Recall: Bipartite Matching

- Given an undirected graph $G = (V, E)$, a subset of edges $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- The maximum matching problem is to find the matching with the most edges.
- We’ll design an efficient algorithm for maximum matching in a bipartite graph. Recall, a graph is bipartite if the nodes V can be partitioned into two sets $V = L \cup R$ such that all edges have one endpoint in L and one endpoint in R.

Formulating it as a network flow problem

- Given an instance $G = (L \cup R, E)$ of maximum matching, create a directed graph with nodes $L \cup R \cup \{s, t\}$.
- For each undirected edge $(i, j) \in E$, add a directed edge from $i \in L$ to $j \in R$ with capacity 1.
- Add an edge with capacity 1 from s to each of the nodes in L.
- Add an edge with capacity 1 from each of the nodes in R to t.
- Claim: The size of the maximum matching in G equals the value of the maximum flow in G'.

Reductions

- We just showed how to reduce Matching to NetworkFlow.
 - Given algorithm for NetworkFlow (e.g., Ford-Fulkerson) we can easily solve Matching.
 - Therefore, matching is “no harder” than network flow.
- Definition: Problem Y is poly-time reducible to problem X if:
 - We can solve Y using polynomially many computations + polynomially many calls to black-box algorithm for X.
 - Or, if we can solve X in polynomial time, we can solve Y in polynomial time as well.
 - Write $Y \leq_P X$.
- Matching \leq_P NetworkFlow

Reducibility and Intractability

- Claim 1. If $Y \leq_P X$ and X poly-time solvable, so is Y.
 - Can use to design algorithms.
- Claim 2. If $Y \leq_P X$ and Y not poly-time solvable, then X is not either.
 - Contrapositive of above.
 - Can be used to prove hardness.
- The catch: we do not know of any problem Y that provably cannot be solved in polynomial time.
A first reduction

Definition. \(S \subseteq V \) is an independent set in a graph \(G = (V, E) \) if no nodes in \(S \) share an edge.

Problem. Does \(G \) have independent set of size at least \(k \)?

Example:
- \(U \) is the set of all skills.
- Each \(S_i \) is a person.
- Want to find a small team that has all skills.

Theorem. \(\text{VERTEXCOVER} \leq_P \text{SETCOVER} \)

Reduction #2: Set cover

Problem. Given a set \(U \) of \(n \) elements, subsets \(S_1, \ldots, S_m \subseteq U \), and a number \(k \), does there exist a collection of at most \(k \) subsets \(S_i \) whose union is \(U \)?

- **Example:**
 - \(U \) is the set of all skills.
 - Each \(S_i \) is a person.
 - Want to find a small team that has all skills.

Theorem. \(\text{VERTEXCOVER} \leq_P \text{SETCOVER} \)

Set cover reduction

Reduction. Given \(G = (V, E) \) make set cover instance with \(U = E \) and \(S_v \) is all edges incident to \(v \). \(U \) is independent if and only if \(V \setminus S \) is a vertex cover.

Proof.
- If \(S_{v_1}, \ldots, S_{v_k} \) covers \(U \), then every edge adjacent to one of \(\{v_1, \ldots, v_k\} \).
- If \(S_{v_1}, \ldots, S_{v_k} \) is a vertex cover, then \(S_{v_1}, \ldots, S_{v_k} \) covers \(U \).

Common Confusions

- \(Y \leq_P X \) means:
 - \(Y \) is “no harder” than \(X \)
 - \(X \) is “at least as hard” as \(Y \).

- To show \(Y \) is easy, show \(Y \leq_P X \) for easy \(X \).
- To show \(X \) is hard, show \(Y \leq_P X \) for hard \(Y \).

For decision problem \(Y \), need to show two things.

- Correctly outputs Yes and No.
A bad reduction.

Given VertexCover instance \((G, k)\), make SetCover instance with \(U = E\), \(S_v = \text{edges incident to } v\), \(S_0 = U\), and integer \(k\).

- If \(G\) has VC of size at most \(k\), then \(U\) has cover of size at most \(k\).
- But if \(U\) has cover of size \(k\), \(G\) might not!

If \((G, k)\) is a No instance, the reduction does not correctly return No.

Reduction #3: Satisfiability

- Can we determine if a boolean formula has a satisfying assignment?
- Let \(X = \{x_1, \ldots, x_n\}\) be boolean variables
 - A literal is \(x_i\) or \(\bar{x}_i\).
 - A clause is or of several literals \((t_1 \lor t_2 \lor \ldots \lor t_k)\).
 - A formula is and of several clauses
 - An assignment \(v : X \to \{0, 1\}\) gives T/F to each variable.
- \(v\) satisfies formula if all clauses evaluate to True.

Example.
\[(x_1 \lor \bar{x}_2) \land (x_1 \lor x_4 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_4) \land (x_3 \lor x_2)\]

Satisfiability Proof

Claim Graph has IS of size \(n + m\) if and only if formula satisfiable.

- If formula satisfiable, select correct literal on the left and one per clause on the right.
- If graph has IS,
 - At most one node per clause on the right
 - At most one node per variable on the left.
 - If node selected in clause, its negation cannot be selected.