COMS6998-11: Homework 2 Solutions

Akshay Krishnamurthy
akshay@cs.umass.edu

1. Importance weighting and policy gradient. For the first part, we have to combine to arguments we have seen previously: that "on policy" roll-outs with geometric stopping is unbiased, and that importance weighting is unbiased. The first part is shown by the following calculation (throughout we are conditioning on $\left.s_{0}=s, a_{0}=a\right)$:

$$
\begin{aligned}
\mathbb{E}\left[\left(\prod_{t=1}^{t_{*}} \frac{\pi_{2}\left(a_{t} \mid s_{t}\right)}{\pi_{1}\left(a_{t} \mid s_{t}\right)}\right) \frac{r_{t^{\star}}}{1-\gamma}\right] & =\sum_{T=0}^{\infty} \operatorname{Pr}\left[t^{\star}=T\right] \mathbb{E}\left[\left(\prod_{t=1}^{T} \frac{\pi_{2}\left(a_{t} \mid s_{t}\right)}{\pi_{1}\left(a_{t} \mid s_{t}\right)}\right) \frac{r_{T}}{1-\gamma}\right] \\
& =\sum_{T=0}^{\infty} \mathbb{E}\left[\left(\prod_{t=1}^{T} \frac{\pi_{2}\left(a_{t} \mid s_{t}\right)}{\pi_{1}\left(a_{t} \mid s_{t}\right)}\right) \gamma^{T} r_{T}\right]
\end{aligned}
$$

For the second part, let's consider just one of the terms above and expand the expectation over trajectories $\tau_{t}=\left(s_{0}, a_{0}, s_{1}, a_{1}, \ldots, s_{T}, a_{T}\right)$. Here we let $r(s, a)$ denote the expected reward from (s, a).

$$
\begin{aligned}
\mathbb{E}\left[\left(\prod_{t=1}^{T} \frac{\pi_{2}\left(a_{t} \mid s_{t}\right)}{\pi_{1}\left(a_{t} \mid s_{t}\right)}\right) \gamma^{T} r_{T}\right] & =\sum_{\tau_{T}} \mathbb{P}^{\pi_{1}}\left[\tau_{t}\right]\left(\prod_{t=1}^{T} \frac{\pi_{2}\left(a_{t} \mid s_{t}\right)}{\pi_{1}\left(a_{t} \mid s_{t}\right)}\right) \gamma^{T} r\left(s_{T}, a_{T}\right) \\
& =\sum_{\tau_{T}}\left(\prod_{t=1}^{T} P\left(s_{t} \mid s_{t-1}, a_{t-1}\right) \pi_{1}\left(a_{t} \mid s_{t}\right)\right)\left(\prod_{t=1}^{T} \frac{\pi_{2}\left(a_{t} \mid s_{t}\right)}{\pi_{1}\left(a_{t} \mid s_{t}\right)}\right) \gamma^{T} r\left(s_{T}, a_{T}\right) \\
& =\sum_{\tau_{T}}\left(\prod_{t=1}^{T} P\left(s_{t} \mid s_{t-1}, a_{t-1}\right) \pi_{2}\left(a_{t} \mid s_{t}\right)\right) \gamma^{T} r\left(s_{T}, a_{T}\right) \\
& =\sum_{\tau_{T}} \mathbb{P}^{\pi_{2}}\left[\tau_{t}\right] \gamma^{T} r\left(s_{T}, a_{T}\right) .
\end{aligned}
$$

Putting this together with the previously display, we obtain the result.
For the second part, the calculation is somewhat straightforward:

$$
\frac{\pi_{2}(a \mid s)}{\pi_{1}(a \mid s)}=\frac{\exp (c(s, a))}{\sum_{a^{\prime}} \pi_{1}\left(a^{\prime} \mid s\right) \exp \left(c\left(s, a^{\prime}\right)\right)} \leq \frac{\exp \left(c_{\star}\right)}{\exp \left(-c_{\star}\right) \sum_{a^{\prime}} \pi_{1}\left(a^{\prime} \mid s\right)} \leq \exp \left(2 c^{\star}\right) .
$$

