Randomized and Approximation Algorithms

Today

Randomized and Approximation Algorithms

- Minimum Cuts
- Median Finding
- Vertex Cover

Randomized Algorithms

- So far: deterministic algorithms on worst case inputs.
- Why deterministic algorithms?
 - Easier to understand, pretty powerful.
- Two types of randomized algorithms:
 - Fail with some small probability.
 - Always succeed but running time is random.
- How powerful are randomized algorithms?

Minimum Cuts

Problem. Given undirected $G = (V, E)$, partition V into sets $A, V \setminus A$ to minimize,

$$\text{cut}(A) = |\{(u, v) \in E, u \in A, v \notin A\}|$$

- Previously, we saw how to compute minimum $s - t$ cut in directed graph.
- How do we compute global minimum cut?

Deterministic Algorithm

Idea. Convert into $s - t$ cut in directed graph.

Replace $e = (u, v)$ with directed edges in both directions (with capacity 1).

Pick arbitrary s.

for each other vertex t do
 Compute minimum $s - t$ cut.
end for

Return smallest computed $s - t$ cut.

Running Time. n max-flow computations $\Rightarrow O(mn^2)$ at best.

Contraction Algorithm Preliminaries

Def. Multigraph $G = (V, E)$ is a graph that can have parallel edges.

Def. Contracting an edge (u, v) in $G = (V, E)$ produces a new multigraph $G' = (V', E')$

- With new node w instead of u, v ((u, v) edges deleted).
- If (x, u) or $(x, v) \in E$, then $(x, w) \in E'$.
- All other edges preserved.
Contraction Algorithm

\[S(v) = \{v\} \text{ for all } v \in V. \]

\[\textbf{while } |V| > 2 \textbf{ do} \]

\[\text{Pick edge } (u,v) \in E \text{ uniformly at random.} \]

\[\text{Contract edge } (u,v) \text{ to get } G' \text{ with new node } w. \]

\[\text{Set } S(w) \leftarrow S(u) \cup S(v). \]

\[\text{Update } G \leftarrow G'. \]

\[\textbf{end while} \]

\[\text{Return } S(v) \text{ for } v \in V. \]

Contraction Algorithm Analysis

Theorem. Alg finds global min cut with probability at least \(1/(n^2)\).

Proof. Suppose \((A,B)\) is a global min cut with \(\text{cut}(A,B) = k\)

- **What could go wrong in the first step?**
 - Select \((u,v)\) where \(u \in A, v \in B\).

 \[\Pr[\text{mistake in round 1}] = \Pr[\text{select } u \in A, v \in B] = \frac{k}{\# \text{ of edges}} \]

- \# of edges \(\geq \frac{1}{2}kn\) since if \(\deg(w) < k\) \((\{w\}, V \setminus \{w\})\) is smaller cut!

Final steps

- Let \(E_j\) be the event that \((A,B)\) is not contracted in round \(j\)

 \[\Pr[E_j | E_1 \cap \ldots \cap E_{j-1}] \geq 1 - \frac{2}{n-j+1} \]

 \[\Pr[E_1 \cap \ldots \cap E_{n-2}] = \Pr[E_1] \cdot \Pr[E_2 | E_1] \cdot \ldots \cdot \Pr[E_{n-2} | E_1 \cap \ldots \cap E_{n-3}] \]

 \[\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \ldots \left(1 - \frac{2}{3}\right) \]

 \[= \frac{2}{n(3-1)} \]

Global Min Cuts Takeaways

- **Simple randomized algorithm works pretty well.**
- **Technical Tools**
 - Chain Rule
 - Some calculus

