Reduction #3: Satisfiability

- Let $X = \{x_1, \ldots, x_n\}$ be boolean variables
 - A term or literal is x_i or $\neg x_i$.
 - A clause is or of several terms $(t_1 \lor t_2 \lor \ldots \lor t_k)$.
 - A formula is and of several clauses
 - An assignment $\phi : X \rightarrow \{0, 1\}$ gives T/F to each variable.
 - ϕ satisfies formula if all clauses evaluate to True.

Example.

\[(x_1 \lor \neg x_2) \land (x_1 \lor x_4 \lor \neg x_3) \land (\neg x_1 \lor x_4) \land (x_3 \lor x_2)\]

Reduction

\[(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)\]

- Associate nodes in graph with literals (≥ 2 per variable).
- Associate 3 nodes per clause in a gadget.
- If $\phi(x_i) = 1$ in assignment, then cannot select some nodes.

Formally

- **Given** (x_1, \ldots, x_n) and clauses C_1, \ldots, C_m.
- **Make graph** with:
 - Vertices v_{i0} and t_{ij} for $i \in [n], j \in [m]$.
 - Edges (v_{i0}, v_{ij}) for i and $(t_{jk}, t_{jk'})$ for $k, k' \in [3]$.
 - If jth clause is $x_a \lor \neg x_b \lor x_c$, edges $(t_{j1}, v_{a0}), (t_{j2}, v_{b0}), (t_{j3}, v_{c0})$.
- If G has IS of size $n + m$, output True, else False.

Recap

- Reductions. $Y \leq_P X$ if can solve Y in poly-time with algorithm for X.
- New problems. INDEPENDENTSET, VERTEXCOVER, SETCOVER, SAT, 3-SAT.
- Results.

\[3\text{-SAT} \leq_P \text{IS} \leq_P \text{VC} \leq_P \text{SC}\]

\[\text{VC} \leq_P \text{IS}\]
Satisfiability Proof

\[
(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)
\]

Claim. Reduction takes polynomial time.

Claim. Graph has IS of size \(n + m\) if and only if formula satisfiable.

3-SAT Reduction

Theorem. \(3\text{-SAT} \leq_p \text{IndependentSet}\)

- For every 3-SAT formula, exists a graph \(G\) s.t. formula satisfiable if and only if \(G\) has IS of size \(n + m\).
- Does not imply \(\text{IndependentSet} \leq_p \text{3-SAT}\).
- For this, need to prove: For every \((G, k)\), exists formula that is satisfiable iff \(G\) has IS of size \(k\).

Certification and NP.

- Algorithm \(A\) solves problem \(X\) if \(A(s) = \text{TRUE}\) iff \(s \in X\).
- Running time now measured in \(|s|\), still want polytime.
- \(\mathcal{P}\): problems that can be solved by a polytime algorithm.
- \(B\) is a polytime **certifier** for problem \(X\) if
 - \(B\) is a polytime algorithm of two inputs \(s, t\).
 - \(s \in X\) iff exists \(t\) with \(|t| \leq \text{poly}(|s|)\) and \(B(s, t) = \text{TRUE}\).
- **Example.** Certifier for independent set.
- \(\mathcal{NP}\): problems with polytime certifier.

A class of problems

- Decision vs certification.
- Seems hard to find a large independent set.
 - Or check if one exists.
- But easy to certify a proposed solution, by checking for adjacent vertices.
- Formal languages and decision problems.
 - Encode problem inputs as binary strings \(s\).
 - A decision problem \(X\) is the set of binary strings that have \(\text{TRUE}\) answer.
 - Algorithm \(A\) solves problem \(X\) if \(A(s) = \text{TRUE}\) iff \(s \in X\).

P and NP

Claim. \(\mathcal{P} \subseteq \mathcal{NP}\).

Proof.

- If \(X \in \mathcal{P}\), exists algorithm \(A\) that solves \(X\).
- Need to design certifier \(B\).
 - Set \(B(s, t) = A(s)\).
 - \(B\) runs in polynomial time
 - If \(s \in X\), \(B(s, t) = A(s) = \text{TRUE}\) for all \(t\).
 - If \(s \notin X\), \(B(s, t) = A(s) = \text{FALSE}\) for all \(t\).
Some NP problems.

- **IndependentSet**
- **VertexCover**
- **SetCover**
 - Basically all problems we have seen so far!
- **Unsatisfiability** — not in \mathcal{NP}.

Million dollar question

Question. Does $\mathcal{P} = \mathcal{NP}$?

Can make some progress by considering “hardest” \mathcal{NP} problems.

Definition. X is NP-Complete if $X \in \mathcal{NP}$ and for all $Y \in \mathcal{NP}$ $Y \leq_P X$.

- If X is NP-Complete then X has poly-time algorithm iff $\mathcal{P} = \mathcal{NP}$.

Circuit-SAT

Problem. Given a boolean circuit with some inputs and single boolean output, are there inputs that produce 1 at the output?

- A circuit is a labeled DAG.
- Sources (no incoming edges) labeled with constant or with input variable name.
- Other nodes labeled with \land (and), \lor (or), \neg (not).
- Single node with no outgoing edges computes the output bit.

Theorem. Circuit-SAT is NP-Complete.

Proof (Idea).

- A poly-time algorithm once input length is fixed can be executed on a poly-sized circuit.
- Not surprising since our hardware is circuits!
- Need to show that arbitrary $X \in \mathcal{NP}$ has $X \leq_P \text{Circuit-SAT}$.
- All we know about X is its efficient certifier $B(\cdot, \cdot)$.
- Encode $B(s, \cdot)$ as a circuit with $\text{poly}(|s|)$ inputs.
- Satisfiable iff exists t with $|t| \leq \text{poly}(|s|)$ s.t. $B(s, t) = \text{true}$ if $s \in X$.

Back to 3-SAT

Claim. If Y is NP-complete and $Y \leq_P X$, then X is NP-complete.

Theorem. 3-SAT is NP-Complete.

- Clearly in \mathcal{NP}.
- Prove by reduction from CircuitSAT.

Example.
The Reduction

- One variable x_v per circuit node v.
- Clauses to enforce circuit computations.
 - If v is \neg then v has one input u and can add clauses $(x_v \lor x_u), (\neg x_v \lor \neg x_u)$.
 - If v is \lor with u, w incoming then $(x_v \lor \neg x_u), (x_v \lor \neg x_w), (\neg x_v \lor x_u \lor x_w)$.
 - If v is \land then $(\neg x_v \lor x_u), (\neg x_v \lor x_w), (x_v \lor \neg x_u \lor \neg x_w)$.
- Input bits get set with (x_v) if fixed to one and $(\neg x_v)$ otherwise.
- Clause (x_o) for output bit.

Final steps

- This formula satisfiable iff circuit is satisfiable.
- But not a 3-sat formula! It has clauses of size 1 and 2.
 - Fix: 4 new variables z_1, \ldots, z_4 where z_1, z_2 forced to be 0.
 - Include those two in any short clause.

Theorem. INDEPENDENTSET, VERTEXCOVER, SETCOVER, SAT, 3-SAT are all NP-Complete.