A similar calculation applies for the other direction.
Finally for the third part, we focus on finding a deterministic quantity $t_{\text {max }}$ such that $t_{\star}<t_{\text {max }}$ with high probability. If this holds (formally, conditioned on $t_{\star} \leq t_{\max }$), we know that $\hat{Q}^{\pi_{2}}(s, a) \leq \frac{\exp \left(2 t_{\max } x^{\star}\right)}{1-\gamma}=: Q_{\text {max }}$ with probability 1 , so we will have proved the result.
By a direct calculation

$$
\operatorname{Pr}\left[t^{\star} \geq T\right]=\sum_{\tau=T}^{\infty}(1-\gamma) \gamma^{\tau}=\gamma^{T}(1-\gamma) \sum_{\tau=0}^{\infty} \gamma^{\tau}=\gamma^{T}
$$

Therefore $t_{\max } \geq \log (1 / \delta) / \log (1 / \gamma)$ suffices.
2. Tabular RL with generative models. Consider some policy π and some (s, a) pair. (For notation only we consider π to be deterministic but this is not essential.) First note that since rewards are in $[0,1]$ we have that $Q_{M_{2}}^{\pi} \in\left[0, \frac{1}{1-\gamma}\right]$. Then

$$
\begin{aligned}
\left|Q_{M_{1}}^{\pi}(s, a)-Q_{M_{2}}^{\pi}(s, a)\right| & =\left|\mathbb{E}_{R_{1}(s, a)}[r]+\gamma \mathbb{E}_{s^{\prime} \sim P_{1}(s, a)} Q_{M_{1}}^{\pi}\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)-\mathbb{E}_{R_{2}(s, a)}[r]-\gamma \mathbb{E}_{s^{\prime} \sim P_{2}(s, a)} Q_{M_{2}}^{\pi}\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)\right| \\
& \leq\left|\mathbb{E}_{R_{1}(s, a)}[r]-\mathbb{E}_{R_{2}(s, a)}[r]\right|+\gamma\left|\mathbb{E}_{s^{\prime} \sim P_{1}(s, a)}\left[Q_{M_{1}}^{\pi}\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)\right]-\mathbb{E}_{s^{\prime} \sim P_{2}(s, a)}\left[Q_{M_{2}}^{\pi}\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)\right]\right| \\
& \leq \varepsilon+\gamma\left|\mathbb{E}_{P_{1}(s, a)}\left[Q_{M_{1}}^{\pi}\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)-Q_{M_{2}}^{\pi}\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)\right]\right|+\gamma\left|\left(\mathbb{E}_{P_{1}(s, a)}-\mathbb{E}_{P_{2}(s, a)}\right) Q_{M_{2}}^{\pi}\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)\right| \\
& \leq \varepsilon+\frac{\gamma \varepsilon}{1-\gamma}+\gamma\left|\mathbb{E}_{P_{1}(s, a)}\left[Q_{M_{1}}^{\pi}\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)-Q_{M_{2}}^{\pi}\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)\right]\right| \\
& \leq \varepsilon+\frac{\gamma \varepsilon}{1-\gamma}+\gamma \max _{s, a}\left|Q_{M_{1}}^{\pi}(s, a)-Q_{M_{2}}^{\pi}(s, a)\right| .
\end{aligned}
$$