Contraction Algorithm

<table>
<thead>
<tr>
<th>(S(v) = {v} \text{ for all } v \in V.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>while (</td>
</tr>
<tr>
<td>[\text{Pick edge } (u,v) \in E \text{ uniformly at random.}]</td>
</tr>
<tr>
<td>[\text{Contract edge } (u,v) \text{ to get } G' \text{ with new node } w.]</td>
</tr>
<tr>
<td>[\text{Set } S(w) \leftarrow S(u) \cup S(v).]</td>
</tr>
<tr>
<td>[\text{Update } G \leftarrow G'.]</td>
</tr>
<tr>
<td>end while</td>
</tr>
<tr>
<td>Return (S(v) \text{ for } v \in V.)</td>
</tr>
</tbody>
</table>

Contraction Algorithm Analysis

<table>
<thead>
<tr>
<th>[\Pr[\text{mistake in round 1}] \leq \frac{k}{2kn} = \frac{1}{n}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consider round (j + 1):</td>
</tr>
<tr>
<td>▸ Every cut in contracted graph is a cut in (G), so every supernode has degree at least (k).</td>
</tr>
<tr>
<td>[\Pr[\text{mistake in } j + 1</td>
</tr>
</tbody>
</table>

Final steps

<table>
<thead>
<tr>
<th>▸ Let (E_j) be the event that ((A,B)) is not contracted in round (j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\Pr[E_j</td>
</tr>
</tbody>
</table>

Global Min Cuts Takeaways

<table>
<thead>
<tr>
<th>▸ Simple randomized algorithm works pretty well.</th>
</tr>
</thead>
<tbody>
<tr>
<td>▸ Technical Tools</td>
</tr>
<tr>
<td>▸ Chain Rule</td>
</tr>
<tr>
<td>▸ Some calculus</td>
</tr>
</tbody>
</table>
Median Find

Problem. Given a set of numbers $S = \{a_1, \ldots, a_n\}$ the median is the number in the middle if the numbers were sorted.

- If n is odd then kth smallest element where $k = (n + 1)/2$.
- If n is even then kth smallest element where $k = n/2$.

Deterministic algorithm?

- Sort numbers, take kth smallest.
- $\mathcal{O}(n \log n)$.

How to choose splitter?

- We want recursive calls to work on much smaller sets.
- Best case, splitter is the median:
 $$T(n) \leq T(n/2) + cn = O(n)$$ runtime
- Worst case, splitter is largest element:
 $$T(n) \leq T(n - 1) + cn = O(n^2)$$ runtime
- Middle case, splitter separates ϵn elements
 $$T(n) \leq T((1 - \epsilon)n) + cn$$
 $$T(n) \leq cn \left[1 + (1 - \epsilon) + (1 - \epsilon)^2 + \ldots \right] \leq \frac{cn}{\epsilon}$$

How can we stay close to the best case?

Divide and Conquer Algorithm

Choose splitter (or pivot) $a_i \in S$

Form sets $S^- = \{a_j : a_j < a_i\}, S^+ = \{a_j : a_j > a_i\}$.

- If:
 - $|S^-| = k - 1$: a_i is the target.
 - $|S^-| \geq k$: recurse on (S^-, k).
 - $|S^-| < k - 1$, recurse on $(S^+, k - (|S^-| + 1))$.

Looks kind of like quicksort...

Fact. Algorithm is correct.

Pseudocode

SELECT(S,k):

Choose splitter $a_i \in S$.

for each $a_j \in S$ do
 Put $a_j \in S^-$ if $a_j < a_i$.
 Put $a_j \in S^+$ if $a_j > a_i$.
end for

If $|S^-| = k - 1$, return a_i.

If $|S^-| \geq k$, return $\text{SELECT}(S^-, k)$.

Else, return $\text{SELECT}(S^+, k - (|S^-| + 1))$.

Looks kind of like quicksort...

Fact. Algorithm is correct.

More generally

Problem. Given a set of numbers $S = \{a_1, \ldots, a_n\}$ and number k, return kth smallest number. (Assume no duplicates)

Special cases:

- $k = 1$: minimum element $O(n)$
- $k = n$: maximum element $O(n)$.

Why is it $O(n \log n)$ for $k = n/2$?

Randomized Splitters

Idea. Choose splitter uniformly at random.

