Announcements
▶ Discussion Friday
▶ No class monday (President’s day)
▶ Akshay’s Office hours Tu 5-6 just next week
▶ Midterm two weeks from today (I will post a practice exam)

Recap
▶ Greedy algorithms for interval scheduling
▶ Interval scheduling with no conflicts
▶ Interval scheduling minimizing number of rooms
▶ Minimizing maximum lateness
▶ Observation: problems have different combinatorial structure.

Shortest Paths Problem
▶ Given a weighted directed graph, let $w(e) > 0$ denote the length of edge e and for a path P consisting of edges e_1, e_2, \ldots, e_k we denote the length of this path as $\ell(P) = w(e_1) + w(e_2) + \ldots + w(e_k)$
▶ Fix a node s and let $d(v)$ be the length of shortest $s \rightarrow v$ path.
▶ Problem: Can we efficiently find $d(v)$ for all nodes $v \in V$?

A special case
▶ Question: What if all edges have weight $w(e) = 1$?
▶ Answer: Can just run BFS from s
▶ BFS layer $L_i = \{ \text{nodes at distance } i \text{ from } s \}$.
▶ Question: What if all the edge weights are natural numbers?

Dijkstra’s Algorithm Intuition
▶ Run BFS on augmented graph where all edge weights are the same.
▶ Let x divide all edge weights $w(e)$.
▶ Split each edge into $w(e)/x$ edges of length x with intermediate nodes.
▶ Keep track of layers for the nodes from the original graph.
▶ Running time? $O(n' + m')$ where $m' = \sum w(e)/x$ and $n' = n + \sum (w(e)/x - 2)$.
▶ Dijkstra’s Algorithm is a more efficient implementation of this idea.
Dijkstra's Algorithm

- **Initialize:** Let $S = \{s\}$ be set of "explored nodes" and $d(s) = 0$.
- **While** $S \neq V$:
 - Find node $v \notin S$ that minimizes
 $$\pi(v) = \min_{(u,v) \in E, v \in S} (d(u) + w(u,v))$$
 - Add v to S and set $d(v) = \pi(v)$

Running Time Analysis: The while loop occurs $n - 1$ times and in each iteration finding v can be done in $O(m)$ time. So total run time of a naive implementation is $O(mn)$ but a more clever implementation exists that uses $O(m \log n)$ time.

Pseudocode

Let $Q = \text{Priority Queue}$, Explored = \emptyset.

1. Push $(s, 0)$ onto Q.
2. **While** Q is not empty do
 - $(v, d) =$ item with smallest key from Q.
 - If v is not marked "explored" then
 - Mark v as explored and set $d[v] = d$
 - For each edge (v, u) incident to v do
 - Push $(u, d + w(v, u))$ onto Q.
 - End if
 - End if

Proof of Correctness

- We prove by induction on $|S|$ that for all $u \in S$, $d(u)$ is the length of the shortest $s \rightarrow u$ path.
- **Base case:** When $|S| = 1$, it’s obvious since s is only node in S and $d(s) = 0$.
- **Inductive hypothesis:** Assume true for $|S| = k \geq 1$.
 - Let v be next node added to S and let (u, v) be preceding edge.
 - Shortest $s \rightarrow u$ path plus (u, v) is $s \rightarrow v$ path of length $\pi(v)$
 - Consider any $s \rightarrow v$ path P. We will show $\ell(P) \geq \pi(v)$
 - Let (x, y) be the first edge in P that leaves S, and let P' be the subpath from s to x.
 - Then,
 $$\ell(P) \geq \ell(P') + w(x, y) \geq d(x) + w(x, y) \geq \pi(y) \geq \pi(v)$$

Minimum Spanning Tree

- Consider an undirected connected graph $G = (V, E)$ where each edge e has weight $w(e)$.
- Given a subset of edges $A \subset E$, define $w(A) = \sum_{e \in A} w(e)$ to be the total weight of the edges in A.
- A **spanning tree** of G is a tree T that contains all nodes in G.
- **Problem:** Can we efficiently find the minimum spanning tree (MST), i.e., spanning tree with minimum total weight?
- For simplicity, we will assume all edges have distinct weights.

Some intuition

- **Fact 1:** If all edges have unit weight, all trees are MSTs.
- **Fact 2:** Otherwise, smallest edge must be in MST.
 - Proof is an exchange argument.

Greedy Approaches

- Consider the following greedy approaches:
 - Sort the edges by increasing weight.
 - Add next edge that doesn’t complete a cycle.
 - Sort the edges by increasing weight.
 - Let $S = \{s\}$
 - Add next edge (u, v) where $u \in S, v \notin S$. Add v to S
 - Sort the edges by decreasing weight. Remove the next edge that doesn’t disconnect the graph.
 - Which approach constructs a minimum spanning tree? All of them! We’ll prove correctness for the first two.
Important Lemma: Finding edges in MST

▷ **Cut Lemma:** Let $S \subset V$ and let $e = (u, v)$ be the lightest edge such that $u \in S$ and $v \not\in S$. The MST contains edge e.

▷ Note that this generalizes Fact 2 from above.

▷ Suppose T is a spanning tree that doesn’t include e. We’ll construct a different spanning tree T' such that $w(T') < w(T)$ and hence T' can’t be the MST.

▷ Since T is a spanning tree, there’s a $u \leadsto v$ path P in T.

▷ Let $T' = T - \{e'\} + \{e\}$. This is a still spanning tree, since any path in T that needed e' can be routed via e instead. But since e was the lightest edge between S and $V \setminus S$,

\[
w(T') = w(T) - w(e') + w(e) \leq w(T) - w(e') + w(e') = w(T)
\]

Prim’s Algorithm

▷ **Prim’s Algorithm:** Sort the edges by increasing weight.

▷ Let $S = \{s\}$.

▷ While $S \neq V$: Add next edge (u, v) where $u \in S, v \not\in S$ and add v to S.

▷ **Proof of Correctness:**

▷ Let S be the set of nodes in the tree constructed so far.

▷ The next edge added to the tree is the lightest edge between S and $V \setminus S$. Hence, the cut lemma implies e must be in the MST.

Kruskal’s Algorithm

▷ **Kruskal’s Algorithm:** Sort the edges by increasing weight and keep on add the next edge that doesn’t complete a cycle.

▷ **Proof of Correctness:**

▷ Suppose $e = (u, v)$ is the next edge added.

▷ Let S be the set of nodes that can be reached from u before e was added. Note that $v \not\in S$ since otherwise adding e would have completed a cycle.

▷ No other edge between S and $V \setminus S$ can have been encountered before since if it had it would have been added since it doesn’t complete a cycle. Hence e is the lightest edge between S and $V \setminus S$. Therefore, the cut lemma implies e must be in the MST.