Here, the first equality uses the definitions of the Q functions. In the second we use the triangle inequality to separate the immediate reward from the next-step value functions. In the third line we use the assumed bound on the reward differences and we also add and subtract a "cross term" quantity: $\mathbb{E}_{s^{\prime} \sim P_{1}(s, a)} Q_{M_{2}}^{\pi}\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)$. This leads us to a one step error term as well as a recursive term. The one step term is bounded via $\left|\left(\mathbb{E}_{P}-\mathbb{E}_{Q}\right)(f(x))\right| \leq \sup _{x}|f(x)| \cdot\|P-Q\|_{\mathrm{TV}}$.
Now let \bar{s}, \bar{a} be the state-action pair that maximize the difference $(\bar{s}, \bar{a})=\operatorname{argmax}_{s, a}\left|Q_{M_{1}}^{\pi}(s, a)-Q_{M_{2}}^{\pi}(s, a)\right|$. Then we have just showed that

$$
\left|Q_{M_{1}}^{\pi}(\bar{s}, \bar{a})-Q_{M_{2}}^{\pi}(\bar{s}, \bar{a})\right| \leq \varepsilon+\frac{\gamma \varepsilon}{1-\gamma}+\gamma\left|Q_{M_{1}}^{\pi}(\bar{s}, \bar{a})-Q_{M_{2}}^{\pi}(\bar{s}, \bar{a})\right|
$$

We can re-arrange this to obtain a bound for all state-action pairs.

$$
\left|Q_{M_{1}}^{\pi}(s, a)-Q_{M_{2}}^{\pi}(s, a)\right| \leq\left|Q_{M_{1}}^{\pi}(\bar{s}, \bar{a})-Q_{M_{2}}^{\pi}(\bar{s}, \bar{a})\right| \leq \frac{\varepsilon}{1-\gamma}+\frac{\gamma \varepsilon}{(1-\gamma)^{2}} \leq \frac{2 \varepsilon}{(1-\gamma)^{2}}
$$

For the second part, consider a single (s, a) pair and obtain n samples $\left\{\left(r_{i}, s_{i}^{\prime}\right)\right\}_{i=1}^{n}$ from the sampling oracle. Then by Hoeffding's inequality the empirical reward $\bar{R}(s, a)=\frac{1}{n} \sum_{i=1}^{n} r_{i}$ satisfies (w.p. $1-\delta$)

$$
\left|\bar{R}(s, a)-\mathbb{E}_{R(s, a)}[r]\right| \lesssim \sqrt{\frac{\log (1 / \delta)}{n}}
$$

Meanwhile, by Bernstein's inequality the empirical transition probability $\hat{P}\left(s^{\prime} \mid s, a\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left\{s_{i}^{\prime}=s^{\prime}\right\}$ satisfies

$$
\left|\hat{P}\left(s^{\prime} \mid s, a\right)-P\left(s^{\prime} \mid s, a\right)\right| \lesssim \sqrt{\frac{P\left(s^{\prime} \mid s, a\right) \log (1 / \delta)}{n}}+\frac{\log (1 / \delta)}{n}
$$

Therefore, taking a union bound over all choices of s^{\prime} we have

$$
\begin{aligned}
\|\hat{P}(s, a)-P(s, a)\|_{\mathrm{TV}} & \leq \frac{1}{2} \sum_{s^{\prime}}\left|\hat{P}\left(s^{\prime} \mid s, a\right)-P\left(s^{\prime} \mid s, a\right)\right| \\
& \lesssim \sum_{s^{\prime}}\left(\sqrt{\frac{P\left(s^{\prime} \mid s, a\right) \log (S / \delta)}{n}}+\frac{\log (S / \delta)}{n}\right) \\
& \lesssim \sqrt{\frac{S \log (S / \delta)}{n}}+\frac{S \log (S / \delta)}{n}
\end{aligned}
$$

With a union bound the above argument holds simultaneously for all $S A$ pairs. Thus if we set $n=$ $O\left(S \log (S A / \delta) / \varepsilon^{2}\right)$ we have uniform approximation, using $O\left(S^{2} A \log (S A / \delta) / \varepsilon^{2}\right)$ samples in total.
If we find the optimal policy in the approximate MDP \hat{M}, by an analysis similar to that for ERM, we have

$$
\begin{aligned}
J_{M}\left(\pi^{\star}\right) & \leq J_{\hat{M}}\left(\pi^{\star}\right)+\frac{2 \varepsilon}{(1-\gamma)^{2}} \leq J_{\hat{M}}(\hat{\pi})+\frac{2 \varepsilon}{(1-\gamma)^{2}} \\
& \leq J_{M}\left(\pi^{\star}\right)+\frac{4 \varepsilon}{(1-\gamma)^{2}}
\end{aligned}
$$

