Announcements

- Quiz due tonight
- HW 6 due 5/1 (Tuesday night!), and extra credit
- Midterms back on wednesday (Solutions up tonight)
- Last discussion on friday
- Final Exam: Friday 5/4, 3:30-5:30pm, Marcus Hall 131.

Recap

- Problem X is a set of strings s, the YES instances.
- Algorithm A solves X if $A(s) = \text{true}$ iff $s \in X$.
- B is polytime certifier for X if
 - B is polytime algorithm of two inputs s and t (a hint).
 - $s \in X$ iff exists t with $|t| \leq p(|s|)$ and $B(s, t) = \text{True}$.
- \mathcal{P} – class of problems with polytime algorithm.
- \mathcal{NP} – class of problems with polytime certifier.
- X is NP-Complete iff $Y \leq_{P} X$ for all $Y \in \mathcal{NP}$.

Example

<table>
<thead>
<tr>
<th>Problem (X)</th>
<th>INDEPENDENTSET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance (s)</td>
<td>Graph G and number k</td>
</tr>
<tr>
<td>Algorithm (A)</td>
<td>Try all subsets and check (Runtime?)</td>
</tr>
<tr>
<td>Hint (t)</td>
<td>Which nodes are in the answer?</td>
</tr>
<tr>
<td>Certifier (B)</td>
<td>Are those nodes independent and size k?</td>
</tr>
</tbody>
</table>

Plan for today

- Review 3-SAT \leq_{P} CIRCUITSAT
- HAMCYCLE
- TSP

Back to 3-SAT

Claim. If Y is NP-complete and $Y \leq_{P} X$, then X is NP-complete.

Theorem. 3-SAT is NP-Complete.

- Clearly in \mathcal{NP}.
- Prove by reduction from CIRCUITSAT.

Example.
The Reduction

- One variable \(x_v \) per circuit node \(v \).
- Clauses to enforce circuit computations.
 - If \(v = \neg \) then \(v \) has one input \(u \) and can add clauses \((x_v \lor x_u), (\neg x_v \lor \neg x_u)\).
 - If \(v = \lor \) with \(u, w \) incoming then \((x_v \lor \neg x_u), (x_v \lor \neg x_w), (\neg x_v \lor x_u \lor x_w)\).
 - If \(v = \land \) then \((\neg x_v \lor x_u), (\neg x_v \lor x_w), (x_v \lor \neg x_u \lor \neg x_w)\).
- Input bits get set with \((x_v)\) if fixed to one and \((\neg x_v)\) otherwise.
- Clause \((x_o)\) for output bit.

Final steps

- This formula satisfiable iff circuit is satisfiable.
- But not a 3-sat formula! It has clauses of size 1 and 2.
 - Fix: 4 new variables \(z_1, \ldots, z_4 \) where \(z_1, z_2 \) forced to be 0.
 - Include those two in any short clause.

Theorem. IndependentSet, VertexCover, SetCover, SAT, 3-SAT are all NP-Complete.

Finding NP-Complete Problems.

Want to prove problem \(X \) is NP-complete.

- Check \(X \in NP \).
- Choose known NP-complete problem \(Y \).
- Prove \(Y \leq_P X \).
- Often suffices to do single transformation from \(y \rightarrow x \) where
 - \(y \in Y \) if \(x \in X \).
 - \(y \notin Y \) if \(x \notin X \).
 - Known as Karp Reduction.

Touring problems.

Two new problems.

- TSP – Traveling Salesman. Given points \(v_1, \ldots, v_n \) with distances \(d(v_i, v_j) \geq 0 \), can we visit all points and return home with total distance less than \(B \)?
 \[
 \text{cost}(\sigma) = \sum_{i=1}^{n} d(v_{\sigma(i)}, v_{\sigma(i+1)})
 \]
- HamCycle – Hamiltonian Cycle. Given directed graph \(G = (V, E) \), is there a cycle that visits each vertex exactly once?

HamCycle Example

\[
\begin{array}{c}
\text{HamCycle Example} \\
\begin{array}{c}
\text{Example}
\end{array}
\end{array}
\]

HamCycle

Theorem. HamCycle is NP-Complete.