Analysis. Phase j when $n(3/4)^j + 1 \leq |S| \leq n(3/4)^j$.

- **Claim.** Expect to stay in phase j for two rounds.
 - Call splitter *central* if separates $1/4$ fraction of elements.
 - $\Pr[\text{central splitter}] = 1/2$.
 - If X is number of attempts until central splitter,
 $$\mathbb{E}[X] = \sum_{j=1}^{\infty} j \Pr[X = j] = \sum_{j=1}^{\infty} j p(1 - p)^{j-1} = \frac{p}{1 - p} \sum_{j=1}^{\infty} j(1 - p)^j = \frac{p}{1 - p} \frac{(1 - p)^2}{p^2} = \frac{1}{p}$$
Analysis

- Let \(Y \) be a r.v. equal to number of steps of the algorithm
 - \(Y = Y_0 + Y_1 + Y_2 + \ldots \) where \(Y_j \) is steps in phase \(j \)
 - One iteration in phase \(j \) takes \(cn(3/4)^j \) steps.
 - \(E[Y_j] \leq 2cn(3/4)^j \) since expect two iterations.

\[
E[Y] = \sum_j E[Y_j] \leq \sum_j 2cn(3/4)^j = 2cn \sum_j (3/4)^j \leq 8cn
\]

Theorem

Expected running time of \(\text{Select}(n,k) \) is \(O(n) \).

Applications

- Randomized median find in expected linear time

Quicksort (Sketch)

- Choose pivot at random. Form \(S^-, S^+ \).
- Recursively sort both.
- Concatenate together.

Theorem. Quicksort has expected \(O(n \log n) \) time.

Approximation Algorithms

- We’ve seen important problems that are NP-complete. For these problems, should we just give up? No.
- Perhaps we can approximate them. For example, for a minimization problem can we design an algorithm such that whenever we run the algorithm we can guarantee that

\[
\frac{\text{value of our solution}}{\text{value of optimum solution}} \leq \alpha
\]

for some value of \(\alpha \geq 1 \). Such an algorithm is called an \(\alpha \)-approximation algorithm.

Vertex Cover

- Input. An undirected graph \(G = (V,E) \).
- Goal. Find the smallest subset of nodes \(S \subseteq V \) such that for every edge \(e \in E \), at least one of the end points of \(e \) is in \(S \).

Algorithm

- \(S \leftarrow \emptyset \)
- While the graph \(G \) has any edges:
 - Pick an edge \((u,v) \)
 - Add \(u \) and \(v \) to \(S \)
 - Remove nodes \(u \) and \(v \) from \(G \) along with all incident edges
- Return \(S \)

Analysis

- Let \(M = \{e_1, \ldots, e_k\} \) be the edges picked by the algorithm and note that \(|S| = 2k \).
- Lemma: The minimum vertex cover has size at least \(k \).
- Proof: Since the endpoints of \(e_1, \ldots, e_k \) are all distinct, it takes at least \(k \) nodes to cover the edges in \(M \).
- Lemma: The nodes in \(S \) are a vertex cover.
- Proof: Consider any edge \(e = (u,v) \in E \). At the end of the algorithm, \(e \) isn’t in the graph. The only way \(e \) could have been removed is if \(u \) or \(v \) was added to \(S \). Hence \(S \) is a vertex cover.
- Therefore the algorithm achieves an approximation ratio of:

\[
\frac{\text{value of our solution}}{\text{value of optimum solution}} \leq \frac{2k}{k} = 2
\]
A randomized approximation algorithm!

- $S \leftarrow \emptyset$
- For each $(u, v) \in E$:
 - If neither u nor v are in S
 - Randomly select one, add to S
- Return S

Analysis

- Let OPT denote the optimal vertex cover.
- At each round, we maintain
 \[E|S \cap OPT| \geq E|S \setminus OPT| \]
- Since when we add an element, OPT must as well, and we agree with probability $1/2$.
- Implies $E|S| \leq 2|OPT|$