Instructions:

- Answer the questions directly on the exam pages.
- Show all your work for each question. Providing more detail including comments and explanations can help with assignment of partial credit.
- If the answer to a question is a number, unless the problem says otherwise, you may give your answer using arithmetic operations, such as addition, multiplication, “choose” notation and factorials (e.g., “9 × 35! + 2” or “0.5 × 0.3/(0.2 × 0.5 + 0.9 × 0.1)” is fine).
- If you need extra space, use the back of a page.
- No books, notes, calculators or other electronic devices are allowed. Any cheating will result in a grade of 0.
- If you have questions during the exam, raise your hand.

<table>
<thead>
<tr>
<th>Question</th>
<th>Value</th>
<th>Points Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Question 1. (10 points) True or False? Indicate whether each of the following statements is TRUE or FALSE. No justification required.

1.1 (2 points): 3-COLORING can be solved by breadth first search and therefore is in P.

1.2 (2 points): $\sum_{i=1}^{n} 2^i = \Theta(2^n)$.

1.3 (2 points): A dynamic program that implements the following recursive form can be used to solve the subset sum problem, which asks to find a subset S of numbers from x_1, \ldots, x_n (all non-negative) with maximum weight subject to not exceeding a given number W.

$$Val(i, w) = \max\{Val(i-1, w), x_i + Val(i-1, w-x_i)\}$$

1.4 (2 points): For any flow network, and any two vertices s, t there is always a flow of at least 1 from source s to target t.

1.5 (2 points): The recurrence $T(n) = 2T(n-1) + O(1)$ solves to $\Theta(n^2)$.
Question 2. *(20 points)* Short Answer. Answer each of the following questions in at most two sentences.

2.1 *(4 points):* In a weighted graph G where all edges have weight 1, how can we use Dijkstra’s algorithm to find a minimum spanning tree?

2.2 *(4 points):* Solve the recurrence $T(n) = 3T(n/2) + O(n)$.

2.3 *(4 points):* Suppose a dynamic programming algorithm creates an $n \times m$ table and to compute each entry of the table it takes a minimum over at most m (previously computed) other entries. What would the running time of this algorithm be, assuming there is no other computations.
2.4 (4 points): Why is MaxFlow in \(\mathcal{NP} \cap \text{co-NP} \)?

2.5 (4 points): Suppose \(A \) is a randomized algorithm that finds the optimal solution to some minimization problem with probability at least \(p \in (0,1) \). More precisely, if we run \(A \) on some input, it returns a candidate solution \(O \) along with the cost of \(O \), and with probability at least \(p \), we are guaranteed that \(O \) minimizes the cost function. For another parameter \(\delta > 0 \), how can we use \(A \) to find an optimal solution with probability at least \(1 - \delta \) and what is the running time of this new algorithm?
Question 3. (30 points) Consider the longest increasing subsequence problem defined as follows. Given a list of numbers a_1, \ldots, a_n an increasing subsequence is a list of indices $i_1, \ldots, i_k \in \{1, \ldots, n\}$ such that $i_1 < i_2 < \ldots, i_k$ and $a_{i_1} \leq a_{i_2} \leq \ldots \leq a_{i_k}$. The longest increasing subsequence is the longest list of indices with this property.

3.1 (2 points): What is the longest increasing subsequence of the list 5, 3, 4, 8, 7, 10?

3.2 (4 points): Consider the greedy algorithm that chooses the first element of the list, and then repeatedly chooses the next element that is larger. Is this a correct algorithm? Either prove its correctness or provide a counter example.

