
CMPSCI 311: Introduction to Algorithms

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: January 29, 2018

Announcements

I Homework 1 released (Due 2/7 11:59pm)
I Quiz 1 out (Due 1/30 11:59pm)
I Discussion section Friday

Plan

I Review: Asymptotics
I O(·), Ω(·), Θ(·)
I Running time analysis

I Graphs
I Motivation and definitions
I Graph traversal

Review: Asymptotics

Definition f(n) = O(g(n)) if there exists n0, c such that for all
n ≥ n0, f(n) ≤ cg(n).
I g is an asymptotic upper bound on f .
Definition f(n) = Ω(g(n)) if g(n) = O(f(n)).
I g is an asymptotic lower bound on f .
Definition f(n) = Θ(g(n)) if f(n) = O(g(n)) and
g(n) = O(f(n)).
I g is an asymptotically tight bound on f .

Algorithm design

I Formulate the problem precisely

I Design an algorithm to solve the problem

I Prove the algorithm is correct

I Analyze the algorithm’s running time

Running Time Analysis

Mathematical analysis of worst-case running time of an algorithm as
function of input size. Why these choices?
I Mathematical: describes the algorithm. Avoids hard-to-control

experimental factors (CPU, programming language, quality of
implementation), while still being predictive.

I Worst-case: just works. (“average case” appealing, but hard to
analyze)

I Function of input size: allows predictions. What will happen on a
new input?



Running time analysis

Mathematical analysis of worst-case running time of an algorithm as
function of input size.
I To prove O(f(n)): Argue that for all n and for all inputs of size

n the number of primitive operations is O(f(n)).

I To prove Ω(g(n)): Argue that for all n, there exists some input
of size n where the number of primitive operations is Ω(g(n)).

Polynomial Time

Working definition of efficient

Definition: an algorithm runs in polynomial time if the number of
primitive execution steps is at most cnd, where n is the input size
and c and d are constants.
I Matches practice: almost all practically efficient algorithms have

this property

I Usually distinguishes a clever algorithm from a “brute force”
approach (nd = O(2n) for all constant d).

I Refutable: gives us a way of saying an algorithm is not efficient,
or that no efficient algorithm exists.

Plan

I Review: Asymptotics
I O(·), Ω(·), Θ(·)
I Running time analysis

I Graphs
I Motivation and definitions
I Graph traversal

Questions

I Facebook: how many “degrees of separation” between me and
Barack Obama?

I Google Maps: what is the shortest driving route from South
Hadley to Florida?

Can we build algorithms to answer these questions?

Networks Networks



Graphs

A graph is a mathematical representation of a network
I Set of nodes (vertices) V
I Set of pairs of nodes (edges) E

Graph G = (V, E)

Example: Internet in 1970

2.2. PATHS AND CONNECTIVITY 25

Figure 2.2: A network depicting the sites on the Internet, then known as the Arpanet, in
December 1970. (Image from F. Heart, A. McKenzie, J. McQuillian, and D. Walden [214];
on-line at http://som.csudh.edu/cis/lpress/history/arpamaps/.)

connections such as hyperlinks, citations, or cross-references. The list of areas in which

graphs play a role is of course much broader than what we can enumerate here; Figure 2.4

gives a few further examples, and also shows that many images we encounter on a regular

basis have graphs embedded in them.

2.2 Paths and Connectivity

We now turn to some of the fundamental concepts and definitions surrounding graphs. Per-

haps because graphs are so simple to define and work with, an enormous range of graph-

theoretic notions have been studied; the social scientist John Barnes once described graph

theory as a “terminological jungle, in which any newcomer may plant a tree” [45]. Fortu-

nately, for our purposes, we will be able to get underway with just a brief discussion of some

of the most central concepts.

Example: Internet in 1970

26 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC

RAND

UTAHSRI

UCLA

STANUCSB

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

Definitions:
Vertex v, edge e = (u, v), neighbor, incident, endpoints

Example: Internet in 1970

26 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC

RAND

UTAHSRI

UCLA

STANUCSB

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

Definitions:
Path, cycle, path length, distance between two nodes

Example: Internet in 1970

26 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC

RAND

UTAHSRI

UCLA

STANUCSB

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

Definitions:
Connected. Connected components.

Example: Internet in 1970

26 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC

RAND

UTAHSRI

UCLA

STANUCSB

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

Definitions:
Tree = a connected undirected graph that does not contain a cycle
Rooted vs. unrooted trees



Graph Traversal

Thought experiment. World social graph. Is it connected? Is there a
path between you and Barack Obama? How can you tell?

