n) \) time.

Recurrence

\[T(n) \leq qT(n/2) + cn, \quad T(1) \leq c. \]

Qualitatively different behavior \(q = 1, q = 2, \) and \(q > 2 \).

- If \(q = 1, T(n) = O(n) \).
- If \(q = 2, T(n) = O(n \log n) \).
- If \(q > 2, T(n) = O(n^{\log_2(q)}) \).

Proof for \(q = 1 \)

\[T(n) \leq T(n/2) + cn, \quad T(1) \leq c. \]

- Partial substitution (with guess \(T(n) \leq kn^d \))

\[
T(n) \leq T(n/2) + cn \\
\leq k(n/2)^d + cn \\
= \frac{k}{2^d}n^d + cn
\]

Set \(d = 1 \quad k = 2c \) to get

\[T(n) \leq \frac{k}{2}n + cn = kn \]
Proof for $q > 2$

\[T(n) \leq qT(n/2) + cn, \quad T(1) \leq c. \]

▶ Unravel the recurrence

\[T(n) \leq qT(n/2) + cn \]
\[\leq q^2T(n/4) + cqn/2 + cn \]
\[\leq q^3T(n/8) + cq^2n/4 + cqn/2 + cn \]
\[\ldots \]
\[\leq \sum_{i=0}^{\log_2 n-1} cn \left(\frac{q}{2} \right)^i \]

Final calculations

▶ Use geometric series ($\sum_{k=0}^{n-1} r^k = (r^n - 1)/(r - 1)$)

\[T(n) \leq cn \sum_{i=0}^{\log_2 n-1} (q/2)^i = cn \left(\frac{(q/2)^{\log_2 n}-1}{q/2-1} \right) \]
\[\leq \frac{c}{q/2-1} n(q/2)^{\log_2 n} \]
\[= \frac{c}{q/2-1} n \log_2(q/2) \]
\[= \frac{c}{q/2-1} n^{\log_2(q)-1} \]
\[= \frac{c}{q/2-1} n^{\log_2(q)} = O(n^{\log_2(q)}) \]

Summary

With recurrence

\[T(n) \leq qT(n/2) + cn, \quad T(1) \leq c. \]

Always get

\[T(n) \leq cn \sum_{i=0}^{\log_2(n)-1} (q/2)^i \]

▶ But series behaves differently for $q < 2, q = 2, q > 2$.

\[T(n) \leq cn \sum_{i=0}^{\log_2(n)-1} (q/2)^i \]