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1. Let us start by setting the RHS of Bernstein’s inequality to be at most δ and re-arranging:

exp

(
− t2/2∑n

i=1 E[X2
i ] +Mt/3

)
≤ δ ⇔ t2 ≥ 2

(
n∑

i=1

E[X2
i ]

)
log(1/δ) +

2Mt

3
log(1/δ)

This is a quadratic inequality in t and we can find the roots using the quadratic formula. That is somewhat
tedious, so a shortcut is to decompose t = t1 + t2 where t1 and t2 are chosen to ensure different parts of this
inequality hold. Specifically we set

t1 =

√√√√2

(
n∑

i=1

E[X2
i ]

)
log(1/δ), and t2 =

2M

3
log(1/δ)

Now, we can check

t2 = t21 + 2t1t2 + t22 ≥ t21 + t2t,

which, using the definitions of t1 and t2 is precisely the inequality we want to satisfy, after dividing by n to
account for the difference between X̄ and

∑n
i=1Xi.

For the generalization bound, fix a function f ∈ F and define random variables Z1, . . . , Zn where Zi =
1{f(xi) 6= yi}. Observe that R̂n(f) = 1

n

∑n
i=1 Zi and R(f) = E[Zi]. So we will apply Bernstein’s inequality

on the random variables

R̂n(f)−R(f) =
1

n

n∑
i=1

(1{f(xi) 6= yi} −R(f))

A critical step in the argument is that the variance term that appears in Bernstein’s inequaltiy can be upper
bounded by the mean:

E
[
(1{f(xi) 6= yi} −R(f))

2
]
≤ E

[
1{f(xi) 6= yi}2

]
≤ E [1{f(xi) 6= yi}] = R(f).

Then, by our variant of Bernstein’s inequality and a union bound, we have that with probability at least 1−δ:

∀f ∈ F :
∣∣∣R̂n(f)−R(f)

∣∣∣ ≤√2R(f) log(2|F|/δ)
n

+
2 log(2|F|/δ)

3
.

Using this with f̂n along with the fact that f̂n is the ERM yields

R(f̂n)−R(f?) ≤ R̂n(f̂n)− R̂n(f?) +

√
2R(f̂n) log(2|F|/δ)

n
+

√
2R(f?) log(2|F|/δ)

n
+

4 log(2|F|/δ)
3

≤

√
2R(f̂n) log(2|F|/δ)

n
+

√
2R(f?) log(2|F|/δ)

n
+

4 log(2|F|/δ)
3

.
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The only problem is the first term in the above bound since it depends on R(f̂n) rather than R(f?). On the

other hand, the bound itself is showing that R(f̂n) ≈ R(f?) so intuitively we should be able to swap the R(f̂n)
term on the RHS with R(f?) without paying too much. Indeed

√
2R(f̂n) log(2|F|/δ)

n
=

√√√√2
(
R(f̂n)−R(f?) +R(f?)

)
log(2|F|/δ)

n

≤

√√√√2
(
R(f̂n)−R(f?)

)
log(2|F|/δ)

n
+

√
2R(f?) log(2|F|/δ)

n

≤ R(f̂n)−R(f?)

2
+

log(2|F|/δ)
n

+

√
2R(f?) log(2|F|/δ)

n

Here the first inequality is that
√
a+ b ≤

√
a +
√
b while the second is that

√
ab ≤ a/2 + b/2. Plugging this

bound in above, we have

R(f̂n)−R(f?) ≤ R(f̂n)−R(f?)

2
+ 2

√
2R(f?) log(2|F|/δ)

n
+

7 log(2|F|/δ)
3n

By bringing the first term from the RHS to the LHS and then multiplying by 2, we obtain the result.

2. The first observation is that for any epoch i if an arm survives into epoch i then at the end of the epoch it
has been played Ni =

∑i
j=1 2j ≥ 2i. In particular this means that all surviving arms have been played the

same number of times.

Let a? = argmaxa µ(a) denote the best arm. Next, we show that a? is never eliminated. To do this, recall
that we set the confidence interval such that

∀t ∈ [T ], a ∈ A : |µ̂t(a)− µ(a)| ≤ conft(a)

We show that for any epoch i, a? is not eliminated. This follows since for any a 6= a?

µ̂(a?) + conf(a) ≥ µ(a?) ≥ µ(a) ≥ µ̂(a)− conf(a),

where the first and third inequality are by the property of the confidence interval and the second inequality
is by the optimality of a?.

