
CMPSCI 311: Introduction to Algorithms
Practice Final Exam

Name: ID:

Instructions:

• Answer the questions directly on the exam pages.

• Show all your work for each question. Providing more detail including comments and expla-
nations can help with assignment of partial credit.

• If the answer to a question is a number, unless the problem says otherwise, you may give your
answer using arithmetic operations, such as addition, multiplication, “choose” notation and
factorials (e.g., “9× 35! + 2” or “0.5× 0.3/(0.2× 0.5 + 0.9× 0.1)” is fine).

• If you need extra space, use the back of a page.

• No books, notes, calculators or other electronic devices are allowed. Any cheating will result
in a grade of 0.

• If you have questions during the exam, raise your hand.

Question Value Points Earned

1 10

2 20

3 30

4 10

5 20

6 10

Total 100

1

Question 1. (10 points) True of False? Indicate whether each of the following statements
is TRUE or FALSE. No justification required.

1.1 (2 points): 3-coloring can be solved by breadth first search and therefore is in P .
False

1.2 (2 points):
∑n

i=1 2i = Θ(2n).
True

1.3 (2 points): A dynamic program that implements the following recursive form can be used
to solve the subset sum problem, which asks to find a subset S of numbers from x1, . . . , xn (all
non-negative) with maximum weight subject to not exceeding a given number W .

Val(i, w) = max{Val(i− 1, w), xi + Val(i− 1, w − xi)}

True

1.4 (2 points): For any flow network, and any two vertices s, t there is always a flow of at least
1 from source s to target t.
False

1.5 (2 points): The recurrence T (n) = 2T (n− 1) +O(1) solves to Θ(n2).
False

2

Question 2. (20 points) Short Answer. Answer each of the following questions in at most
two sentences.

2.1 (4 points): In a weighted graph G where all edges have weight 1, how can we use Djikstra’s
algorithm to find a minimum spanning tree?
All trees are minimum spanning trees when the edges have weight 1. So as you run Djikstra’s just
record the parent of each node, and this is an MST.

2.2 (4 points): Solve the recurrence T (n) = 3T (n/2) +O(n).

T (n) =
∑log2 n−1

i=0 3i n
2i

= O(n× (3/2)log2 n−1) = O(nlog2 3).

2.3 (4 points): Suppose a dynamic programming algorithm creates an n×m table and to compute
each entry of the table it takes a minimum over at most m (previously computed) other entries.
What would the running time of this algorithm be, assuming there is no other computations.
We compute n×m numbers and each computation requires O(m) time, so the total is O(nm2).

3

2.4 (4 points): Why is MaxFlow in NP
⋂

co-NP?
We can verify both positive and negative instances via the Max-Flow Min-Cut theorem.

2.5 (4 points): Suppose A is a randomized algorithm that finds the optimal solution to some
minimization problem with probability at least p ∈ (0, 1). More precisely, if we run A o some input,
it returns a candidate solution O along with the cost of O, and with probability at least p, we are
guaranteed that O minimizes the cost function. For another parameter δ > 0, how can we use A
to find an optimal solution with probability at least 1− δ and what is the running time of this new
algorithm?
If we run the algorithm m times, then the probability that all m runs fail to find the optimum is at
most (1− p)m = [(1− p)1/p]pm ≤= [(1− 1

1/p)1/p]pm ≤ e−pm. We want this to be at most δ, which

requires we set m = p−1 log(1/δ) so our running time is O(p−1 log(1/δ)× runtime for A).

4

Question 3. (30 points) Consider the longest increasing subsequence problem defined as
follows. Given a list of numbers a1, . . . , an an increasing subsequence is a list of indices i1, . . . , ik ∈
{1, . . . , n} such that i1 < i2 < . . . , ik and ai1 ≤ ai2 ≤ . . . ,≤ aik . The longest increasing subsequence
is the longest list of indices with this property.

3.1 (2 points): What is the longest increasing subsequence of the list 5, 3, 4, 8, 7, 10?
There are two, 3, 4, 8, 10 or 3, 4, 7, 10.

3.2 (4 points): Consider the greedy algorithm that chooses the first element of the list, and then
repeatedly chooses the next element that is larger. Is this a correct algorithm? Either prove its
correctness or provide a counter example.
The above input is a counter example as the greedy algorithm would choose 5, but 5 is not in either
of the optimal solutions.