3.3 (4 points): Consider the greedy algorithm that chooses the smallest element of the list, and then repeatedly chooses the smallest element that comes after this chosen one. Is this a correct algorithm? Either prove its correctness or provide a counter example.
3.4 (5 points): Consider a divide and conquer strategy that splits the list into the first half and second half, recursively computes $L = (\ell_1, \ldots, \ell_{k_L}), R = (r_1, \ldots, r_{k_R})$ the longest increasing subsequences in each half, and then, if the last chosen element in the first half is less than the first chosen index in the second half (i.e. $a_{\ell_{k_L}} \leq a_{r_1}$) returns $L \cdot R$, otherwise it returns the longer of L and R. Is this a correct algorithm? either prove its correctness or provide a counterexample.

3.5 (15 points): Design a dynamic programming algorithm for longest increasing subsequence. Prove its correctness and analyze its running time.
Question 4. (10 points) In this problem we investigate the feedback arc-set problem which generalizes the topological ordering. Given a directed graph (which may contain cycles), the goal in feedback arc-set is to find an ordering of the vertices that minimizes the number of back edges. More precisely, if \(G = (V, E) \) is a directed graph, and \((a_1, \ldots, a_n) \) with \(a_i \neq a_j \) is an ordering of the vertices, we define the cost as

\[
\text{cost}(a_1, \ldots, a_n) = \sum_{i<j} 1[(a_j, a_i) \in E]
\]

Here \(1[\cdot] \) is a function that is 1 if the argument is true and zero otherwise. This is the number of edges going from right to left (backward) if we ordered the vertices with \(a_1 \) on the left and \(a_n \) on the right.

![Graph Diagram]

4.1 (1 points): In the above graph, what is the cost of \((v_1, v_2, v_3, v_4, v_5, v_6)\)?

4.2 (1 points): In the above graph, what is the cost of \((v_6, v_5, v_4, v_3, v_2, v_1)\)?

4.3 (2 points): True or False. A directed acyclic graph always has an ordering \(O \) with \(\text{cost}(O) = 0 \).

4.4 (6 points): Prove that the decision version of feedback arc set is NP-complete. That is given a directed graph and an integer \(k \), decide whether the graph has an ordering with at most \(k \) back-edges.
Question 5. (20 points) In this problem we investigate vertex-capacitated flow networks. We are given a directed graph $G = (V, E)$ with source s and sink t and a capacity c_v for each $v \in V$. We want an $s - t$ flow f that satisfies the usual conservation of flow constraints, but instead of satisfying edge-capacity constraints, satisfies the vertex capacity constraints $f(v) \leq c_v$. Here $f(v) = \sum_{(u,v) \in E} f_{u,v}$ is the total flow entering the node v. The goal is to design an algorithm for computing a maximum $s - t$ flow in a vertex-capacitated network.

5.1 (5 points): Draw a directed graph G with clearly labeled source s and sink t, where if we consider the usual edge-capacitated version of the problem (with edge capacities $c_e = 1$) we get a maximum flow with a different value than if we consider the vertex capacitated version of the problem (with vertex capacities $c_v = 1$).

5.2 (15 points): Design a polynomial time algorithm for computing the maximum flow in a node-capacitated network. Prove that the algorithm is correct and analyze its running time.
Additional space.
Question 6. (10 points) Consider a variant of the subset sum problem where we are given a set of numbers x_1, \ldots, x_n and need to partition them numbers into sets S_1, \ldots, S_K such that for each $k \in \{1, \ldots, K\}$, $\sum_{i \in S_k} x_i \leq W$ for some target W. The goal is to minimize K, the number of sets in the partition. We will study a simple approximation algorithm for this problem. The algorithm considers the items in order, and forms the first set S_1 by repeatedly adding the numbers x_1, x_2, \ldots until the next number would exceed the target W. Then it proceed to construct the next set.

6.1 (2 points): Give an example input where this algorithm does not use the minimum number of sets.

6.2 (2 points): Derive a lower bound on K^* the smallest possible number of sets in the partition in terms of the target W and the total weight $X = \sum_{i=1}^{n} x_i$.

6.3 (6 points): Use this lower bound to prove that this greedy algorithm always produces a number of sets K that is at most $2K^*$.