Answer: graph traversal! (BFS/DFS)

Breadth First Search
Traverse graph by exploring outward from starting node by distance.
“Expanding wave”2.3. DISTANCE AND BREADTH-FIRST SEARCH 33

you

distance 1

distance 2

distance 3

your friends

friends of friends

friends of friends

of friends

all nodes, not already discovered, that have an 

edge to some node in the previous layer

Figure 2.8: Breadth-first search discovers distances to nodes one “layer” at a time; each layer
is built of nodes that have an edge to at least one node in the previous layer.

a path’s length, we can talk about whether two nodes are close together or far apart in a

graph: we define the distance between two nodes in a graph to be the length of the shortest

path between them. For example, the distance between linc and sri is three, though to

believe this you have to first convince yourself that there is no length-1 or length-2 path

between them.

Breadth-First Search. For a graph like the one in Figure 2.3, we can generally figure

out the distance between two nodes by eyeballing the picture; but for graphs that are even

a bit more complicated, we need some kind of a systematic method to determine distances.

The most natural way to do this — and also the most e�cient way to calculate distances

for a large network dataset using a computer — is the way you would probably do it if you

Breadth-First Search: Layers

Define layer Li = all nodes at distance exactly i from s.
Layers
I L0 = {s}
I L1 = all neighbors of L0
I L2 = all nodes with an edge to L1 that don’t belong to L0 or L1
I . . .
I Li+1 = nodes with an edge to Li that don’t belong to any earlier

layer.

Li+1 = {v : ∃(u, v) ∈ E, u ∈ Li, v /∈ (L0 ∪ . . . ∪ Li)}

Observation: There is a path from s to t if and only if t appears in
some layer.

BFS

Exercise: draw the BFS layers for a BFS starting from MIT
26 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC

RAND

UTAHSRI

UCLA

STANUCSB

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

BFS Tree
34 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC RAND

UTAH

SRI

UCLASTANUCSB

distance 1

distance 2

distance 3

Figure 2.9: The layers arising from a breadth-first of the December 1970 Arpanet, starting
at the node mit.

really needed to trace out distances in the global friendship network (and had the unlimited

patience and cooperation of everyone in the world). This is pictured in Figure 2.8:

(1) You first declare all of your actual friends to be at distance 1.

(2) You then find all of their friends (not counting people who are already friends of yours),

and declare these to be at distance 2.

(3) Then you find all of their friends (again, not counting people who you’ve already found

at distances 1 and 2) and declare these to be at distance 3.

(...) Continuing in this way, you search in successive layers, each representing the next

distance out. Each new layer is built from all those nodes that (i) have not already

been discovered in earlier layers, and that (ii) have an edge to some node in the previous

layer.

This technique is called breadth-first search, since it searches the graph outward from a start-

ing node, reaching the closest nodes first. In addition to providing a method of determining

distances, it can also serve as a useful conceptual framework to organize the structure of a

graph, arranging the nodes based on their distances from a fixed starting point.

We can use BFS to make a tree.

BFS Tree
34 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC RAND

UTAH

SRI

UCLASTANUCSB

distance 1

distance 2

distance 3

Figure 2.9: The layers arising from a breadth-first of the December 1970 Arpanet, starting
at the node mit.

really needed to trace out distances in the global friendship network (and had the unlimited

patience and cooperation of everyone in the world). This is pictured in Figure 2.8:

(1) You first declare all of your actual friends to be at distance 1.

(2) You then find all of their friends (not counting people who are already friends of yours),

and declare these to be at distance 2.

(3) Then you find all of their friends (again, not counting people who you’ve already found

at distances 1 and 2) and declare these to be at distance 3.

(...) Continuing in this way, you search in successive layers, each representing the next

distance out. Each new layer is built from all those nodes that (i) have not already

been discovered in earlier layers, and that (ii) have an edge to some node in the previous

layer.

This technique is called breadth-first search, since it searches the graph outward from a start-

ing node, reaching the closest nodes first. In addition to providing a method of determining

distances, it can also serve as a useful conceptual framework to organize the structure of a

graph, arranging the nodes based on their distances from a fixed starting point.

Claim: let T be the tree discovered by BFS on graph G = (V, E),
and let (x, y) be any edge of G. Then the layer of x and y in T
differ by at most 1.
Proof on board



BFS and non-tree edges

Claim: let T be the tree discovered by BFS on graph G = (V, E),
and let (x, y) be any edge of G. Then the layer of x and y in T
differ by at most 1.
Proof
I Suppose x ∈ Li and y ∈ Lj with i < j − 1 but edge (x, y) exists.
I When BFS visits x, either y is already discovered or not.

I If y is already discovered, then j ≤ i. Contradiction.
I Otherwise since (x, y) ∈ E, y is added to Li+1. Contradiction.