3.3 (4 points): Consider the greedy algorithm that chooses the smallest element of the list, and
then repeatedly chooses the smallest element that comes after this chosen one. Is this a correct
algorithm? Either prove its correctness or provide a counterexample.
The input 2, 3, 4, 1 is a counter example, since this greedy algorithm would choose 1 first, but 1 is
not in the optimal solution.

5

3.4 (5 points): Consider a divide and conquer strategy that splits the list into the first half
and second half, recursively computes L = (`1, . . . , `kL), R = (r1, . . . , rkR) the longest increasing
subsequences in each half, and then, if the last chosen element in the first half is less than the first
chosen index in the second half (i.e. a`kL ≤ ar1) returns L ·R, otherwise it returns the longer of L
and R. Is this a correct algorithm? either prove its correctness of provide a counterexample.
Consider the input 2, 3, 4, 5, 0, 1. The optimal is 2, 3, 4, 5 but if we do divide and conquer we find
2, 3, 4 and 0, 1 so we output 2, 3, 4.

3.5 (15 points): Design a dynamic programming algorithm for longest increasing subsequence.
Prove its correctness and analyze its running time.
Let the input have size n, we build a size n table A by,

j?(i) = argmax{A[j] such that j < i and aj ≤ ai}
A[i] = 1 +A[j?(i)]

j?(i) is set to zero if no choice for j exists (for example on the first element of the list). The proof
is based on the fact that A[j] holds the length of the longest increasing subsequence that ends on
aj . This is proved by induction, where the base case is easy. For the inductive step, consider some
index i, we set A[i] = 1 + A[j?(i)], and we are guaranteed that j?(i) maximizes A[j] among all
possible positions j that could come before i in an increasing subsequence. Thus we are ensured
that A[i] holds the proper value. The running time is O(n2).

6

Question 4. (10 points) In this problem we investigate the feedback arc-set problem which
generalizes the topological ordering. Given a directed graph (which may contain cycles), the goal
in feedback arc-set is to find an ordering of the vertices that minimizes the number of back edges.
More precisely, if G = (V,E) is a directed graph, and (a1, . . . , an) with ai 6= aj is an ordering of
the vertices, we define the cost as

cost(a1, . . . , an) =
∑
i<j

1[(aj , ai) ∈ E]

Here 1[·] is a function that is 1 if the argument is true and zero otherwise. This is the number of
edges going from right to left (backward) if we ordered the vertices with a1 on the left and an on
the right.

v1

v2 v3

v4

v5v6

4.1 (1 points): In the above graph, what is the cost of (v1, v2, v3, v4, v5, v6)?
3 + 1 + 1 + 0 + 0 + 0 = 5

4.2 (1 points): In the above graph, what is the cost of (v6, v5, v4, v3, v2, v1)?
2 + 2 + 1 + 1 + 1 + 0 = 7

4.3 (2 points): True or False. a directed acyclic graph always has an ordering O with cost(O) = 0.
True, any topological ordering has no feedback arcs.

4.4 (6 points): Prove that the decision version of feedback arc set is NP-complete. That is given a
directed graph and an integer k, decide whether the graph has an ordering with at most k back-edges.

The proof is by reduction from vertex cover. Given an instance G = (V,E) of vertex cover, we
will define a instance of feedback arc set. Let G′ = (V ′, E′) be a new directed graph where for each
v ∈ V we have two vertices v(1), v(2) ∈ V ′ connected with the directed edge (v(1) → v(2)). For every
undirected edge (u, v) ∈ E, define two directed edges (u(2) → v(1)) and (v(2) → u(1)). If G has n
vertices and m edges, this new graph has 2n vertices and n + 2m edges. We claim that G has a
vertex cover of size at most k if and only if G′ has an ordering with at most k back edges.

The idea for the proof is that each edge (u, v) ∈ E forms a 4-cycle in G′. If S is a vertex cover,
we can remove the edges (v(1) → v(2)) for each v ∈ S and break all of the 4-cycles, since we remove
an edge from each cycle.

More precisely, if S is a vertex cover, we construct an ordering as follows: the first |S| nodes
are v(2) for each v ∈ S, followed by each u(1), u(2) pair for u /∈ S, and finally followed by v(1) for
each v ∈ S. The order in each group does not matter. Since S is a vertex cover, all edges from into
u(1) for u /∈ S originate from some v(2) for v ∈ S and similarly all edges from u(2) point to v(1) for
some v ∈ S. Thus the only back edges in this ordering are from v(1) → v(2) for v ∈ S, which is k
back edges.

