Plan
▶ Review:
▶ Quiz 1 questions
▶ Breadth First Search
▶ Depth First Search
▶ Traversal Implementation and Running Time
▶ Traversal Applications
▶ Directed Graphs

Recall
▶ Graph $G = (V, E)$
▶ Set of nodes V of size n
▶ Set of edges E of size m

Adjacency List Representation

Adjacency List Representation.
▶ Nodes numbered 1, . . . , n.
▶ $Adj[v]$ points to a list of all of v’s neighbors.

BFS Description

Define layer $L_i = \text{all nodes at distance exactly } i \text{ from } s$.

Layers
▶ $L_0 = \{s\}$
▶ $L_1 = \text{all neighbors of } L_0$
▶ $L_2 = \text{all nodes with an edge to } L_1 \text{ that don’t belong to } L_0 \text{ or } L_1$
▶ ...
▶ $L_{i+1} = \text{nodes with an edge to } L_i \text{ that don’t belong to any earlier layer}$.

$L_{i+1} = \{v : \exists (u, v) \in E, u \in L_i, v \not\in (L_0 \cup \ldots \cup L_i)\}$

DFS Descriptions

Depth-first search: keep exploring from the most recently discovered node until you have to backtrack.

DFS(u)
Mark u as "Explored"
for each edge (u, v) incident to u do
 if v is not marked "Explored" then
 Recursively invoke DFS(v)
 end if
end for
Traversals Implementations

Maintain set of explored nodes and discovered

- Explored = have seen this node and explored its outgoing edges
- Discovered = the “frontier”. Have seen the node, but not explored its outgoing edges.

Generic Graph Traversal

Let \(A \) = data structure of discovered nodes

Traverse(s)

Put s in A

while A is not empty do

Take a node \(v \) from A

if \(v \) is not marked “explored” then

Mark \(v \) as “explored”

for each edge \((v, w)\) incident to \(v \) do

Put \(w \) in \(A \) \(\triangleright \) \(w \) is discovered

end for

end if

end while

Note: one part of this algorithm seems really dumb. Why?
Can put multiple copies of a single node in \(A \).

Discovered?

- With discovered array, it’s not DFS! (So let’s not use it)

BFS Implementation

Let \(A = \) empty Queue structure of discovered nodes

Traverse(s)

Put s in A

while A is not empty do

Take a node v from A

if v is not marked “explored” then

Mark v as “explored”

for each edge \((v, w)\) incident to \(v \) do

Put \(w \) in \(A \)

end for

end if

end while

Is this actually BFS? Yes

Running time? \(\Theta(n + m) \)

Interlude (Data Structures)

Linked List:

- Always remove items from front (Head)
- Queue: Insert at Tail (FIFO)
- Stack: Insert at Head (LIFO)
- Insert/Removal are \(O(1) \) operations.
DFS Implementation

Let A = empty Stack structure of discovered nodes

Traverse(s)
Put s in A
while A is not empty do
Take a node v from A
if v is not marked "explored" then
Mark v as "explored"
for each edge (v, w) incident to v do
Put w in A. w is discovered
end for
end if
end while

Is this actually DFS? Yes
What's the running time?

Back to Connected Components

FindCC(G)
while There is some unexplored node s do
BFS(s)
Extract connected component $C(s)$.
end while

Running time for finding connected components?
Naive: $O(n + m)$ for each component $\Rightarrow O(c(n + m))$ if c components.
Better:
• BFS on component C only works on nodes/edges in C.
• Running time is $O(\sum_C |V(C)| + |E(C)|) = O(n + m)$.

Bipartite Graphs

Definition Graph $G = (V, E)$ is bipartite if V can be partitioned into sets X, Y such that every edge has one end in X and one in Y.

Example Student-College Graph in stable matching
Counter example Cycle of length k for k odd.
Claim If G is bipartite then it cannot contain an odd cycle.

Bipartite Testing

Question Given $G = (V, E)$, is G bipartite?

How do we design an algorithm to test bipartiteness?
• BFS(s) for any s, keep track of layers.
• Nodes in odd layers get color blue, even get color red.
• After, check all edges have different colored endpoints.

Running time? $O(n + m)$.

Analysis of Bipartite Testing

Claim After running BFS on a connected graph G, either,
• There are no edges between two nodes of the same layer $\Rightarrow G$ is bipartite.
• There is an edge between two nodes of the same layer $\Rightarrow G$ has an odd cycle, is not bipartite.

G bipartite if and only if no odd cycles.

Directed Graphs

• Directed Graph $G = (V, E)$.
• V is a set of vertices/nodes.
• E is a set of ordered pairs (u, v).
• Express asymmetrical relationship

Examples Twitter network, course schedule, web graph.
Adjacency Lists

Maintain two lists.

- **Enter**[v] contains all edges pointing to v.
- **Leave**[v] contains all edges pointing from v.

Strong Connectivity

Definition G is **strongly connected** if for every $u, v \in V$, there is a path from u to v and from v to u.

Problem Test if G is strongly connected?

Definition The **strongly connected component** containing vertex s is the set of all nodes with paths to and from s.

Think about Can you find all SCCs in linear time?

Directed Acyclic Graphs

Definition A **directed acyclic graph (DAG)** is a directed graph with no cycles.

Example Course prerequisites

```
Math132
CS187
CS220
CS240
CS250
CS311
CS383
```

Topological Sorting

Problem Given DAG G, compute a topological ordering for G.

- Does one always exist?

```
topo-sort($G$)

while there are nodes remaining do
  Find a node $v$ with no incoming edges
  Place $v$ next in the order
  Delete $v$ and all of its outgoing edges from $G$
end while
```

Running time? $O(n^2 + m)$ easy, $O(m + n)$ more clever.

Topological Sorting

Definition A **topological ordering** of $G = (V, E)$ is an ordering v_1, v_2, \ldots, v_n of the nodes, such that for all edges $(v_i, v_j) \in E$, we must have $i < j$.

Claim If G has a topological ordering, then G is a DAG.
Topological Sorting Analysis

- In a DAG, there is always a node v with no incoming edges.
- Removing a node v from a DAG, produces a new DAG.
- Any node with no incoming edges can be first in topological ordering.

Theorem G is a DAG if and only if G has a topological ordering.

Graphs Summary

- Graph Traversal
 - BFS/DFS, Connected Components, Bipartite Testing
 - Traversal Implementation and Analysis
- Directed Graphs
 - Strong Connectivity
 - Directed Acyclic Graphs
 - Topological ordering