Announcements

- HW6 due tomorrow!
- Extra Credit tomorrow as well
- Final on Friday 3:30-5:30 (Marcus Hall 131)
- We are trying our best on grades...
- Please fill out SRTI course evaluations and UCA evaluations.

Remarks on the final

- One problem you have already seen before
 - Either homework or previous exam
 - Covers everything fairly equally
 - Big-Oh, Graphs, Greedy, Divide and Conquer, Dynamic Programming, Network Flows, NP-Completeness, Randomized Algs.

Today

- Randomized Median Finding
- Approximate Load Balancing

Randomized Algorithm

- Algorithms that make random choices.
 - Can flip coins, roll dice, etc.
- Two types of randomized algorithms:
 - Fail with some small probability.
 - Always succeed but running time is random.
 - How powerful are randomized algorithms?

Median Find

Problem. Given a set of numbers \(S = \{a_1, \ldots, a_n\} \) the median is the number in the middle if the numbers were sorted.

- If \(n \) is odd then \(k \)th smallest element where \(k = (n + 1)/2 \).
- If \(n \) is even then \(k \)th smallest element where \(k = n/2 \).

Deterministic algorithm?

- Sort numbers, take \(k \)th smallest.
- \(O(n \log n) \).
More generally

Problem. Given a set of numbers $S = \{a_1, \ldots, a_n\}$ and number k, return kth smallest number. (Assume no duplicates)

Special cases:

- $k = 1$: minimum element $O(n)$
- $k = n$: maximum element $O(n)$.

Why is it $O(n \log n)$ for $k = n/2$?

Divide and Conquer Algorithm

- Choose splitter (or pivot) $a_i \in S$.
- Form sets $S^- = \{a_j : a_j < a_i\}$, $S^+ = \{a_j : a_j > a_i\}$.

If:

- $|S^-| = k - 1$: a_i is the target.
- $|S^-| \geq k$: recurse on (S^-, k).
- $|S^-| < k - 1$, recurse on $(S^+, k - (|S^-| + 1))$.

How to choose splitter?

We want recursive calls to work on much smaller sets.

- Best case, splitter is the median:

 $T(n) \leq T(n/2) + cn = O(n)$ runtime

- Worst case, splitter is largest element:

 $T(n) \leq T(n - 1) + cn = O(n^2)$ runtime

- Middle case, splitter separates cn elements

 $T(n) \leq T((1 - \epsilon)n) + cn$

 $T(n) \leq cn \left[1 + (1 - \epsilon) + (1 - \epsilon)^2 + \ldots\right] \leq \frac{cn}{\epsilon}$

How can we stay close to the best case?

Randomized Splitters

Idea. Choose splitter uniformly at random.

Analysis. Phase j when $n(3/4)^{j+1} \leq |S| \leq n(3/4)^j$.

- Claim. Expect to stay in phase j for two rounds.

 Call splitter central if separates $1/4$ fraction of elements.

 $\Pr[\text{central splitter}] = 1/2$.

 If X is number of attempts until central splitter,

 $\mathbb{E}[X] = \sum_{j=1}^{\infty} \Pr[X = j] = \sum_{j=1}^{\infty} j p (1 - p)^{j-1}$

 $= \frac{p}{1 - p} \sum_{j=1}^{\infty} j (1 - p)^j = \frac{p}{1 - p} \cdot \frac{(1 - p)}{p^2}$

 $= \frac{1}{p}$

Analysis

- Let Y be a r.v. equal to number of steps of the algorithm

 $Y = Y_0 + Y_1 + Y_2 + \ldots$ where Y_j is steps in phase j

 One iteration in phase j takes $cn(3/4)^j$ steps.

 $\mathbb{E}[Y_j] \leq 2cn(3/4)^j$ since expect two iterations.

 $\mathbb{E}[Y] = \sum_j \mathbb{E}[Y_j] \leq \sum_j 2cn(3/4)^j$

 $= 2cn \sum_j (3/4)^j \leq 8cn$

Theorem

Expected running time of $\text{Select}(n, k)$ is $O(n)$.
Applications

- Randomized median find in expected linear time

Quicksort (Sketch)

- Choose pivot at random. Form S^-, S^+.
- Recursively sort both.
- Concatenate together.

