Announcements

- Quiz 3 due tonight!
- Homework 2 out (Due next wednesday 2/21)
- Homework 1 solutions posted
- Quiz 2 solutions

Recap: Interval Scheduling

- **Notation:** \(n \) shows, let show \(j \) start at time \(s_j \) and finish at time \(f_j \) and we say two shows are **compatible** if they don’t overlap.
- How do we find the maximum subset of shows that are all compatible? (e.g., How do we watch the most shows?)
- **Answer:** Order by finish time and choose shows greedily!
- **Proof idea:** Show that greedy “stays ahead” of other solutions.

Problem 2: Interval Partitioning

- Suppose you are in charge of UMass classrooms.
- There are \(n \) classes to be scheduled on a Monday where class \(j \) starts at time \(s_j \) and finishes at time \(f_j \).
- Your goal is to schedule all the classes such that the minimum number of classrooms get used throughout the day. Obviously two classes that overlap can’t use the same room.
- **Example:** \([1, 4], [2, 3], [2, 7], [4, 7], [3, 6], [6, 10], [5, 7]\)

Possible Greedy Approaches

- Suppose the available classrooms are numbered 1, 2, 3, . . .
- We could run a greedy algorithm . . . consider the lectures in some natural order, and assign the lecture to the classroom with the smallest number that is available.
- **What’s a “natural order” for this problem?**
 - **Start Time:** Consider lectures in ascending order of \(s_j \).
 - **Finish Time:** Consider lectures in ascending order of \(f_j \).
 - **Shortest Time:** Consider lectures in ascending order of \(f_j - s_j \).
 - **Fewest Conflicts:** Let \(c_j \) be number of shows which overlap with show \(j \). Consider shows in ascending order of \(c_j \).
- Not all of these orderings will result in the best solution. But we’ll show that ordering by start-time gives an optimal result.

Order by start time

- Number rooms 1, 2, . . .
- Sort lectures by their start time \(s_j \) (assume \(s_1 \leq s_2 \leq \ldots \leq s_n \))
- For \(j = 1, \ldots, n \)
 - Assign lecture \(j \) to available room with the smallest index.
 - For all occupied rooms \(r_t \)
 - If lecture \(i \) is in \(r_t \) and \(f_i \leq s_{j+1} \), make \(r_t \) available.
- **Running time:** \(O(n \log n) \). (But need to merge the \(f_j \)s into the sorted list)
Ordering by Start Time gives an optimal answer

- A key observation:
 - Let the depth be the maximum number of lectures that are in progress at exactly the same time.
 - The number of class rooms needed by any schedule is \(\geq \) depth.
 - If \(d \) is the number of classrooms used by the greedy algorithm that considers classes in order of start time. We’ll show \(d \leq \) depth. Hence, \(d = \) depth and there can’t be a better schedule.
 - Suppose lecture \(j \) is the first lecture that the greedy algorithm assigns to classroom \(d \).
 - At time \(s_j \), there must be at least \(d \) lectures that are occurring. Hence, \(d \leq \) depth.

Problem 3: Scheduling to Minimize Lateness

- Suppose an overworked UMass student has \(n \) different assignments due on the same day and each assignment has a deadline. Suppose that assignment \(j \) will take the student \(t_j \) minutes and has deadline \(d_j \).
- If a student starts the assignment at \(s_j \), she finishes the assignment at \(f_j = s_j + t_j \) and let \(\ell_j = \max \{ 0, f_j - d_j \} \) be the number of minutes she is late.
- Problem: In what order should she do the assignments if she wants to minimize the maximum lateness \(L = \max \ell_j \).
- Example: \((t, d) = (5, 10), (1, 3), (3, 4), (2, 5) \)

Possible Greedy Approaches

- We could do the assignments in order of:
 - Shortest Time: Consider in ascending order of \(t_j \).
 - Earliest Deadline: Consider in ascending order of \(d_j \).
 - Smallest Slack: Consider in ascending order of \(d_j - t_j \).

- Not all of these orderings will result in the best solution. But we’ll show that ordering by earliest deadline gives an optimal result.

Ordering by earliest deadline minimizes lateness: Part 1

- To simplify the notation assume \(d_1 \leq d_2 \leq d_3 \leq \ldots \)
- Given a schedule \(S \), we say there’s an inversion for jobs \(i \) and \(j \) if \(d_i < d_j \) but job \(j \) is scheduled before \(i \). The schedule generated by the greedy algorithm is the unique schedule in which there are no inversions.
- Some important observations:
 - There exists an optimal schedule with no idle time.
 - If there are any inversions in a schedule, there is an inversion involving two jobs that are scheduled consecutively.

Ordering by earliest deadline minimizes lateness: Part 2

- Claim: Given a schedule, swapping two adjacent, inverted jobs \(i \) and \(j \) (where \(i < j \)) reduces the number of inversions by one and does not increase the maximum lateness.
 - Let \(\ell_k \) be the lateness of job \(k \) before the swap and let \(\ell'_k \) be the lateness afterwards.
 - Note that \(\ell'_k = \ell_k \) for all \(k \) other than \(k \neq i \) and \(k \neq j \).
 - Since \(i \) is finished earlier after the swap, \(\ell'_i \leq \ell_i \)
 - If job \(j \) is now late, \(\ell'_{j} = f_j - d_j = f_i - d_i \leq f_i - d_i \leq \max \{ 0, f_i - d_i \} = \ell_i \)
 - Hence \(\max \{ \ell', \ell'_j \} \leq \max \{ \ell_i, \ell_j \} \)

- Lemma: Ordering by the earliest deadline minimizes lateness.
 - Suppose there’s a different schedule with inversions that has lateness \(L \).
 - We can repeatedly use the above claim to transform it into a schedule with no inversions that has lateness at most \(L \).

Summary

- Greedy algorithms for scheduling
 - Different “objectives” require different strategies
 - On designing algorithms
 - Attack from both sides, try to build counter examples
- On proof strategies
 - Greedy “stays ahead”
 - Exchange arguments