7

The other direction is by a counting argument. If no subset of k vertices covers all edges,
then there is no way to break all m cycles in G′. Observe that if you break and edge of the form
(v(2) → u(1)) you can break at most one cycle, so it is always better to break edges of the form
(v(1) → v(2)). However, since there is no vertex cover of size at most k, choosing k of these edges
cannot break all the cycles.

8

Question 5. (20 points) In this problem we investigate vertex-capacitated flow networks.
We are given a directed graph G = (V,E) with source s and sink t and a capacity cv for each
v ∈ V . We want an s− t flow f that satisfies the usual conservation of flow constraints, but instead
of satisfying edge-capacity constraints, satisfies the vertex capacity constraints f(v) ≤ cv. Here
f(v) =

∑
(u,v)∈E fu,v is the total flow entering the node v. The goal is to design an algorithm for

computing a maximum s− t flow in a vertex-capacitated network.

5.1 (5 points): Draw a directed graph G with clearly labeled source s and sink t, where if we
consider the usual edge-capacitated version of the problem (with edge capacities ce = 1) we get
a maximum flow with a different value than if we consider the vertex capacitated version of the
problem (with vertex capacities cv = 1).

s t

In this graph the maximum flow in the edge-capacitated version has value 2, while the vertex capac-
itated version has value 1.

5.2 (15 points): Design a polynomial time algorithm for computing the maximum flow in a node-
capacitated network. Prove that the algorithm is correct and analyze its running time.

In the flow network, replace each vertex v with two vertices v(1) and v(2) with an edge ev = (v(1) →
v(2)) of capacity c(ev) = cv. All incoming edges to v in the original network point to v(1) and have
capacity ∞ (no constraint). All outgoing edges from v in the original network now start from v(2)

and have capacity ∞.
The edge capacitated maximum flow in this network is precisely the vertex capacitated max-

imum flow in the original network. The only capacity constraints are on the ev edges, and these
precisely encode the fact that we must satisfy the vertex capacities. The running time is the same
as the max flow problem O((|V |+ |E|)F) where F is the value of the maximum flow and |E| is the
number of edges in the original network and |V | is the number of vertices.

9

Additional space.

10

Question 6. (10 points) Consider a variant of the subset sum problem where we are given
a set of numbers x1, . . . , xn and need to partition them numbers into sets S1, . . . , SK such that for
each k ∈ {1, . . . ,K},

∑
i∈Sk

xi ≤ W for some target W . The goal is to minimize K, the number
of sets in the partition. We will study a simple approximation algorithm for this problem. The
algorithm considers the items in order, and forms the first set S1 by repeatedly adding the numbers
x1, x2, . . . until the next number would exceed the target W . Then it proceed to construct the next
set.

6.1 (2 points): Give an example input where this algorithm does not use the minimum number of
sets.

Let W = 5 and consider the sequence 4, 2, 3, 1. The optimal solution uses two sets {4, 1} and {2, 3}
but our approximation algorithm tries to group 2 with 4 and fails, so it forms {4}, {2, 3}, {1}.

6.2 (2 points): Derive a lower bound on K? the smallest possible number of sets in the partition
in terms of the target W and the total weight X =

∑n
i=1 xi.

K? ≥ X/W since all the weight must be included and at most W can be included in each set.

6.3 (6 points): Use this lower bound to prove that this greedy algorithm always produces a number
of sets K that is at most 2K?.

Consider sets S1, S2. We claim
∑

i∈S1∪S2
xi ≥ W . This is clear since S2 was only formed because

adding the next element to S1 would exceed the weight constraint, and this item was added to S2.
Similarly, for every adjacent pair of sets s, s+1, we have

∑
i∈Ss∪Ss+1

xi ≥W by the same argument.
Thus, letting K be the number of sets produced by the algorithm,

K? ≥ X/W =
1

W

K∑
s=1

∑
i∈Ss

xi ≥
1

W

K/2∑
s=1

∑
i∈S2s−1∪S2s

xi ≥
1

W
(K/2×W) = K/2

This proves that K ≤ 2K?.

11