Thus to obtain suboptimality ϵ in total, we require

$$
O\left(\frac{S^{2} A \log (S A / \delta)}{(1-\gamma)^{4} \epsilon^{2}}\right)
$$

samples in total.
3. Generative models for linear MDPs. We use a recursive argument, similar to the proof of the simulation lemma:

$$
\left|Q^{(T)}(s, a)-Q^{\star}(s, a)\right| \leq\left|\mathcal{T} \widehat{V^{(T-1)}}(s, a)-\mathcal{T} V^{(T-1)}(s, a)\right|+\left|\mathcal{T} V^{(T-1)}(s, a)-Q^{\star}(s, a)\right|
$$

Using the linear MDP property, there exists a \bar{w} such that $\mathcal{T} V^{(T-1)}(s, a)=\langle\phi(s, a), \bar{w}\rangle$, while we constructed the empirical backup to satisfy $\mathcal{T} \widehat{V^{(T-1)}}(s, a)=\langle\phi(s, a), \hat{w}\rangle$. Introducing the covariance matrix, we have

$$
\begin{aligned}
\left|\widehat{\mathcal{T} V^{(T-1)}}(s, a)-\mathcal{T} V^{(T-1)}(s, a)\right| & =|\langle\phi(s, a), \bar{w}-\hat{w}\rangle| \leq\|\phi(s, a)\|_{\Sigma^{-1}} \cdot\|\bar{w}-\hat{w}\|_{\Sigma} \\
& \leq \sqrt{d} \cdot \sqrt{\mathbb{E}_{D}\left[\left(\mathcal{T} \widehat{V^{(T-1)}}(s, a)-\mathcal{T} V^{(T-1)}(s, a)\right)^{2}\right]} \\
& \leq \sqrt{\frac{d \Delta \log (1 / \delta)}{n}}
\end{aligned}
$$

This takes care of the first term. The second term has a recursive form

$$
\left|\mathcal{T} V^{(T-1)}(s, a)-Q^{\star}(s, a)\right|=\gamma\left|\mathbb{E}_{s^{\prime} \sim P(s, a)}\left[V^{(T-1)}\left(s^{\prime}\right)-V^{\star}\left(s^{\prime}\right)\right]\right|
$$

Recall that $V^{(T-1)}\left(s^{\prime}\right)=\max _{a^{\prime}} Q^{(T-1)}\left(s^{\prime}, a^{\prime}\right)$ while $V^{\star}\left(s^{\prime}\right)=\max _{a^{\prime}} Q^{\star}\left(s^{\prime}, a^{\prime}\right)$. We would like to obtain a difference in the two Q-functions on the same state-action pair as this will allow us to recurse the argument. For this we introduce the policy $\tilde{\pi}(s)=\operatorname{argmax}_{a} \max \left\{Q^{(T-1)}(s, a), Q^{\star}(s, a)\right\}$. This policy leads to the inequality

$$
\left|V^{(T-1)}\left(s^{\prime}\right)-V^{\star}\left(s^{\prime}\right)\right|=\left|\max _{a^{\prime}} Q^{(T-1)}\left(s^{\prime}, a^{\prime}\right)-\max _{a^{\prime}} Q^{\star}\left(s^{\prime}, a^{\prime}\right)\right| \leq\left|Q^{(T-1)}\left(s^{\prime}, \tilde{\pi}\left(s^{\prime}\right)\right)-Q^{\star}\left(s^{\prime}, \tilde{\pi}\left(s^{\prime}\right)\right)\right|
$$