A More General Strategy

To explore the connected component, add any node v for which
I (u, v) is an edge

I u is explored, but v is not
Picture on board

DFS

Depth-first search: keep exploring from the most recently added
node until you have to backtrack.
Example.

26 CHAPTER 2. GRAPHS

LINC

CASE

CARN

HARV

BBN

MIT

SDC

RAND

UTAHSRI

UCLA

STANUCSB

Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many di↵erent areas, there

are clearly some common themes in the use of graphs across these areas. Perhaps foremost

among these is the idea that things often travel across the edges of a graph, moving from

node to node in sequence — this could be a passenger taking a sequence of airline flights, a

piece of information being passed from person to person in a social network, or a computer

user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of

nodes with the property that each consecutive pair in the sequence is connected by an edge.

Sometimes it is also useful to think of the path as containing not just the nodes but also the

sequence of edges linking these nodes. For example, the sequence of nodes mit, bbn, rand,

ucla is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence case,

lincoln, mit, utah, sri, ucsb. As we have defined it here, a path can repeat nodes: for

example, sri, stan, ucla, sri, utah, mit is a path. But most paths we consider will not

do this; if we want to emphasize that the path we are discussing does not repeat nodes, we

can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a

“ring” structure such as the sequence of nodes linc, case, carn, harv, bbn, mit, linc

on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three

edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.

There are many cycles in Figure 2.3: sri, stan, ucla, sri is as short an example as possible

according to our definition (since it has exactly three edges), while sri, stan, ucla, rand,

bbn, mit, utah, sri is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means

that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles

Recursive DFS

DFS(u)
Mark u as "Explored"
for each edge (u, v) incident to u do

if v is not marked "Explored" then
Recursively invoke DFS(v)

end if
end for

Example on board

DFS Tree

Claim: let T be a depth-first search tree for graph G = (V, E), and
let (x, y) be an edge that is in G but not T (a “non-tree edge”).
Then either x is an ancestor of y or y is an ancestor of x in T .
proof on board

DFS and Non-tree edges

Claim: let T be a depth-first search tree for graph G = (V, E), and
let (x, y) be an edge that is in G but not T (a “non-tree edge”).
Then either x is an ancestor of y or y is an ancestor of x in T .
Proof
I Suppose not and suppose that x is reached first by DFS.
I Before leaving x, we must examine (x, y).
I Since (x, y) /∈ T , y must have been explored by this time.
I But y was not explored when we arrived at x by assumption.
I Thus y was explored during the execution of DFS(x).
I Implies x is ancestor of y.



Using Graph Traversal

Definition: the connected component C(v) of node v is the set of
all nodes with a path to v.
Easy claim: for any two nodes s and t either C(s) = C(t), or C(s)
and C(t) are disjoint.
Picture/example on board

Finding Connected Components

Traverse entire graph even if not connected.
Extract connected components.

while There is some unexplored node s do
BFS(s) . Run BFS starting from s.
Extract connected component C(s).

end while

Running time?
What’s the running time of BFS?

Summary So Far

I Graph – definitions
I Graph traversals – BFS, DFS, and some properties
I Finding connected components

I Next – Implementation and run-time analysis.

Representing a graph

Adjacency List Representation.
I Nodes numbered 1, . . . , n.
I Adj[v] points to a list of all of v’s neighbors.
I Example

Implementing BFS

Maintain set of explored nodes and discovered
I Explored = have seen this node and explored its outgoing edges

I Discovered = the “frontier”. Have seen the node, but not
explored its outgoing edges.

Picture on board

BFS Implementation

Let A = Queue of discovered nodes (FIFO)
Traverse(s)

Put s in A
while A is not empty do

Take a node v from A
if v is not marked “explored" then

Mark v as “explored"
for each edge (v, w) incident to v do

Put w in A . w is discovered
end for

end if
end while

Note: one part of this algorithm seems really dumb. Why?
Can put multiple copies of a node in A. (“Rediscover it many
times”)



BFS Implementation

Let A = Queue of discovered nodes (FIFO)
Traverse(s)

Put s in A
while A is not empty do

Take a node v from A
if v is not marked “explored" then

Mark v as “explored"
for each edge (v, w) incident to v do

Put w in A . w is discovered
end for

end if
end while

Is this BFS?

Summary

Definitions
I G = (V, E), n = |V |, m = |E|
I neighbor, incident, cycle, path, connected
BFS and DFS
I Two ways to traverse a graph, each produces a tree
I BFS tree: shallow and wide (“bushy”)
I DFS tree: deep and narrow (“scraggly”)
I Connected Components


