CMPSCI 311: Introduction to Algorithms

Akshay Krishnamurthy

University of Massachusetts

Last Compiled: January 29, 2018

Announcements

» Homework 1 released (Due 2/7 11:59pm)
> Quiz 1 out (Due 1/30 11:59pm)
» Discussion section Friday

Plan

» Review: Asymptotics

> 0(-),Q(),0()
» Running time analysis

» Graphs

» Motivation and definitions
» Graph traversal

Review: Asymptotics

Definition f(n) = O(g(n)) if there exists ng, ¢ such that for all
n > ng, f(n) <cg(n).

» g is an asymptotic upper bound on f.
Definition f(n) = Q(g(n)) if g(n) = O(f(n)).
> ¢ is an asymptotic lower bound on f.

Definition f(n) = ©(g(n)) if f(n) = O(g(n)) and
9(n) = O(f(n)).

> g is an asymptotically tight bound on f.

Algorithm design

v

Formulate the problem precisely

> Design an algorithm to solve the problem

v

Prove the algorithm is correct

v

Analyze the algorithm’s running time

Running Time Analysis

Mathematical analysis of worst-case running time of an algorithm as
function of input size. Why these choices?

» Mathematical: describes the algorithm. Avoids hard-to-control
experimental factors (CPU, programming language, quality of
implementation), while still being predictive.

» Worst-case: just works. (“average case” appealing, but hard to
analyze)

» Function of input size: allows predictions. What will happen on a
new input?

Running time analysis

Mathematical analysis of worst-case running time of an algorithm as
function of input size.

» To prove O(f(n)): Argue that for all n and for all inputs of size
n the number of primitive operations is O(f(n)).

> To prove Q(g(n)): Argue that for all n, there exists some input
of size n where the number of primitive operations is Q(g(n)).

Polynomial Time

Working definition of efficient

Definition: an algorithm runs in polynomial time if the number of
primitive execution steps is at most ¢n?, where n is the input size
and ¢ and d are constants.

» Matches practice: almost all practically efficient algorithms have

this property

» Usually distinguishes a clever algorithm from a “brute force”
approach (n? = O(2") for all constant d).

» Refutable: gives us a way of saying an algorithm is not efficient,
or that no efficient algorithm exists.

Plan

> Review: Asymptotics

> 0(),9(),0()

> Running time analysis
» Graphs

» Motivation and definitions
» Graph traversal

Questions

» Facebook: how many “degrees of separation” between me and
Barack Obama?

» Google Maps: what is the shortest driving route from South
Hadley to Florida?

Can we build algorithms to answer these questions?

Networks

Networks

Massachusetts Bay Transportation Authority
Commuter Rail Map

R AR

e

Pt &

Legend

Graphs

A graph is a mathematical representation of a network

> Set of nodes (vertices) V'
> Set of pairs of nodes (edges) E

Graph G = (V, E)

Example: Internet in 1970

Example: Internet in 1970

Definitions:

Vertex v, edge e = (u,v), neighbor, incident, endpoints

Example: Internet in 1970

Definitions:
Path, cycle, path length, distance between two nodes

Example: Internet in 1970

Definitions:
Connected. Connected components.

Example: Internet in 1970

Definitions:

Tree = a connected undirected graph that does not contain a cycle
Rooted vs. unrooted trees

Graph Traversal

Thought experiment. World social graph. Is it connected? Is there a
path between you and Barack Obama? How can you tell?

Answer: graph traversal! (BFS/DFS)

Breadth First Search

Traverse graph by exploring outward from starting node by distance.
“Expanding wave"

distance 1 your friends

distance 2 friends of friends

friends of friends
of friends

distance 3

all nodes, not already discovered, that have an
edge to some node in the previous layer

Breadth-First Search: Layers

Define layer L; = all nodes at distance exactly i from s.
Layers

> L[) = {9}

» L; = all neighbors of Ly

» Lo = all nodes with an edge to L; that don't belong to Ly or L
>

»

L;+1 = nodes with an edge to L; that don't belong to any earlier
layer.

Liyi ={v:3(u,v) € E,u€ Lj,v¢ (LoU...UL;)}

Observation: There is a path from s to ¢ if and only if ¢ appears in
some layer.