Next we claim that any arm that survives an elimination step cannot be too suboptimal. Indeed

µ(a) ≥ µ̂(a)− conf(a) = µ̂(a) + conf(a)− 2conf(a) ≥ µ̂(a?)− conf(a?)− 2conf(a) ≥ µ(a?)− 2conf(a?)− 2conf(a)

Since the confidence interval for all surviving arms is the same, we see that if arm a survives through epoch i
then its suboptimality is roughly

√
1/2i.

For the regret analysis, the bookkeeping has to be done somewhat carefully. We decompose the regret across
epochs. In each epoch the regret we incur depends on the number of active arms |Ai|, the epoch length, and
the confidence interval. Formally the regret in epoch i is bounded by 4|Ai| · 2i · confi−1 (below we will not
track the constants precisely). Let I denote the index of the last complete epoch and let Ia denote the index
of the epoch when a is eliminated (or I if a is never eliminated) and let Na denote the number of plays for
arm a up to and including epoch I.

First we claim that we do not incur too much regret in the final epoch I+1, which does not complete. Suppose
that |AI+1| = k > 0. Then observe that I ≤ blog2(T/K)c, since epoch I lasts for at least k2I rounds. The
regret in epoch I + 1 can be crudely upper bounded by

k · 2I+1 · confI ≤ ck2I+1 ·
√

log(AT/δ)

2I
≤ ck

√
2I log(AT/δ) ≤ c

√
kT log(AT/δ) ≤ O(

√
AT log(AT/δ))
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For the other epochs we have

I∑
i=1

|Ai| · 2i · confi−1 ≤ c
I∑

i=1

|Ai|
√

2i · log(AT/δ)

≤ c
∑
a

Ia∑
i=1

√
2i · log(AT/δ)

≤ c
∑
a

√
Na · log(AT/δ)

≤ c
√
AT log(AT/δ).

To pass to the second line, we simply re-arrange the sum so that for each arm a we consider all the epochs
until a is eliminated. Then we bound this geometric series (the constant c changes from line to line). Finally
we use Cauchy-Schwarz since

∑
aNa ≤ T .

3. For item (a) our choice of β ensures that ‖θ̂t − θ?‖Λt
≤ β, just as we saw in class. Now considering a? and

some other action b, we have〈
θ̂t, xb − xa?

〉
=
〈
θ̂t − θ?, xb − xa?

〉
+ 〈θ?, xb − xa?〉

≤
〈
θ̂t − θ?, xb − xa?

〉
≤ ‖θ̂t − θ?‖Λt · ‖xb − xa?‖Λ−1

t

≤ β‖xb − xa?‖Λ−1
t

Here the first inequality uses the optimality of a? (for the true parameter θ?). The second is Cauchy-Schwarz

and the third uses our guarantee on θ̂t. This proves that a? is never eliminated.

For item (b), the total regret across all rounds is

T∑
t=1

〈θ?, xa? − xat
〉 ≤

T∑
t=1

∑
a

pt(a) 〈θ?, xa? − xa〉+O(
√
T log(1/δ)),

where the latter holds with probability 1 − δ by an application of Azuma’s inequality. Now let us focus on
one of the terms in the first sum:∑

a

pt(a) 〈θ?, xa? − xa〉 = 〈θ?, xa? − Ea∼pt
[xa]〉

=
〈
θ? − θ̂t, xa? − Ea∼pt [xa]

〉
+
〈
θ̂t, xa? − Ea∼pt [xa]

〉
≤ β · ‖xa? − Ea∼pt [xa]‖Λ−1

t
+
〈
θ̂t, xa? − Ea∼pt [xa]

〉
The first term is at a point where we can apply Eq. (4), so let us continue with the third term. By applying
Eq. (3) and then the triangle inequality we obtain〈
θ̂t, xa? − Ea∼pt

[xa]
〉
≤ β

∑
a

pt(a)‖xa? − xa‖Λ−1
t
≤ β‖xa? − Ea∼pt

[xa]‖Λ−1
t

+ β
∑
a

pt(a)‖Eb∼pt
[xb]− xa‖Λ−1

t

All of these terms are bounded by Eq. (4). Together, we obtain the bound∑
a

pt(a) 〈θ?, xa? − xa〉 ≤ 3β
√

tr
(
Λ−1
t ·Mt

)

3



For item (c) after the application of Azuma’s inequality from above, and using our answer to part (b) the
regret is bounded as

T∑
t=1

〈θ?, xa? − xat
〉 ≤ 3β

T∑
t=1

√
tr
(
Λ−1
t ·Mt

)
+O(

√
T log(1/δ))

We will focus on the first term. By Cauchy-Schwarz and then by using the concentration inequality provided,
we bound this term as

T∑
t=1

√
tr(Λ−1

t ·Mt) ≤
√
T ·

√√√√ T∑
t=1

tr(Λ−1
t ·Mt)

≤
√
T ·

√√√√ T∑
t=1

tr
(
Λ−1
t xatx

>
at

)
+ 8 log(2/δ)

≤
√
T ·

√√√√ T∑
t=1

x>at
Λ−1
t xat

+O(
√
T log(1/δ)).