To see why this is true, suppose that $\tilde{\pi}\left(s^{\prime}\right)$ is the greedy action w.r.t., $Q^{(T-1)}\left(s^{\prime}, \cdot\right)$. Then

$$
Q^{(T-1)}\left(s^{\prime}, \tilde{\pi}\left(s^{\prime}\right)\right) \geq Q^{\star}\left(s^{\prime}, \pi^{\star}\left(s^{\prime}\right)\right) \geq Q^{\star}\left(s^{\prime}, \tilde{\pi}\left(s^{\prime}\right)\right)
$$

as desired. A similar argument holds in the other case. Therefore,

$$
\gamma\left|\mathbb{E}_{s^{\prime} \sim P(s, a)}\left[V^{(T-1)}\left(s^{\prime}\right)-V^{\star}\left(s^{\prime}\right)\right]\right| \leq \gamma \cdot \sup _{s, a}\left|Q^{(T-1)}(s, a)-Q^{\star}(s, a)\right|
$$

Putting things together, we have

$$
\sup _{s, a}\left|Q^{(T)}(s, a)-Q^{\star}(s, a)\right| \leq \sqrt{\frac{d \Delta \log (1 / \delta)}{n}}+\gamma \sup _{s, a}\left|Q^{(T-1)}(s, a)-Q^{\star}(s, a)\right|
$$

We can apply the same argument on the last term on the right hand side and unrolling this gives

$$
\sup _{s, a}\left|Q^{(T)}(s, a)-Q^{\star}(s, a)\right| \leq \sum_{t=0}^{T} \gamma^{t} \sqrt{\frac{d \Delta \log (1 / \delta)}{n}}+\frac{\gamma^{T}}{1-\gamma} \leq \frac{1}{1-\gamma} \sqrt{\frac{d \Delta \log (1 / \delta)}{n}}+\frac{\gamma^{T}}{1-\gamma}
$$

The final term uses the trivial bound that $\left|Q^{(1)}-Q^{\star}\right| \leq \frac{1}{1-\gamma}$ simply because $Q^{\star}(s, a) \in[0,1 /(1-\gamma)]$.
For the second part, let the right hand side of the bound in part (a) be ε_{Q}. Then

$$
\begin{aligned}
J\left(\pi^{\star}\right)-J(\hat{\pi}) & =\mathbb{E}_{s_{0}} Q^{\star}\left(s_{0}, \pi^{\star}\left(s_{0}\right)\right)-Q^{\hat{\pi}}\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right) \\
& =\mathbb{E}_{s_{0}} Q^{\star}\left(s_{0}, \pi^{\star}\left(s_{0}\right)\right)-Q^{\star}\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right)+Q^{\star}\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right)-Q^{\hat{\pi}}\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right) \\
& \leq \mathbb{E}_{s_{0}} Q^{\star}\left(s_{0}, \pi^{\star}\left(s_{0}\right)\right)-Q^{(T)}\left(s_{0}, \pi^{\star}\left(s_{0}\right)\right)+Q^{(T)}\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right)-Q^{\star}\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right)+Q^{\star}\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right)-Q^{\hat{\pi}}\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right) \\
& \leq 2 \varepsilon_{Q}+\mathbb{E}_{s_{0}} Q^{\star}\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right)-Q^{\hat{\pi}}\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right)
\end{aligned}
$$

Here the main inequality uses the fact that $\hat{\pi}$ is greedy with respect to $Q^{(T)}$, so $Q^{(T)}(s, \hat{\pi}(s)) \geq Q^{(T)}\left(s, \pi^{\star}(s)\right)$. Now, we may unroll the last term here since $Q^{\star}\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right)=r\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right)+\gamma \mathbb{E}_{s_{1} \sim P\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right)} Q^{\star}\left(s_{1}, \pi^{\star}\left(s_{1}\right)\right)$ while $Q^{\hat{\pi}}\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right)=r\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right)+\gamma \mathbb{E}_{s_{1} \sim P\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right)} Q^{\hat{\pi}}\left(s_{1}, \hat{\pi}\left(s_{1}\right)\right)$. This gives