- It is in \(NP \).
- Need to reduce from some NP-Complete problem. Which one?

Claim. 3-SAT \(\leq_P \) HamCycle.

Reduction has two main parts.

- Make a graph with \(2^n \) Hamiltonian cycles, one per assignment.
- Augment graph with clauses to invalidate assignments.
Graph skeleton

Skeleton Construction

- n rows (one per variable).
- Row has $4m + 2$ vertices connected in forward and backward path.
- First and last vertex of row i connected to first and last of $i+1$.
- Source s connected to first and last of row 1.
- First and last of row n connected to t.
- Edge (t, s).

Augmenting

For clause $C_l = x_i \lor \neg x_j \lor x_k$ new node c_l in graph.

- Edges $(v_i, 4l, c_l)$ and $(c_l, v_i, 4l+1)$.
- Edges $(v_j, 4l+1, c_l)$ and $(c_l, v_j, 4l)$.
- Edges $(v_k, 4l, c_l)$ and $(c_l, v_k, 4l+1)$.

Can only visit c_l on row i if traverse i from left to right.

Example

(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)

Proof

If ϕ is satisfying assignment

- If $\phi(x_i) = 1$ traverse left to right, else right to left.
- For each C_l, it is satisfied, so one term is traversed in the correct direction
 - We can therefore splice it into our cycle.

If P is a Hamiltonian cycle

- If P visits c_l from row i, it will also leave to row i.
- Splice out clause variables leaves cycle on skeleton.
 - Cycles on skeleton correspond to assignments!

Traveling Salesman

- TSP – Traveling Salesman. Given points v_1, \ldots, v_n with distances $d(v_i, v_j) \geq 0$, can we visit all points and return home with total distance less than B?

 \[
 \text{cost}(\sigma) = \sum_{i=1}^{n} d(v_{\sigma(i)}, v_{\sigma(i+1)})
 \]

Theorem. TSP is NP-Complete

- Clearly in \mathcal{NP}.
- Reduction from HAMCYCLE.
TSP reduction

Given HamCycle instance $G = (V, E)$ make TSP instance

- One point per vertex.
- $d(v_i, v_j) = 1$ if $(v_i, v_j) \in E$, else 2. (asymmetric).
- Set bound to be n.

TSP of distance n iff HamCycle of length n

HamPath

Similar to Hamiltonian Cycle, visit every vertex exactly once.

Theorem. HamPath is NP-Complete.

Two proofs.

- Modify 3-SAT to HamCycle reduction.
- Reduce from HamCycle directly.

Graph Coloring

Def. A k-coloring of a graph $G = (V, E)$ is a function $f : V \rightarrow \{1, \ldots, k\}$ such that for all $(u, v) \in E$, $f(u) \neq f(v)$.

Problem. Given $G = (V, E)$ and number k, does G have a k-coloring?

Many applications

- Actually coloring maps!
- Scheduling jobs on machine with competing resources.
- Allocating variables to registers in a compiler.

Graph Coloring

Claim. 2-COLORING $\in \mathcal{P}$.

Proof.

- 2-coloring equivalent to bipartite testing.

Theorem. 3-COLORING is NP-Complete.

Reduction

Reduce from 3-SAT.

- Skeleton – Idea: 1 color for True, 1 for False
- 3 extra nodes in a clique T, F, B.
- For each variable x_i, two nodes v_{i0}, v_{i1}.
- Edges $(v_{i0}, B), (v_{i1}, B), (v_{i0}, v_{i1})$.
- Either v_{i0} or v_{i1} gets the T color.

For clause $x_i \lor \neg x_j \lor x_k$
Proof

- Graph is polynomial in $n + m$.
- If satisfying assignment
 - Color B, T, F then v_{11} as T if $\phi(x_i) = 1$.
 - Since clauses satisfied, can color each gadget.
- If graph 3-colorable
 - One of v_{01}, v_{11} must get T color.
 - Clause gadget colorable iff clause satisfied.

Question. What about k-coloring?