Theorem. Quicksort has expected $O(n \log n)$ time.

Approximation Algorithms

- We’ve seen important problems that are NP-complete. For these problems, should we just give up? No.

- Perhaps we can approximate them. For example, for a minimization problem can we design an algorithm such that whenever we run the algorithm we can guarantee that $$\frac{\text{value of our solution}}{\text{value of optimum solution}} \leq \alpha$$ for some value of $\alpha \geq 1$. Such an algorithm is called an α-approximation algorithm.

Load Balancing

- **Input.** There are m machines and n jobs $\{1, 2, \ldots, n\}$ to be done. The time it takes to do each job is t_1, t_2, \ldots, t_n.

- **Goal.** Divide the jobs between the m machines such that no machine does too much work, i.e., if $S_1, \ldots, S_m \subset \{1, 2, \ldots, n\}$ are the set of jobs done by each machine then we want to minimize:

 $$T = \max \left(\sum_{i \in S_1} t_i, \ldots, \sum_{i \in S_m} t_i \right)$$

 i.e., the time taken by the last machine to finish their jobs.

- We say the total amount of time of jobs allocated to a machine is its load

Analysis: Part 1

- Let T^* be smallest possible value $\max \left(\sum_{i \in S_1} t_i, \ldots, \sum_{i \in S_m} t_i \right)$

- **Lemma 1:** $T^* \geq t_i$ for all $i = 1, 2, \ldots, n$.

- **Proof:** Some machine needs to do the ith job and that machine is going to take at least t_i time. The max time taken is at least the time this machine spends.

- **Lemma 2:** $T^* \geq (\sum_{i=1}^n t_i)/m$.

- **Proof:** If every machine took $< (\sum_{i=1}^n t_i)/m$ time, then the total amount of work done is $< \sum_{i=1}^n t_i$. But this is impossible since all the jobs need to be done.

Analysis: Part 2

- When a machine is assigned job i by the algorithm, its new load = its old load + t_i

- Recall that we assigned the job to the machine with the smallest current load. The smallest current load is at most $(\sum_{i=1}^n t_i)/m$.

- Hence, by appealing to Lemma 1 and Lemma 2, its new load $< (\sum_{i=1}^n t_i)/m + t_i \leq 2T^*$

 i.e., a machine can never be assigned more than a load of $2T^*$.

- Hence, the algorithm is a 2-approximation.

A Simple Algorithm

- For $i = 1$ to n:
 - Assign job to the machine who currently has the smallest load.
An Improved Algorithm

- Sort the jobs such that \(t_1 \geq t_2 \geq t_3 \geq \ldots \geq t_n \)
- For \(i = 1 \) to \(n \):
 - Assign job to the machine who currently has the smallest load.

Analysis: Part 1

- Let \(T^* \) be smallest possible value \(\max (\sum_{i \in S_1} t_i, \ldots, \sum_{i \in S_m} t_i) \)
- Lemma 3: \(T^* \geq 2t_{m+1} \).
- Proof: Some machine must do at least two of the jobs \(\{1, 2, \ldots, m + 1\} \), say jobs \(i \) and \(j \). That machine takes at least \(t_i + t_j \geq 2t_{m+1} \) time.

Analysis: Part 2

- When a machine is assigned job \(i \) by the algorithm,
 \[
 \text{new load} = \text{old load} + t_i
 \]
- Recall that we assigned the job to the machine with the smallest current load. The smallest current load is at most \((\sum_{i=1}^m t_i)/m \) and is 0 if \(i \leq m \).
- Hence, if \(i \leq m \) then by appealing to Lemma 1,
 \[
 \text{new load} = 0 + t_i \leq T^*
 \]
- Hence, if \(i \geq m + 1 \), by appealing to Lemma 2 and Lemma 3,
 \[
 \text{new load} < (\sum_{i=1}^n t_i)/m + t_i \leq T^* + t_{m+1} \leq T^* + T^*/2 = 1.5T^*
 \]
- Hence, the algorithm is a 1.5-approximation since no machine can ever be assigned more than 1.5 times the optimum.