$$
\mathbb{E}_{s_{0}} Q^{\star}\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right)-Q^{\hat{\pi}}\left(s_{0}, \hat{\pi}\left(s_{0}\right)\right)=\gamma \mathbb{E}_{s_{1} \sim d_{1}^{\hat{\pi}}} Q^{\star}\left(s_{1}, \pi^{\star}\left(s_{1}\right)\right)-Q^{\hat{\pi}}\left(s_{1}, \hat{\pi}\left(s_{1}\right)\right),
$$

which has the same form as what we started with. Thus by unrolling, we obtain the bound:

$$
J\left(\pi^{\star}\right)-J(\hat{\pi}) \leq \frac{2 \varepsilon_{Q}}{1-\gamma}
$$

4. Bellman rank. The key calculation is that in a linear MDP, the Bellman backup of any function $g: \mathcal{S} \rightarrow \mathbb{R}$ is linear in the true features ϕ^{\star}. To see this, consider some policy π and note that

$$
\begin{aligned}
\mathbb{E}_{s_{h} \sim d_{h}^{\pi}} g\left(s_{h}\right) & =\mathbb{E}_{s_{h-1}, a_{h-1} \sim d_{h-1}^{\pi}} \int P\left(s_{h} \mid s_{h-1}, a_{h-1}\right) g\left(s_{h}\right) d s_{h} \\
& =\mathbb{E}_{s_{h-1}, a_{h-1} \sim d_{h-1}^{\pi}} \int\left\langle\phi^{\star}\left(s_{h-1}, a_{h-1}\right), \mu^{\star}\left(s_{h}\right)\right\rangle g\left(s_{h}\right) d s_{h} \\
& =\left\langle\mathbb{E}_{s_{h-1}, a_{h-1} \sim d_{h-1}^{\pi}} \phi^{\star}\left(s_{h-1}, a_{h-1}\right), \int \mu^{\star}\left(s_{h}\right) g\left(s_{h}\right) d s_{h}\right\rangle
\end{aligned}
$$

This immediately shows that the Bellman error $\mathcal{E}_{h}(\pi, f)$ factorizes, since we can take g in the above derivation to be $g: s_{h} \mapsto \mathbb{E}_{a_{h} \sim \pi_{f}\left(s_{h}\right)}\left[(f-\mathcal{T} f)\left(s_{h}, a_{h}\right)\right]$, which is only a function of the state s_{h}. Then

$$
\begin{aligned}
\mathcal{E}_{h}(\pi, f) & =\mathbb{E}_{s_{h} \sim d_{h}^{\pi}} \mathbb{E}_{a_{h} \sim \pi_{f}\left(s_{h}\right)}\left[(f-\mathcal{T} f)\left(s_{h}, a_{h}\right)\right]=\mathbb{E}_{s_{h} \sim d_{h}^{\pi}}\left[g\left(s_{h}\right)\right] \\
& =\left\langle\mathbb{E}_{s_{h-1}, a_{h-1} \sim d_{h-1}^{\pi}} \phi^{\star}\left(s_{h-1}, a_{h-1}\right), \int \mu^{\star}\left(s_{h}\right) g\left(s_{h}\right) d s_{h}\right\rangle
\end{aligned}
$$

Thus, we can take $w_{h}(\pi)=\mathbb{E}_{s_{h-1}, a_{h-1} \sim d_{h-1}^{\pi}} \phi^{\star}\left(s_{h-1}, a_{h-1}\right)$ and we can take $v_{h}(f)=\int \mu^{\star}\left(s_{h}\right) \mathbb{E}_{a \sim \pi_{f}\left(s_{h}\right)}[(f-$ $\left.\mathcal{T} f)\left(s_{h}, a_{h}\right)\right] d s_{h}$ and see that the Bellman rank is d. Note that these embeddings also satisfy reasonable normalization conditions, since we typically assume $\left\|\phi_{h}^{\star}\right\|_{2}$ is bounded, and it is natural to assume that both f and $\mathcal{T} f$ are bounded as well.

