Announcements

- Homework 2 due tonight!
- No quiz this weekend
- Midterm 1 next Wednesday 7-9pm ISB 135
- Homework 3 out tonight

Recap

- Shortest paths problem: Given graph $G = (V, E, w)$ with positive edge weights, and a source node s, can we efficiently find the length of the shortest path from s to v (called $d(v)$) for all v?
 - If all edge weights are 1, then just run BFS.
 - Otherwise, can run BFS on augmented graph (but can be slow)
 - Dijkstra’s algorithm implements this idea in $O(m \log n)$ time.

Dijkstra’s algorithm

$Q =$ Priority Queue, Explored $= \{\}$.
push $(s, 0)$ onto Q
while Q is not empty do
 $(v, d) =$ item with smallest key from Q
 if v is not marked “explored” then
 Mark v as explored and set $d[v] = d$
 for each edge (v, u) incident to v do
 Push $(u, d + w(v, u))$ onto Q.
 end for
 end if
end while

Proof idea

- Inductively assume for all explored nodes the distances are correct.
- Prove next distance is correct by showing that any other path must be longer.
- Note: Also works for directed graphs.

Minimum Spanning Tree

- Consider an undirected connected graph $G = (V, E)$ where each edge e has weight $w(e)$.
- Given a subset of edges $A \subset E$, define $w(A) = \sum_{e \in A} w(e)$ to be the total weight of the edges in A.
- A spanning tree of G is a tree T that contains all nodes in G.
- Problem: Can we efficiently find the minimum spanning tree (MST), i.e., spanning tree with minimum total weight?
- For simplicity, we will assume all edges have distinct weights.
Greedy Approaches

- Consider the following greedy approaches:
 - Sort the edges by increasing weight.
 - Add next edge that doesn’t complete a cycle.
 - Sort the edges by increasing weight.
 - Let $S = \{s\}$.
 - Add next edge (u, v) where $u \in S, v \notin S$. Add v to S.
 - Sort the edges by decreasing weight. Remove the next edge that doesn’t disconnect the graph.
 - Which approach constructs a minimum spanning tree? All of them! We’ll prove correctness for the first two.

Important Lemma: Finding edges in MST

- **Cut Lemma:** Let $S \subseteq V$ and let $e = (u, v)$ be the lightest edge such that $u \in S$ and $v \notin S$. The MST contains edge e.
- Suppose T' is a spanning tree that doesn’t include e. We’ll construct a different spanning tree T'' such that $w(T'') < w(T)$ and hence T can’t be the MST.
- Since T is a spanning tree, there’s a $u \rightarrow v$ path P in T.
 - Let $T' = T - \{e\} + \{e\}$. This is a still spanning tree, since any path in T that needed e' can be routed via e instead. But since e was the lightest edge between S and $V \setminus S$,
 $$w(T') = w(T) - w(e') + w(e) \leq w(T) - w(e') + w(e) = w(T)$$

Prim’s Algorithm

- **Prim’s Algorithm:** Sort the edges by increasing weight.
 - Let $S = \{s\}$.
 - While $S \neq V$: Add next edge (u, v) where $u \in S, v \notin S$ and add v to S.
- **Proof of Correctness:**
 - Let S be the set of nodes in the tree constructed so far.
 - The next edge added to the tree is the lightest edge between S and $V \setminus S$. Hence, the cut lemma implies e must be in the MST.
- **Runtime:** $O(m \log m)$ not too hard. $O(m + n \log n)$ possible but tricky

Kruskal’s Algorithm

- **Kruskal’s Algorithm:** Sort the edges by increasing weight and repeatedly add the next edge that doesn’t complete a cycle.
- **Proof of Correctness:**
 - Suppose $e = (u, v)$ is the next edge added.
 - Let S be the set of nodes that can be reached from u before e was added. Note that $v \notin S$ since otherwise adding e would have completed a cycle.
 - No other edge between S and $V \setminus S$ can have been encountered before since if it had it would have been added since it doesn’t complete a cycle. Hence e is the lightest edge between S and $V \setminus S$. Therefore, the cut lemma implies e must be in the MST.

Kruskal Implementation: Union-Find

Idea: use clever data structure to maintain connected components of growing spanning tree. Should support the following operation:

- **Find(v):** return name of set containing v
- **Union(A, B):** merge two sets

where A and B will correspond to connected components of the edges that have been added so far.

```java
for each edge $e$ do
    if find($u$) != find($v$) then
        $T = T \cup \{e\}$
        Union(find($u$), find($v$))
    end if
end for
```

Simple Implementation of Union-Find

- Each disjoint set is stored as a linked list of nodes where each node consists of three data items:
 - name of element
 - “label” pointer to label of the set
 - “next” pointer to next node in list

- There are three basic operations:
 - **Make-Set(v):** Takes $O(1)$ time to add a single node.
 - **Find(v):** Takes $O(1)$ time to follow pointer to label.
 - **Union-Set(u, v):** O(size of smaller set).
 - Update “next” pointer at end of longer list to point to start of shorter list
 - Update “label” pointers of shorter list to point to label of other list
 - Update auxiliary pointers and size information
Union-Find Analysis

Theorem: Consider a sequence of \(m \) operations including \(n \) Make-Set operations. Total running time is \(O(m + n \log n) \).

- Total time from Find and Make-Set: \(O(m) \)
- Total time from Union: \(O(n \log n) \)
 - Updating next pointers: \(O(n) \)
 - Updating label pointers: \(O(n \log n) \) because the label pointer for a node can be updated at most \(\log_2 n \) times.

Hence, Kruskal’s algorithm can be implemented in time

\[
O(m \log m) + O(m + n \log n) = O(m \log m)
\]

Other Greedy Problems

- Huffman Coding and data compression
- Minimum Cost Arborescence (e.g., MST in directed graphs)