Recall

- Graph $G = (V, E)$
- Set of nodes V of size n
- Set of edges E of size m

Adjacency List Representation

- Nodes numbered $1, \ldots, n$.
- $\text{Adj}[v]$ points to a list of all of v’s neighbors.

BFS Description

Define layer L_i = all nodes at distance exactly i from s.

Layers

- $L_0 = \{s\}$
- $L_1 =$ all neighbors of L_0
- $L_2 =$ all nodes with an edge to L_1 that don’t belong to L_0 or L_1
- \ldots
- $L_{i+1} =$ nodes with an edge to L_i that don’t belong to any earlier layer.

$L_{i+1} = \{v : \exists (u, v) \in E, u \in L_i, v \notin (L_0 \cup \ldots \cup L_i)\}$

DFS Descriptions

Depth-first search: keep exploring from the most recently discovered node until you have to backtrack.

$\text{DFS}(u)$

Mark u as "Explored"

for each edge (u, v) incident to u do

 if v is not marked "Explored" then

 Recursively invoke $\text{DFS}(v)$

 end if

end for
Traversals Implementations

Maintain set of explored nodes and discovered

- Explored = have seen this node and explored its outgoing edges
- Discovered = the “frontier”. Have seen the node, but not explored its outgoing edges.

Generic Graph Traversal

Let A = data structure of discovered nodes
Traverse(s)
Put s in A
while A is not empty do
 Take a node v from A
 if v is not marked "explored" then
 Mark v as "explored"
 for each edge (v, w) incident to v do
 if w not marked "discovered" then
 mark w as "discovered"
 Put w in A \(\triangleright w \) is discovered
 end if
 end for
 end if
 end while

Note: one part of this algorithm seems really dumb. Why?
Can put multiple copies of a single node in A.

Question 1: If A is a queue (FIFO) is this BFS?
Question 2: If A is a stack (LIFO) is this DFS?

Discovered?

- With discovered array, it’s not DFS! (So let’s not use it)

Let A = data structure of discovered nodes
Traverse(s)
Put s in A
while A is not empty do
 Take a node v from A
 if v is not marked "explored" then
 Mark v as "explored"
 for each edge (v, w) incident to v do
 Put w in A
 w is discovered
 end for
 end if
 end while

BFS: A is a queue (FIFO)
DFS: A is a stack (LIFO)

Interlude (Data Structures)

Linked List:

- Always remove items from front (Head)
- Queue: Insert at Tail (FIFO)
- Stack: Insert at Head (LIFO)
- Insert/Removal are $O(1)$ operations.

BFS Implementation

Let A = empty Queue structure of discovered nodes
Traverse(s)
Put s in A
while A is not empty do
 Take a node v from A
 if v is not marked "explored" then
 Mark v as "explored"
 for each edge (v, w) incident to v do
 Put w in A \(\triangleright w \) is discovered
 end for
 end if
 end while

Is this actually BFS? Yes
Running time? $\Theta(n + m)$
DFS Implementation

Let A = empty Stack structure of discovered nodes

```plaintext
Traverse(s)
Put s in A
while A is not empty do
  Take a node $v$ from A
  if $v$ is not marked "explored" then
    Mark $v$ as "explored"
    for each edge $(v, w)$ incident to $v$ do
      Put $w$ in A  // $w$ is discovered
    end for
  end if
end while
```

Is this actually DFS? Yes

What’s the running time?

Back to Connected Components

FindCC(G)

```plaintext
while There is some unexplored node $s$ do
  BFS($s$)
  Extract connected component $C(s)$.
end while
```

Running time for finding connected components?

Naive: $O(n + m)$ for each component $\Rightarrow O(c(n + m))$ if c components.

Better:
- BFS on component C only works on nodes/edges in C.
- Running time is $O(\sum_C |V(C)| + |E(C)|) = O(n + m)$.

Bipartite Graphs

Definition Graph $G = (V, E)$ is bipartite if V can be partitioned into sets X, Y such that every edge has one end in X and one in Y.

Example Student-College Graph in stable matching

Counter example Cycle of length k for k odd.

Claim If G is bipartite then it cannot contain an odd cycle.

Bipartite Testing

Question Given $G = (V, E)$, is G bipartite?

How do we design an algorithm to test bipartiteness?

- BFS(s) for any s, keep track of layers.
- Nodes in odd layers get color blue, even get color red.
- After, check all edges have different colored endpoints.

Running time? $O(n + m)$.

Analysis of Bipartite Testing

Claim After running BFS on a connected graph G, either,

- There are no edges between two nodes of the same layer $\Rightarrow G$ is bipartite.
- There is an edge between two nodes of the same layer $\Rightarrow G$ has an odd cycle, is not bipartite.

G bipartite if and only if no odd cycles.

Directed Graphs

- **Directed Graph** $G = (V, E)$.
- V is a set of vertices/nodes.
- E is a set of ordered pairs (u, v).
- Express asymmetrical relationship

Examples Twitter network, course schedule, web graph.
Adjacency Lists

Maintain two lists.
- Enter[v] contains all edges pointing to v.
- Leave[v] contains all edges pointing from v.

Strong Connectivity

Definition G is strongly connected if for every u, v ∈ V, there is a path from u to v and from v to u.

Problem Test if G is strongly connected?

Definition The strongly connected component containing vertex s is the set of all nodes with paths to and from s.

Think about Can you find all SCCs in linear time?

Directed Acyclic Graphs

Definition A directed acyclic graph (DAG) is a directed graph with no cycles.

Example Course prerequisites

- Math132
- CS187
- CS220
- CS240
- CS250
- CS311
- CS383

Can you find a way to take all of the courses?

Topological Sorting

Definition A topological ordering of G = (V, E) is an ordering v₁, v₂, ..., vₙ of the nodes, such that for all edges (vᵢ, vⱼ) ∈ E, we must have i < j.

Claim If G has a topological ordering, then G is a DAG.

Task

Problem Given DAG G, compute a topological ordering for G.

- Does one always exist?

\[
\text{topo-sort}(G)
\]

while there are nodes remaining do
 Find a node v with no incoming edges
 Place v next in the order
 Delete v and all of its outgoing edges from G
end while

Running time? O(n² + m) easy, O(m + n) more clever.
Topological Sorting Analysis

- In a DAG, there is always a node \(v \) with no incoming edges.
- Removing a node \(v \) from a DAG, produces a new DAG.
- Any node with no incoming edges can be first in topological ordering.

Theorem \(G \) is a DAG if and only if \(G \) has a topological ordering.

Graphs Summary

- Graph Traversal
 - BFS/DFS, Connected Components, Bipartite Testing
 - Traversal Implementation and Analysis
- Directed Graphs
 - Strong Connectivity
 - Directed Acyclic Graphs
 - Topological ordering