BFS

Exercise: draw the BFS layers for a BFS starting from MIT

BFS Tree

distance 1

distance 2

distance 3

We can use BFS to make a tree.

BFS Tree

distance 1

distance 2

distance 3

Claim: let T' be the tree discovered by BFS on graph G = (V, E),
and let (x,y) be any edge of G. Then the layer of z and y in T’
differ by at most 1.

Proof on board

BFS and non-tree edges

Claim: let T' be the tree discovered by BFS on graph G = (V, E),
and let (x,y) be any edge of G. Then the layer of z and y in T’
differ by at most 1.

Proof

> Suppose z € L; and y € L; with i < j — 1 but edge (z,y) exists.

» When BFS visits z, either y is already discovered or not.

> If y is already discovered, then j < i. Contradiction.

» Otherwise since (z,y) € E, y is added to L;;1. Contradiction.

A More General Strategy

To explore the connected component, add any node v for which
> (u,v) is an edge
> w is explored, but v is not

Picture on board

DFS

Depth-first search: keep exploring from the most recently added
node until you have to backtrack.
Example.

Recursive DFS

DFS(u)
Mark u as "Explored"
for each edge (u,v) incident to u do
if v is not marked "Explored" then
Recursively invoke DFS(v)
end if
end for

Example on board

DFS Tree

Claim: let T' be a depth-first search tree for graph G = (V, E), and
let (z,y) be an edge that is in G but not T' (a “non-tree edge”).
Then either z is an ancestor of y or y is an ancestor of x in T'.
proof on board

DFS and Non-tree edges

Claim: let T' be a depth-first search tree for graph G = (V, E), and
let (z,y) be an edge that is in G but not T' (a “non-tree edge”).

Then either x is an ancestor of y or y is an ancestor of z in T'.
Proof

Suppose not and suppose that z is reached first by DFS.
Before leaving x, we must examine (z,y).

Since (z,y) ¢ T, y must have been explored by this time.
But y was not explored when we arrived at = by assumption.
Thus y was explored during the execution of DFS(x).

Implies x is ancestor of y.

yVvYyVYVvYVvYy

Using Graph Traversal

Definition: the connected component C(v) of node v is the set of
all nodes with a path to v.

Easy claim: for any two nodes s and ¢ either C(s) = C(t), or C(s)
and C(t) are disjoint.

Picture/example on board

Finding Connected Components

Traverse entire graph even if not connected.
Extract connected components.

while There is some unexplored node s do

BFS(s) > Run BFS starting from s.
Extract connected component C(s).
end while

Running time?
What's the running time of BFS?

Summary So Far

v

Graph — definitions
Graph traversals — BFS, DFS, and some properties
Finding connected components

v

v

> Next — Implementation and run-time analysis.

Representing a graph

Adjacency List Representation.

» Nodes numbered 1,...,n.
» Adj[v] points to a list of all of v's neighbors.
» Example

Implementing BFS

Maintain set of explored nodes and discovered
» Explored = have seen this node and explored its outgoing edges

» Discovered = the “frontier”. Have seen the node, but not
explored its outgoing edges.

Picture on board

BFS Implementation

Let A = Queue of discovered nodes (FIFO)
Traverse(s)
Put sin A
while A is not empty do
Take a node v from A
if v is not marked “explored" then
Mark v as “explored"
for each edge (v, w) incident to v do
Put win A
end for
end if
end while

> w is discovered

Note: one part of this algorithm seems really dumb. Why?
Can put multiple copies of a node in A. (“Rediscover it many
times")

BFS Implementation

Let A = Queue of discovered nodes (FIFO)
Traverse(s)
Put sin A
while A is not empty do
Take a node v from A
if v is not marked “explored" then
Mark v as “explored"
for each edge (v, w) incident to v do
Put w in A
end for
end if
end while
Is this BFS?

> w is discovered

Summary

Definitions

» G=(V,E),n=|V|,m = |E|
» neighbor, incident, cycle, path, connected

BFS and DFS

Two ways to traverse a graph, each produces a tree
BFS tree: shallow and wide (“bushy”)

DFS tree: deep and narrow (“scraggly”)

Connected Components

vvyVvyy

