Announcements

- Homework 2 graded, regrades open
- Homework 4 out Wednesday

Algorithm Design Techniques

- Greedy
- Divide and Conquer
- Dynamic Programming
- Network Flows

Dynamic Programming Schedule

- Today: Intro + Scheduling and Packing
- Thursday: Sequence Alignment + Biology problems
- 3/26: Graph problems
- 3/28: AI + Statistics problems

Divide and Conquer Recipe

- Devise recursive form for solution
- Implement recursion

Example: Compute sum of leaf weights for each internal node in k-ary tree. (From practice exam)
- Recursive form $w(v) = \sum_{u \text{ child of } v} w(u)$.

Dynamic Programming Recipe

- Devise recursive form for solution
- Observe that recursive implementation involves redundant computation. (Often exponential time)
- Design iterative algorithm that solves all subproblems without redundancy.
Example (From HW1)


```plaintext
for i = 1, 2, \ldots , n do
  for j = i + 1, \ldots , n do
  end for
end for
```

Running time: $\Theta(n^3)$.

Weighted Interval Scheduling

- Television scheduling problem: Given n shows with start time s_i and finish time f_i, watch as many shows as possible, with no overlap.
- A Twist: Each show has a value v_i and want a set of shows S, with no overlap and maximum value $\sum_{i \in S} v_i$.
- Greedy?

Example

```
s = (0, 1, 4, 3, 7, 8)
f = (3, 5, 6, 9, 10, 11)
v = (2, 4, 4, 7, 2, 1)
```

Unrolling recurrence?

```
Val(j):
  If $j = 0$ return 0.
  Return $\max\{Val(p(j)) + v_j, Val(j-1)\}$.
```

- $Val(n)$ can require 2^n calls in the worst case.
- Only $n + 1$ values to compute \Rightarrow redundancy!

Example

$B[i, j] = \begin{cases} B[i, j-1] + A[j] & \text{if } j > i \\ 0 & \text{if } j \leq i \end{cases}$

```plaintext
for i = 1, 2, \ldots , n do
  B[i,i] = 0
  for j = i + 1, \ldots , n do
  end for
end for
```

Running time: $O(n^2)$.
Memoized approach

Idea. Save the output of recursive calls when you do them.

Array $M[0...n] = \text{null}$.

$M-Val(j)$:
- If $j = 0$ return 0.
- If $M[j] \neq \text{null}$, return $M[j]$.
- $M[j] \leftarrow \max \{ v_j + M-Val(p(j)), M-Val(j - 1) \}$.
- Return $M[j]$.

Running time: $O(n)$.

Iterative approach

Idea. Work from $0 \to n$ computing array entries only once.

Array $M[0..n] = \text{null}$.

$I-All-Vals(n)$:
- $M[0] = 0$.
- for $j = 1, \ldots, n$ do
 - $M[j] \leftarrow \max \{ v_j + M[p(j)], M[j - 1] \}$.
- end for

Running time: $O(n)$.

Finding the optimum set

- Suppose O is an optimal solution ($O = \text{OPT}(n)$).
 - If $n \in O$, then $O = \text{OPT}(p(n)) \cup \{n\}$.
 - If $n \notin O$ then $O = \text{OPT}(n - 1)$.

$\text{Weighted-IS}(n)$
- Sort by finish time f_j, compute $p(j)$.
- $M \leftarrow I-All-Vals(n)$ # Compute M array
- $S \leftarrow \{\}, j=n$.
 - while $j \neq 0$ do
 - if $M[p(j)] + v_j \geq M[j - 1]$, $S \leftarrow S \cup \{j\}, j \leftarrow p(j)$.
 - else $j \leftarrow j - 1$.
 - end while
- Return S.

Weighted Interval Scheduling Takeaways

- Solution has recursive form.
- Can avoid unraveling the entire recursion.
- **Dynamic Programming Table.** The M array.
- Compute optimal value first, finding solution is easy after.