Now we can apply the elliptical potential lemma, since Λt+1 = Λt + xat
x>at

. The only minor difference is
that we don’t have the min(1, ·) in our sum. However since we started with Λ1 = I, this does not affect the
argument too much. In particular the only change is in the first step, where we use the Woodbury identity,
Here we get

x>at
Λ−1
t+1xat

=
xa>t Λ−1

t xat

1 + xa>t Λ−1
t xat

≥ (1 +B2)−1xa>t Λ−1
t xat

which follows since Λ−1
t � I and we assume that the features are bounded as ‖xat

‖2 ≤ B. Using the rest of
the elliptical potential as is, we can conclude that

T∑
t=1

x>at
Λ−1
t xat

≤ 1

1 +B2
d log(1 + TB2/d),

and using this yields the desired regret bound.

4. For part (a) observe that

E
[
(ŷt(xt, at)− rt)2 − (f?(xt, at)− rt)2

]
= E

[
ŷt(xt, at)

2 − f?(xt, at)
2 − 2rt(ŷt(xt, at)− f?(xt, at))

]
= E

[
ŷt(xt, at)

2 − f?(xt, at)
2 − 2µt(xt, at)(ŷt(xt, at)− f?(xt, at))

]
= E

[
(ŷt(xt, at)− f?(xt, at))

2 − 2(µt(xt, at)− f?(xt, at))(ŷt(xt, at)− f?(xt, at))
]

Therefore

E

[
T∑

t=1

(ŷt(xt, at)− f?(xt, at))
2

]
≤ E

[
Regsq(T )

]
+ E

[
T∑

t=1

2(µt(xt, at)− f?(xt, at))(ŷt(xt, at)− f?(xt, at))

]

≤ E
[
Regsq(T )

]
+ E

[
T∑

t=1

2(µt(xt, at)− f?(xt, at))
2 +

T∑
t=1

1

2
(ŷt(xt, at)− f?(xt, at))

2

]

≤ E
[
Regsq(T )

]
+ 2ε2T + E

[
T∑

t=1

1

2
(ŷt(xt, at)− f?(xt, at))

2

]
Re-arranging this proves the result.
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For the part (b) we need to prove a “per-round” inequality, but first let us see what the per-round inequality
should be. The first thing to do is to move from the true reward function µ to the function f? that is in our
function class. For this, observe that for any xt and at

max
a

µ(xt, a)− µ(xt, at) = max
a

µ(xt, a)−max
a

f?(xt, a) + max
a

f?(xt, a)− f?(xt, at) + f?(xt, at)− µ(xt, at)

≤ 2ε+ max
a

f?(xt, a)− f?(xt, at),

where the inequality holds by our assumption on f? and µ (and a similar proof to what we saw in the
contraction lemma to relate the two max’s).

So from now on we can work with Eat∼pt
[maxa f

?(xt, a)− f?(xt, at)]. Let us condense the notation and drop
dependence on xt and t altogether. Let a? = argmaxa f

?(a) and let y denote the vector of our predictions
and let b = argmaxa y(a). So now we want to bound

Ea∼p [f?(a?)− f?(a)]− γ

4
Ea∼p

[
(y(a)− f?(a))

2
]
,

and exactly our analysis for SquareCB shows that this is O(A/γ). Putting things together, we have

Regret(T ) :=

T∑
t=1

max
a

µ(xt, a)− Eat∼pt [µ(xt, at)]

≤ 2Tε+

T∑
t=1

max
a

f?(xt, a)− Eat∼pt
f?(xt, at)

≤ 2Tε+
AT

γ
+
γ

4

T∑
t=1

Ea∼pt

[
(ŷt(xt, a)− f?(xt, a))

2
]

. 2Tε+
AT

γ
+
γ

4

(
2Regsq(T ) + 2ε2T

)
Here the . notation hides a concentration argument to relate Regsq(T ) to its expectation. Now if we optimize

for γ we get γ = Θ(
√

AT
Regsq(T )+2ε2T and plugging this in yields

O

(
Tε+

√
AT

(
Regsq(T ) + 2ε2T

))
≤ O

(
εT
√
A+

√
ATRegsq(T )

)
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